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Abstract: This work aims to develop a multihole atmospheric pressure plasma jet (APPJ) device to
increase the plasma area and apply it to a continuous seed treatment system. Broccoli seed was used
to study the effects of an atmospheric pressure plasma jet on seed germination and growth rate. An
argon flow rate of 4.2 lpm, a plasma power of 412 W, and discharge frequency of 76 kHz were used
for seed treatment. The contact angle decreased strongly with the increase in treatment time from
20 s to 80 s. The broccoli seed’s outer surface morphology seemed to have been slightly modified
to a smoother surface by the plasma treatment during the treatment time of 80 s. However, the
cross-sectional images resulted from Synchrotron radiation X-ray tomographic microscopy (SRXTM)
confirmed no significant difference between seeds untreated and treated by plasma for 80 s. This
result indicates that plasma does not affect the bulk characteristics of the seed but does provide
delicate changes to the top thin layer on the seed surface. After seven days of cultivation, the seed
treated by plasma for 30 s achieved the highest germination and yield.

Keywords: atmospheric pressure plasma jet; surface treatment; growth rate enhancement

1. Introduction

Under laboratory conditions, plasmas are generated by applying a voltage between
two electrodes. At sufficiently high power, the ionized gases consist of equal concentrations
of positive and negative charges and many neutral species. In general, plasmas can be
classified according to temperature into thermal and nonthermal plasmas, which are also
termed cold plasmas [1]. Because it can operate at low temperatures, surface treatment
with cold plasma has been used in numerous industries worldwide, such as semiconductor
technology, medicine and cosmetics, packaging technology, textiles, and agriculture [2–4].
In atmospheric pressure cold plasma, ion temperature is close to room temperature. In
contrast, the electron temperatures can easily be of the order of several eV (1 eV ∼= 11,600 K).
This electron temperature range (<10 eV) is responsible for rotational and vibrational exci-
tations of molecules [5]. However, the small fraction of tail electrons in the electron energy
distribution function (EEDF) with energies of the order 10 eV or even higher can generate
many different chemical processes [6]. For example, the steady-state density of radicals in
a nitrogen plasma jet (the mole fraction of water molecules in nitrogen gas is 0.01) with an
electron temperature of 1 eV have been calculated by Uhm [7]. The results show that most
reactive nitrogen species have a density of around 1014–1016 molecules/cm3 [7]. Argon
plasma is frequently used for physical process treatment due to an effective energy transfer
to the solid surface. The argon ions bombarding the surface can dislodge contamination
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from it and roughen it on an atomic scale [8]. Oxygen, nitrogen, or humid air plasmas can
be used for surface activation via the gas-phase radicals. When these plasmas are exposed
to the surface, different functional groups are created modifying the chemical activity of the
surface [9]. The reactive oxygen species (ROS) such as O−

2 , OH−, and O3, reactive nitrogen
species (RNS) such as NO, NO2, and NO3, and other reactive species are important in
retaining the quality of seeds and food products [10–12]. These reactive radical species,
especially NO, and also ultraviolet radiation can penetrate into the capsule of seeds and
decompose the inner nutriment. This effect can accelerate the activities of the root of the
seedling and increase seed germination [10,13].

Two methods have been frequently used to generate atmospheric pressure plasmas,
an atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge (DBD). These
methods have unique features that are suitable for specific applications [11]. The DBD
device consists of two plane-parallel metal electrodes and a dielectric layer covers at
least one of these electrodes. The gap which separates the electrodes is limited to a few
millimeters wide to ensure stable plasma operation [14]. The APPJ device consists of
two concentric electrodes through which the working gas flows. By applying alternating
current (AC) power to the inner electrode at a voltage high enough, the gas discharge
is ignited [15]. Usually, these techniques are combined for generating and stabilizing
atmospheric pressure plasmas. When APPJ is used for large-area processing, multiple jets
or multihole arrays with a scanning stage are typically essential for continuous roll-to-roll
processes [16]. This technique makes the cold APPs treatment a reliable method to improve
seed performance and crop yield [17,18]. Seeds are the most basic and significant means of
agricultural production, and high-quality seeds can rapidly germinate and grow [19,20].

Recently, the modification of surface properties of seeds by cold atmospheric pressure
plasma treatments has been proposed as a helpful technique to improve seed germi-
nation [21–25]. Broccoli seed was chosen as the model for the operational testing of a
multihole APPJ device. The effects of seed germination and the growth rate of sprouts on
the treatment time were studied. Therefore, this work aims to develop the multihole APPJ
device to increase the plasma area and apply it to a continuous seed treatment system.

2. Materials and Methods

The experimental set-up is schematically shown in Figure 1. It consisted of a multihole
APPJ device with a computer controller for positioning, used for seed treatment, and an
alternating current power supply with a discharge voltage range of 0–10 kV and a frequency
range of 50–200 kHz used to sustain the plasma. This multihole APPJ device was designed
and developed from a laboratory prototype [26]. Argon was used as a carrier gas and
injected into the multihole APPJ device with a gas-flow rate range of 1.7–4.2 L per minute
(lpm). A high voltage probe (Keysight N2771B, Santa Rosa, CA, USA) with 30 kVpeak was
used to measure the variable voltages’ waveforms at output points of the circuit. The
clamp meter current (Pearson 4100, Palo Alto, CA, United States) was used to record the
current supplied to the plasma source. The current-voltage waveform was recorded using
a two-channel oscilloscope (Agilent technologies DSO1002A, Beijing, China).

The work of adhesion, surface morphology, and cross-sectional images of untreated
and treated seeds were examined using contact angle measurement, scanning electron mi-
croscopy, and Synchrotron radiation X-ray tomographic microscopy. The SRXTM technique
uses X-rays to create cross-sections of a physical object, obtaining three-dimensional (3D)
images of samples. In this study, XTM measurement was performed at the end-station of
beamline 1.2 W in the Synchrotron Light Research Institute (Public Organization), Nakhon
Ratchasima, Thailand. The beamline photon source covered an energy range of 5 to 15 keV.
The synchrotron radiation source at the storage ring was generated using a beam energy of
1.2 GeV. The sample was exposed to an incident X-ray beam and rotated through 180◦ to
achieve several projections. These projections were reconstructed to create two-dimensional
(2D) slices of the measured volume. The slices could be stacked to recreate the 3D image of
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the sample. Broccoli seed was scanned using the XTM technique before and after plasma
treatment for comparison of the external surface and internal structure of the seeds.
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Figure 1. Schematic diagram of the experimental apparatus.

To ensure that the plasma beam temperature did not exceed the limit of seed growth,
the temperature of the plasma ejected from the nozzle of multihole APPJ must be measured.
The experimental set-up of the plasma temperature measurement and the basic diagram
of multihole APPJ are schematically shown in Figure 2. The dielectric plate was designed
to have five linear arrays with 21 tubes per array on both sides. It was sandwiched with
the power and ground electrodes. After plasma was generated with suitable conditions of
argon flow rate and discharge power, the plasma beam was ejected from the nozzle with a
maximum length of around 10 mm. The spacing between the thermocouple probe and the
nozzle was held at 5 mm. A dielectric film was used to cover the thermocouple’s probe tip
to prevent the built-up charge during the measurement.
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Figure 2. Schematic diagram of the multihole plasma jet with temperature measurement (not to
scale).

Broccoli seeds with and without plasma treatment were tested for germination ability
under laboratory conditions. Two layers of filter paper were soaked in distilled water
before placing them in plastic germination boxes, and then 100 seeds of each treatment
were added. The germination boxes were incubated at 20 ◦C for seven days, and the
number of germinated seeds was recorded every day. There were three replications in
each treatment. Broccoli seeds that had not been plasma-treated were used as a control.
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Germination was considered to have occurred when the radicals were half of the seed
length. The germination percentage was calculated as follows:

Germination percentage (%) =
number of germinated seeds

total number of seeds
×100, (1)

Seedling growth measurements were of shoot length and root length assessed every
day for seven days. One hundred broccoli seeds were sown in sterilized peat moss in a
seedling tray and watered with 50 mL of distilled water every day for seven days. The
experiment was designed as a completely randomized design (CRD) with three replications.
After seven days, broccoli sprouts were harvested, and the fresh weight was measured.

3. Results and Discussion
3.1. Plasma Temperature and Current-Voltage Measurements

Temperature is a crucial factor influencing the germination of seeds [27]. The ger-
mination rate increases with rises in temperature up to an optimum value and declines
at temperatures exceeding it [28,29]. For most plants, the optimum and maximum ger-
mination temperatures are 15–30 ◦C and 30–40 ◦C, respectively [30]. High temperatures
reduce enzyme efficiency, and eventually, a temperature is reached at which cellular pro-
tein is denatured, and the seed is killed [31]. Plasma consists of electrons and ions, which
can bombard seed coats, increase the temperature, and affect the germination rate of the
seed [32]. Therefore, before seed treatment, it must be ensured that the temperature of
plasma does not exceed the upper temperature limits for germination. In this work, the
temperature of plasma was measured as a function of exposure time with the sampling
rate of 10 Hz, as shown in Figure 3. It found that during 20 min of plasma being exposed to
the probe, the maximum temperature was around 36 ◦C. The temperature did not exceed
27 ◦C in a 1-min plasma treatment. This result means that the plasma source can be used to
treat the seed plant without deteriorated seed populations [24].

Processes 2021, 9, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 3. The temperature on the probe as a function of the plasma exposure time. 

The current and voltage waveforms during the process of plasma treatment are 

shown in Figure 4. The phase difference between the voltage and the current was 101°. 

The impedance was practically capacitive, corresponding to the voltage waveform lags 

behind the current waveform [33]. The plasma can be easily generated, as seen in Figure 

5, by using the frequency of 76 kHz. This frequency is suitable to transfer the electrical 

energy to the plasma source. The root mean squares of voltage Vrms of 4.6 kV and current 

Irms of 410 mA were observed corresponding to the discharge power of 412 W. 

 

Figure 4. Current-voltage waveforms of the multihole plasma jet during the discharge power and 

frequency of 412 W and 76 kHz, respectively. 

Figure 3. The temperature on the probe as a function of the plasma exposure time.

The current and voltage waveforms during the process of plasma treatment are shown
in Figure 4. The phase difference between the voltage and the current was 101◦. The
impedance was practically capacitive, corresponding to the voltage waveform lags behind
the current waveform [33]. The plasma can be easily generated, as seen in Figure 5, by
using the frequency of 76 kHz. This frequency is suitable to transfer the electrical energy
to the plasma source. The root mean squares of voltage Vrms of 4.6 kV and current Irms of
410 mA were observed corresponding to the discharge power of 412 W.
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Figure 5. Photograph during the multihole plasma jet exposure of the broccoli seeds.

3.2. Contact Angle Measurement

Contact angle measurements were carried out using deionized water to determine the
broccoli surface’s hydrophilicity after being treated by the plasma. The results concerning
the effect of multihole APPJ treatment on water wettability are shown in Figure 6. Because
the broccoli seeds are small in size and naturally non-uniform in shape and surface struc-
ture, the contact angle definition should be modified using an arc surface [34]. As seen
in Figure 6a, the contact angle of a liquid with a surface as the mechanical equilibrium
of a drop resting on a plane solid surface is the angle between the surface tensions at the
interface of the liquid and vapor phases (γlv) and at the interface of the solid and liquid
phases (γsl) [35]. Figure 6b–f shows contact angle images of water droplets adhered to
broccoli seeds (b) untreated and (c–f) plasma-treated with treatment times of 20 s, 40 s, 60 s,
and 80 s, respectively. For each condition, the mean contact angle was measured using five
broccoli seeds. The contact angle and work of adhesion as a function of the treatment time
are shown in Figure 7. The contact angle was 130.8 ± 5.5◦ for the untreated seeds, and the
contact angle decreased to 76.4 ± 7.1◦ when increasing the plasma treatment time. The
work of adhesion of a liquid and solid can be calculated directly from the surface tension
between liquid and vapor phases and the contact angle [36,37]. A decreasing contact angle
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corresponds to increased work of adhesion from 26.0 ± 1.1 to 92.5 ± 8.6 mN/m. The
contact angle decreased strongly, which indicates that the atmospheric pressure argon
plasma treatment resulted in dramatic hydrophilization of seeds. The multihole APPJ in
the air can produce reactive oxygen and nitrogen species, including NOx, OH, O, and O3.
These reactive species stimulate the activation processes of the surface [38,39].
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3.3. SEM and XTM Images

Figure 8 shows the scanning electron images of the appearance of a particular structure
on the treated and untreated seed surface. The broccoli seed’s outer surface morphology
seemed to be slightly modified to a smoother surface by the plasma treatment lasting for
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80 s. The plasma electrons and ion bombardment of the seed coat’s outer layer can reduce
the volcano-like protuberances, making the seed surface appear more granulated [40,41].
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Figure 9 shows the XTM images of broccoli seed before and after plasma treatment.
The whole seed’s external surface is shown in Figure 9a,b, representing untreated and
treated conditions. The XTM images show some rendering of the seed coat after being
plasma treated for 80 s, resulting in a flatter surface when compared with the untreated
sample. Figure 9c,d show the XTM images cross-sectional in the xz plane. This result
reveals that the internal structure of the broccoli seed was not changed after the plasma
treatment. In the plasma treatment process, the degree of ion energy may affect only the
surface of the seed and cannot penetrate the seed coat and embryo. These results are in
good agreement with the SEM analysis.
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(c) untreated, and (d) plasma.

3.4. Effect of Plasma Treatment on Broccoli Seed Germination

Seeds treated by plasma showed an increased percentage of germination in compari-
son to the untreated seeds. Seven days after sowing, we found that the 30 s plasma-treated
had the highest shoot length of 4.53 ± 0.12 cm, followed by seeds treated by plasma for
60 s (4.47 ± 0.15 cm) and the untreated seeds (4.39 ± 0.11 cm) as shown in Figure 10a.
Figure 10b compares the germination percentage on days 1–7 of broccoli seed treated and
untreated by plasma. Germination rates began to be stable from two days onwards. The
results showed that seeds treated for 30 s had the highest germination rate of 94 ± 1.6%,
followed by the untreated seed (92 ± 0.9%). The germination percentage of seeds treated
with plasma for 60 s decreased to 87 ± 2.9%. This result could be due to the effect of ion
bombardment of the seed during the plasma exposure.
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percentage on days 1–7.

Figure 11 compares the weight of seed, fresh sprouts, and additional weight of treated
and untreated broccoli seeds after seven days of cultivation. The results showed that seed
treated by plasma for 30 s obtained the highest yield. During plasma treatment, seeds
were exposed to electrons, ions, UV, thermal radiation, and reactive species. Heat was the
physical factor affecting the seed coats directly depending on the treatment time [32]. This
phenomenon was attributed to the momentum transfer and chemical reactivity among
radicals and ionic plasma species. Therefore, the increase in plasma treatment time can
induce more reactive and energetic plasma active species that would negatively affect
germination.
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area treatment. The conditions that gave a stable plasma jet consisted of an argon flow
rate of 4.2 lpm, plasma power of 412 W, and discharge frequency of 76 kHz. With 1-min
plasma treatment, the plasma temperature did not exceed 27 ◦C. The surface morphology
of seed coats seems to be slightly modified, while the SRXTM cross-sectional images
show no significant difference between seeds untreated and seeds treated by plasma. The
germination percentage of seeds treated with plasma for 30 s was 94 ± 1.6%. This result
is the optimum condition under the argon plasma treatment. Although the germination
percentage was higher than that observed for the untreated seed, approximately 2%, a
growth enhancement was also improved. After seven days of cultivation of treated broccoli
seeds, the additional weight of sprouts was higher than that of untreated seeds by 10.5%.
This result indicates that with a short treatment time, the multihole APPJ can modify the
seed coats and shows a potential impact on the productivity of sprouts that could be useful
in seed processing technologies.
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