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Abstract: The rise of new digital technologies and their applications in several areas pushes the
process industry to update its methodologies with more intensive use of mathematical models—
commonly denoted as digital twins—and artificial intelligence (AI) approaches to continuously
enhance operational efficiency. In this context, Real-time Optimization (RTO) is a strategy that is
able to maximize an economic function while respecting the existing constraints, which enables
keeping the operation at its optimum point even though the plant is subjected to nonlinear behavior
and frequent disturbances. However, the investment related to the project of commercial RTOs
may make its application infeasible for small-scale facilities. In this work, an in-house, small-scale
RTO is presented and its successful application in a real industrial case—a Natural Gas Processing
Unit—is shown. Besides that, a new method for enhancing the efficiency of using sequential-modular
simulator inside an optimization framework and a new method to account for the economic return
of optimization-based tools are proposed and described. The application of RTO in the industrial
case showed an enhancement in the stability of the main variables and an increase in profit of 0.64%
when compared to the operation of the regulatory control layer alone.

Keywords: RTO; data reconciliation; natural gas processing; economic evaluation; sequential-
modular approach

1. Introduction

Real-time optimization is a model-based adaptive optimization technique that at-
tempts to find the optimal operating condition accordingly to an economic index of a plant
subjected to a process model and a set of constraints that might be, for instance, physical
limits, environmental restriction, product quality, or safety criteria [1]. The so-called “two-
step” approach proposed by Jang et al. [2] has become the most widespread RTO strategies
in industry [3-5]. In this approach, a parameter estimation step is performed followed
by an economic optimization step, so that the available static model of the plant can be
adjusted considering the most recent set of plant information and the optimization may
be carried out considering a rigorous model with minimum plant-model mismatch. It is
true that this approach may fail when there is model structural uncertainty [6,7]. However,
when the sources of uncertainty are mainly parametric, the approach has great potential to
increase the economic performance of process operations [8] and to provide considerable
economic benefit that overly surpass the cost of investment on the RTO design. Therefore,
the development of a rigorous process model is the backbone of the two-step RTO ap-
proach and, in fact, it is possible to show that whenever a model satisfies the set of model
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adequacy criteria, the model-based optimization problem is able to drive the plant to its
true optimum [9-11].

In the classical scheme of the two-step RTO, a parameter estimation subjected to
the same static model used in the optimization step is carried out once the input data
is guaranteed to be in a stationary state. To cope with this requirement, a steady-state
detection (SSD) method is implemented. There are several SSD methods available, most of
them are statistical-based methods, such as the F-test [12] and the Student’s t-test [13,14].
Recently, two research groups have proposed removing the SSD requirement by proceeding
a dynamic estimation, such as the Extended Kalman Filter, in a framework called Hybrid
RTO (HRTO) [15,16]. Although this method presents a high potential to speed up RTO
cycles and to reduce the suboptimal operation time, it lacks industrial validation.

Recently, the academic literature of RTO has been focused on solving the problem of
finding the true-plant optimum in cases related to serious structural plant-model mismatch.
Since the proposition of the Integrated System Optimization and Parameter Estimation
(ISOPE) algorithm by Roberts [17], which led to the Constraint Adaption (CA) [18] and
the Modifier Adaption (MA) [19] algorithms, several derivations have been proposed so
far to cope with different methodological paths, a detailed review on MA approaches
and applications can be found in Marchetti et al. [7]. These approaches are based on the
introduction of zeroth-and first-order modifiers to adapt the model-based optimization
problem. The modifiers are calculated from plant measurements and estimation of the
plant gradients in relation to the decision variables. In the CA algorithm, the modifiers
are used to adapt the constraints of the problem, so that the model-based constraints meet
the plant constraints upon convergence. In the MA algorithm, both the constraints and
objective function are adapted, so that the model-based optimization problem matches
the optimality condition of the plant upon convergence. However, the requirement of
estimating the plant gradients in the absence of a reliable model is one of the main reasons
that justify the low number of industrial applications of MA approaches. Recently, an
industrial application of CA in a solid-oxide fuel-cell system has been disclosed [20,21],
but the problem was formulated in a manner such that the first-order modifiers were
not necessary because the plant optimum was known to be located at the intersection of
active constraints, so the gradient estimation was not required. In spite of that, the work
was a proof of concept and may indicate the increase of initiatives of MA in the industry,
especially with the rise of new methodologies that merge concepts of Machine Learning
and RTO to produce better estimates of the first-order modifiers, such as the MA with
Quadratic Approximation (MAWQA) [22,23], the use of neural networks [24], Gaussian
process [25,26], and Bayesian optimization [27].

In the process industry, RTO is typically implemented as the two-step approach and
in a hierarchical control pyramid manner [28]. In a simplified and summarized description,
the regulatory control layer is implemented to deal with high-frequency disturbances of
the process, typically in a multiloop PID controllers approach. This layer is able to interact
with the plant in the scale of seconds, rejecting fast disturbances and keeping the stability
of the operation. In the upper layer, the supervisory control layer, a model-based approach
is used to determine the optimal trajectories of the process by the use of simple dynamic
models, typically linear ones, with the objective to track setpoints and send control actions
as setpoints to the regulatory layer. This layer works in the time scale of minutes and the
most-used technique is model predictive control (MPC). The optimization layer comes
above the previous control layers in order to determine the economic optimal operating
point of the process. This layer typically runs in the time scale of hour due to the complexity
of the models that are used.

In the context of modeling strategies, there are mainly two types of simulators available
for developing the process flow-sheets, they are the so-called Equation-Oriented (EO)
simulators and Sequential-Modular (SM) simulators. Despite the undoubted advantages
of using EO simulators [29] and the vast quantities academic works using and developing
methodologies based on them, the availability of SM models in industry is still high due



Processes 2021, 9, 1179

30f29

to their ability to solve a problem with low initialization effort and an easier flow-sheet
design [30]. However, the computational cost to handle nested recycles can hinder their
use in the context of real-time optimization. Early works proposed the use of a method
called the Modular Continuous (MC) approach [31], or infeasible path [32,33], in which the
convergence loops are removed from the SM simulator and convergence of the model
is assured by a higher-level optimization layer. Recent works have proposed the use
of surrogate models to enhance reliability and reduce the computational effort of the
optimization [34,35]. The present work proposes an extension of the concept of the MC
approach, by adding an acceleration step of successive substitution in the model flow-sheet.

Despite significant advances in the field of controller performance assessment since
the 1960s, these advances have been focused on univariable control structures and on
obtaining a technical metric [36]. In fact, there has been very little discussion regarding
the economic assessment of advanced process control and optimization applications [37].
There are many works that disclose the economic return of RTO’s application [38], but it is
not clear whether these numbers are trustworthy or not since the authors do not discuss
their methods of assessing this economic benefit. Beyond the standard discount cash flow
analysis [39], which can be used both to support decision-making at the investment stage
and to perform economic assessment in an existing application, three methodologies are
worth mentioning: the performance assessment of MPC proposed by Xu et al. [40]; the
framework proposed by Bauer and Craig [37]; and the systematic method proposed by
Udugama et al. [36]. However, the three methods have the similarity of not considering
an optimization layer in their assumptions. They can account for the benefit of reducing
the process variability and the distance from the desired setpoints, however, they do not
account for true optimal operation. Therefore, reliable methods to assess the economic
benefit of advanced control structures and RTO frameworks are still an open issue.

Petrobras started investing in RTO technology in 2004. Their early developments
were based on commercial tools, such as Aspen Plus (AspenTech) and Romeo (Aveva), but
using self-developed models. Since then, the company has achieved great expertise in the
technology and successful applications have been reported in Gas Processing Units [41],
Fluidized Catalytic Cracker Units [42], and Crude Distillation Units [29]. However, appli-
cations with small-scale scopes may not benefit from the application of these tools since
the economic return may be smaller than the cost of investment in the project stage, annual
licensing of the software, and often the need for external consultancy during the operation
phase. Therefore, Petrobras and LADES, the Software Development Laboratory (LADES)
of COPPE/UEFR], collaborated to develop an in-house RTO software, which was called
SoralA, an acronym in Portuguese for “System of Revenue Optimization and Artificial
Intelligence”. The software presented some advantages due to the fact of being totally
based on open-source or acquired tools, having ease of maintenance and also adaptability
for applications in new processing units, allied with high flexibility for different problem
formulations and small investment requirements compared with the great economic return.

Besides the description of the developed software and its application in a real indus-
trial facility, this paper also discloses two contributions to the RTO literature in the sense of
process modeling with the proposed “Modular Continuous with Successive Substitution”
and a new method to assess RTO’s economic return after its implementation, as well as its
potential further economic benefit that would be possible with system improvement.

The software was tested in an industrial Gas Processing facility owned by Petrobras.
RTO was implemented in a closed loop with the control system of the unit, and the results
and discussion are provided in this paper. Further, after three months of operation, the
economic return of the system was evaluated accordingly with the new proposed method
and the result overcame the initial expectations of the project, even though the unit is
highly instrumented and very well operated in the open loop—that is, considering only
the regulatory control under the supervision of the operation team, without the action of
any advanced control strategy.
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The present paper is organized as follows: Section 2 presents the methodology pro-
posed in this paper in a generalized manner; Section 3 presents how the methodology was
applied to the industrial case that is object of the present application; Section 4 presents the
results and discussion of the present application regarding the reconciliation problem, the
optimization problem, the computational cost, and the economic benefit of RTO; finally,
Section 5 presents the conclusion of the present work.

2. Methodology
2.1. Modular Continuous with Successive Substitution

The quality of the model used in the two-step RTO is crucial for the success of the
application—that is, the model should be simple enough so its computational cost can be
suitable for optimization purposes and detailed enough to mitigate any serious structural
uncertainty, since the approach is only able to deal with parametric uncertainty. Although it
is difficult to measure, Forbes and Marlin [43] developed a criteria to determine whether a
model is adequate to be used in the two-step approach based on its capability to match the
Karush-Kuhn-Tucker (KKT) optimality conditions [44] of the plant at the optimal point.

The EO and SM strategies have their benefits and drawbacks for the application in
an RTO framework. For example, SM has dedicated numerical methods to converge each
process unit, which makes this approach more robust for poor initial estimates. However,
this type of model can be very costly to run, demanding several loops of convergence,
which frequently make them unsuitable for optimization purposes. On the other hand, EO
models are fast and efficient to be evaluated, they also present the advantage of providing
accurate gradient estimates from automatic differentiation strategies. However, this type of
modeling is highly dependent on the initial estimates of the dependent variables, since its
convergence algorithms provide the solution of the full system of equations simultaneously.
Therefore, a common choice is to use both approaches together, running the SM model first
to provide better initial estimates for the EO model that is used inside the optimization
framework. However, this common choice comes with the cost of having to develop two
compatible models, frequently in different platforms.

In this work, a modeling approach was developed to handle an SM model inside
the optimization framework in an efficient manner. The idea is derived from the early
proposition by Berna et al. [31] and Biegler and Hughes [45] in the Modular Continuous
(MC) approach, where the main idea consists on opening mass and energy loops and
transforming them into new decision variables and constraints to be met by the optimiza-
tion problem. As the model would not be converged along the optimization steps, this
approach was also known as infeasible path, due to the fact that the model convergence
is only assured upon optimization convergence [32,33]. Here, the proposed approach,
“Modular Continuous with Successive Substitution” (MCSS), follows the same philosophy
proposed by the early works of the MC approach.

Figure 1 illustrates the algorithmic procedures that are performed for any module i
inside loops in order to carry out the optimization based on the SM, MC, and the proposed
MCSS approaches, in which # € R™ = U is the set of all input variables, y € R"Y =Y rep-
resents the set of all output variables of the model, z € y is a subset of the output variables
that represents the material and energy loop streams of the model, and p € R" = PP is the
set of independent variables introduced by the opened loops.

Following the nomenclature introduced in Figure 1, the i loops represented by variable

z; in Figure 1a are torn into two variables p; and z;gf in Figure 1c. In the MCSS approach,
all modules inside the opened loops are replicated into the reference modules: variables p;

f

are the degrees of freedom of the optimizer and z;"

reference module. z:ef is returned as input for the second module. In this way, a first step of
successive substitution is forced within the process model. The convergence is guaranteed

are the loop output variables of the
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by the addition of constraints that enforce that all loops are closed upon convergence. In
the MC approach, this set of constraints are

p—z=0, (1)
while, in the proposed MCSS, the set of constraints are
z—z2" =0. ()

The main goal of the MC approach is to reduce the number of convergence loops
in the simulation layer by transferring the convergence conditions of the model to the
higher-level optimization layer. The purpose of the additional successive substitution step
in the MCSS approach is to accelerate the convergence by approximating the feasible path
characteristic of the SM approach, but still keeping the faster convergence provided by the
infeasible path of the MC approach.

Ui MODULE Yi
3 i > i MODULE
Zi iref

(a) Sequential-Modular approach.

MODULE
i

MODULE
i

(b) Modular-Continuous approach. (¢) Modular-Continuous with Successive
Substitution approach.

Figure 1. Schemes of the modeling approaches: (a) Sequential Modular; (b) Modular Continuous;
the proposed (c¢) Modular Continuous with Successive Substitution.

PETROX, the simulator used in this work, is a reliable SM simulator developed for
giving support to process design at Petrobras [46]. The success of this software can be
addressed for the vast library of process units and the reliability of its internal numerical
methods. Nowadays, the software is also applied to develop reliable digital twins of the
different units of the company. This work opened a new perspective for its application
in optimization by following the philosophy of the Modular Continuous with Successive
Substitution. Some rules of thumb of the modeling approach used in the present work are
summarized in the following:

1.  Parameterization of the feed composition—with the composition of the product
streams as specification, the feed composition can be constructed by setting some
criteria, such as meeting dew or boiling temperatures in flash units and meeting
components ratio with the product.

2. Simplification of process units that are not essential for the optimization scope—
distillation columns before the actual scope of the optimization can be replaced by
a simple approach based on flashes with parameterized fractioning ratio between
cut components;

3. Avoid loops for mass and energy integration—opening loops and forcing a first
successive substitution;

4. No additional convergence loops—remove any controller loops to meet specification
criteria, this task should be passed to the parameter-estimation layer.
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In this work, the model developed in PETROX is denoted as a stationary map of the
inputs and parameters into the outputs:

y=7F(p,0,u), ®)

where 8 € R" = T is the set of adjustable parameters. For the sake of simplifying notation,
and without loss of generality, the static mapping will be frequently denoted only by
y(p, 6, u). Additionally, all objective functions and nonlinear constraints are also provided
by the SM simulator.

2.2. RTO Architecture

An in-house software was developed with the purpose of performing all RTO stages.
Apart for some specific details, the presented structure is very similar to what has been
done since the 1980s in the two-step RTO, the main contribution of this work is the use of
the MCSS approach, as it is described in the formulation of the optimization problems in
Sections 2.2.4 and 2.2.5. Figure 2 illustrates the architecture of the SoralA software.

Main core in C++
> Data acquisition Process
¥ | database
mig Data treatment
v ]
> Steady-state detection
v I
—»  Data reconciliation ~ |«» / PETROX
v [ ‘ (A ) I
Big Optimization Mg NPSOL
. . v | .
Conflguratlon o Solution Validation Solution
files | database

Figure 2. Scheme of the SoralA architecture.

The main core was written in C++ and its purpose is to manage the information
flow in order to perform the desired tasks that are required by RTO methodology. Six
main routines are executed in sequence: data acquisition, data treatment, steady-state
detection, data reconciliation, optimization, and solution validation. The software is able
to communicate with the process database and the solution database, and perform the
interface between the process simulator (PETROX) and the nonlinear optimization solver
(NPSOL). In addition, the user can configure some features of the run by a web interface.
This interface compiles the set of user configurations into some standard text files that can
be read by the C++ core in order to shape each routine accordingly.

Every run cycle of RTO starts with the data acquisition routine and follows the
routine’s sequence until the optimal solution is obtained, except in the case where some
major problem is found during any stage of the run. In this case, the software is aborted and
anew cycle is started. In the following, each of the main RTO routines are further described.

2.2.1. Data Acquisition

In the data acquisition stage, the user can specify whether the software is going to run
offline, so a specific operational point can run for tests independently of the actual state
of the plant, or whether the software is going to run online, reading the values directly
from the process database. In this stage, the user can define the size of the acquired data
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window and which instrument tags are related to which input variables from the process
model simulator.

2.2.2. Data Treatment

In the data treatment stage, each input variable is treated by a linear transformation
specified by the user in order to scale or to perform any required unit change. In addition,
there are some verifications in the read information in order to exclude any unwanted null
values, strings, or unexpected out-of-limit values. If any abnormal value is found in this
verification, the software is restarted, so its cycle is repeated until there is no error in the
input values.

2.2.3. Steady-State Detection

It is very important to assure that the data used in the data reconciliation stage is in
stationary state in order to reliably estimate the model parameters. Therefore, the steady-
state detection is mandatory and whenever it is detected that the read data window presents
some dynamics, its cycle is restarted until the steady-state is detected in the input data
window. There are several steady-state detection (SSD) techniques, Cao and Rhinehart [47]
briefly reviewed some of the existing methods and proposed an efficient new statistical
method. Later, Bhat and Saraf [12] also outlined aspects of the available SSD techniques
and extended the proposition of Cao and Rhinehart [47].

In this work, two statistical tests were applied. The first test is based on cutting the
input window in three periods and comparing these windows to each other in order to
check whether their means are equivalent by a Student’s t-test. The second is an analysis
where the variance of the variables are verified within some desirable limits. These limits
are estimated using past historical data by selecting periods where the variables were in
the steady-state condition. Both tests are well-established in the literature [12]. However,
the combination of these methods are a contribution of the present work, to the best of the
authors” knowledge. This proposition is made in order to overcome the limitation of the
t-test when too-high variance values are observed, in which false detections are observed.
Therefore, the stationary condition must be detected in both tests so the data window is
allowed to go to the next stage; otherwise, a new RTO cycle starts.

2.2.4. Data Reconciliation and Parameter Estimation

The data reconciliation problem was formulated in a manner that it can perform a
simultaneous parameter estimation, as proposed by Rod and HanCl [48]. Differently from
the usual approach in the literature, not only the adjustable parameters of the process unit
models are estimated, but also the parameters that were added to ensure convergence of
the model, following the one-pass modeling philosophy described in Section 2.1. The data
reconciliation problem is formulated as a nonlinear programming problem:

P O i = arg min  Jrec(y'™, yp!, u, ul) (4a)
plglurdf

st. y=F(p,0,u) (4b)

G(p,0,u) <0 (4c)

z—72¢% =0 (4d)

0, <0< 0, (4e)

uy <u' <ulyf, (4f)

where p € P is the set of additional decision variables added by the MCSS approach;
0 € T is the set of all adjustable parameters to be estimated; the superscripts ()" mean

“reconciliation degree of freedom”, so #'/ C U is the set of n:,df uncertain inputs that
are considered degrees of freedom in the reconciliation problem; u™ C u"/f is the set
of ny, reconciled inputs, which is a subset of the uncertain inputs that have available
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measurements; # € R is the set of all input variables; and y"*“ C y is the set of n,,
reconciled output variables, which is a subset of the output variables that have available
measurements. The vectors #” € R"i and y" € R"™ are the measurements of the input
and output variables, respectively. The function G : R x R"™ — R"s is the set of static
mappings of the parameters and inputs into the nonlinear constraints, and the objective
function Jree : R™ x R x R™ x R™ — R is the weighted sum of squared errors
between predicted and measured variables. z and z'®f are the output of the actual and the
reference modules of the opened loops added for the MCSS approach. Finally, the subscript
(-)x denotes the k™ run of RTO, the bar emphasis (=) denotes the optimal values obtained
in the run, and the subscripts (-);, and (-),; denote lower and upper bounds, respectively.
It is noteworthy that the k" values inserted in the problem for the sets of input and output
measurements, #;' and y;", are the arithmetic mean of the time window acquired in the
data acquisition stage.

After running the reconciliation problem, it is possible to define the offsets of the
output measurements, which are defined by the deviation between the measured and the
predicted variable:

e = yi' — y(Pr, O, u(ity)) (5)

and the offsets of the input variables, which are defined by the deviation between the
measured input and the optimal input:

g =u — iy (6)

2.2.5. Optimization Problem

In the optimization problem, as in the reconciliation problem, the objective function
and constraints are evaluated by the process simulator and the main core of the software is
responsible for managing the information flow between the simulator and the optimizer.
The formulation of the optimization problem is presented below:

Ok ﬁzdf = arg min Jopt(u,y) (7a)
p,uudf

st. y=F(p, 0 u) (7b)

Gp, 0, u) <0 (70)

- _sf — (7d)

Yo — & <Y < Yup — € (7e)

! — Hel <u'™f < ulyf — Hel, (76)

where the function Jopt : U x Y — R is the economic objective function of the optimization
problem; this function is usually an economic balance between the incomes with products
and the costs with raw materials and energy consumption. The superscript (-)°% means

“optimization degree of freedom”, so u’Yf C U is the set of nf,df inputs for which the
objective function is sensible to variations within their feasible space, corresponding to
the set of degrees of freedom of the optimization problem. It is important to highlight
that all adjustable parameters and uncertain inputs—which are not degrees of freedom
of the optimization—that were estimated in the data reconciliation problem are kept
fixed in the optimization problem. In addition, the estimated offsets, e% and g/, are
used to shift the feasible space of the output variables, as in Equation (7¢), and of the
degrees of freedom for which there are available measurements, as in Equation (7f). Matrix

od, m
H e {0;1}" " {0;1}" is a rectangular matrix of zeros and ones only to select which
offset is related to which degree of freedom, considering that some degrees of freedom
might not be related to any offset and the opposite can also be true.
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2.2.6. Solution Validation

In the solution validation stage, there is an optimization flag check to verify whether
the solution of the optimization problem was found within the constraints or whether it
reached an infeasible solution, which is rarely expected to occur. If the solver returns an
infeasible solution, the software will disregard this point and the RTO cycle will restart. On
the contrary, the solution is shifted by the estimated offsets:

Y = y(py, O, u(@ ) + &, ®)

Ul = ﬁde + Hef, )

where the superscript (-)? means “ideal value at rest”; these values are written in the
solution database. Once the new solution is written in the solution database, it is instanta-
neously available to be read by other instances of the control hierarchy.

2.2.7. Interface between PETROX and NPSOL Solver

The optimization solver used in the RTO is NPSOL version 5.0 [49]. This is a nonlinear
programming solver written in Fortran 66 Version 2.1 that performs a Sequential Quadratic
Programming (SQP) algorithm. The model was developed in PETROX 3.8 and its interface
with the main core of RTO in C++ is carried out by PetroxTR 3.4R0. In order to improve the
numerical robustness of the optimization, the decision variables, constraints, and objective
function are normalized between the interval (—1,1) according to a normalization space
defined by the user. In addition, the version of the simulator PETROX used has no
resource to provide information about the gradients of the objective function and the
constraints with respect to the decision variables, since the simulator was not developed
for optimization purposes. Therefore, the method used to estimate the gradient is based on
finite difference approximations. For each decision variable, if the lower bound is active, a
first-order forward finite difference is performed; if the upper bound is active, a backward
first-order finite difference is performed; otherwise, a second-order central finite difference
is performed.

2.3. Method for Accounting Economic Return

The task to account for the economic return of the implementation of any optimization
strategy applied to an industrial facility is not simple, considering the several disturbances
to which the plant and market are subjected. Here, a novel method is proposed in order to
evaluate the economic benefit of control and optimization schemes that were implemented
in the real plant. It is considered that a significant amount of data are available for periods
of open-loop operation, in which the solution of the RTO is calculated but not applied to
the plant, and in closed loop, in which the solution of the RTO is implemented in the plant.
Each period of operation may be subjected to different disturbances, feed flow rates, feed
composition, and even different feasible regions for each decision variable, so it would not
be accurate to compare the periods directly based on the measurement of the economic
objective function. Therefore, the idea of the developed method is to obtain a performance
index that is a measure of how far the operation is from the maximum profit return value
on each operation period, or the ideal economic performance for each operation period,
which can be obtained by dividing the average of the profit function calculated in the
solution of the reconciliation problem by the average of the same function calculated in the
solution of the optimization problem:

0 — Zzil jprofit(ék/u(ﬂ]’;df))

. =njp
1

Elrcli:lnio jprofit (6kf U (ﬁkdf) )

, (10)

where (); denotes the performance index calculated based on a data window of N; = n;; —
njo + 1 past points, given that i is the operation mode depending on the level of automation
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of the unit in study. Jpofit : R" x R™ is the profit function, which can be the objective
function of the optimization problem when oriented for the economic analysis, or it can be
an economic monitoring function when the optimization has other goals. This difference in
nomenclature is introduced in order to avoid losing generality, since the objective function
of the optimization step might not be directly suitable for the economic return analysis in
some applications; for example, when it represents a measure of the operational efficiency
or when it accounts for additional environmental criteria. In general terms, we consider
three operation modes:

1. Regulatory control: The plant operates in manual mode, where the operators directly
decide the setpoints of the PID controllers. RTO runs in open loop.

2. Supervisory control: An advanced control, frequently an MPC layer, acts on the PID
setpoints and the operators decide directly the setpoints and targets of the MPC. RTO
runs in open loop.

3. Optimization: RTO runs in closed loop with the supervisory control layer.

The performance index (); is a measure of the distance between the actual economic
performance of mode i and ideal economic performance. As the averaged reconciled
economic balance will always be inferior compared with the averaged optimal economic
balance, considering that the optimization constraints are respected even in Regulatory
and Supervisory operational modes; then, the performance index is always inferior to 1.
Hence, (1 — ;) can be interpreted as a potential benefit margin that can be reduced by
improving operational aspects, such as the reduction of process variability.

A hypothesis of the proposed method is that the performance index of the operational
mode i obtained in a significantly large data window of N; points can be generalized
for any data window with size greater than N; and, therefore, the performance indexes
can be compared with each other. In other words, the length of each data window must
be chosen to be long enough in order to properly characterize the operational mode in
terms of economic performance of the operation. It is expected that these indexes can be
compared as

01 < Oy < Q3. (11)

Even though comparing the indexes values is enough to verify whether there are
benefits in implementing a specific supervisory control layer or an optimization layer, this
comparison alone does not provide a measure of this benefit in monetary terms. Therefore,
an average ideal optimal economic balance value is taken as reference:

. 1 I _ od
jpf({fit,i =N Y Tprofit (B, u(iy ) (12)
ik

]

and a quantitative return can be estimated by multiplying the performance index of each
operational mode by this reference value, which is equivalent to evaluate the average of
the actual profit:

jprofit,i = j;:ffit,i’ (13)

3. Industrial Case
3.1. Process Description

The RTO system developed in the present study was applied to an industrial Natural
Gas Processing Unit (NGPU) owned by Petrobras in Brazil. In general terms, the unit is
responsible for processing the NG from different sources to produce Residue Gas (RG),
Fuel Gas (FG), Liquefied Petroleum Gas (LPG), and a stream containing components
heavier than pentane, here denoted as Naphtha. Several unit operations are carried out
in sequence—to name a few: NG dryier, Demethanizer, RG compressor, Deethanizer, and
Debutanizer. These operations are supported by a Propane Refrigeration System and a
Thermal Oil Heating System.
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Initially, the collected NG with controlled admission pressure is cooled. Then, the
gas follows to molecular sieves units where it is dried. The dry gas is then routed to the
fractioning section, which corresponds to the feed of the simplified scheme illustrated in
Figure 3.

RG

Fvar [ 7 FV-31

D>t -—--

T.01 T-02 T-03

Naphta

LNG

Figure 3. Simplified process flow diagram of the NGPU. V-03—feed accumulator vessel of
the Demethanizer tower (T-01); FV-11/12/13/14—feed flow control valves of T-01; TE-01—
turboexpander of T-01; P-05/07—heat exchanger of the cold-box of T-01; P-10—condenser of the
Deethanizer tower (T-02); V-04—condenser accumulator vessel of T-02; P-14—condenser air-cooler of
the Debutanizer tower (T-03); V-05—condenser accumulator vessel of T-03; P-06/09 /13—reboiler
heat exchangers of T-01/02/03; FV-21/31—feed flow control valves of T-02/03; P-08/12—feed heat
exchanger of T-02/03.

This section is mainly composed by three separation units: T-01, in which RG is
produced; T-02, which produces FG; and T-03, in which LPG and Naphtha are produced.
In the first section, the dry gas is flashed into two vapor streams and two liquid streams.
The first vapor stream is totally condensed and injected at the top of the Demethanizer
column, acting as a reflux stream. The second vapor stream is divided into two streams, the
main one is expanded in the turboexpander in order to reach even lower temperatures and
the other goes to the Joule-Thomson valve, which is normally closed. These streams are
then mixed and injected into the top section of the column. The fist liquid stream is injected
directly as a feed-side stream at the bottom section of the column, while the other is first
used in an energy integration scheme, being partially vaporized, and is then also injected
into the bottom section of the column. It is noteworthy that all heat exchangers illustrated
in Figure 3, upstream of T-01, are part of a single cold-box, heat integration scheme that is
mischaracterized in the flowchart.

The top product of the T-01 is a methane-rich gas that is heated at the cold-box in
the heat integration scheme and then sent to the compression stage associated with the
turboexpander, while the bottom product, rich in components heavier than ethane, will
then be fed to the Deethanizer tower—firstly passing though a flow control valve and
a heat exchanger that energetically integrates the bottom product with the feed streams
of the column. This unit is designed to operate in two modes depending on the current
specification of the ethane in the LPG stream. With the low content of ethane in LPG, the
condenser of T-02 works with the Propane Refrigeration System in order to produce the
FG stream. On the contrary, the refrigeration is kept shut-down and the column loses
its separation function, working only as an accumulation tank in the process. During
the execution of the present RTO project and its implementation test period, the Propane
Refrigeration System was off and the tower T-02 worked only as an accumulation tank.

The feed of the Debutanizer tower comes from the bottom product of tower T-02,
again, after passing through a flow control valve and a heat exchanger that energetically
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integrates the bottom product with the feed streams of the column. The top product of the
column is condensed in an air-cooler condenser and directed to the reflux drum, where,
besides the split between the reflux and product streams, there is also a third stream that
is mixed with the feed of the tower—the recirculation stream. This stream was added
to the project of the unit due to the need to specify a large range of ethane content in
the LPG stream. However, currently, the tower operates with a lower feed flow as that
designed, so the recirculation also contributes to enhance the tower’s hydraulics. The
system presents relatively slow dynamics and is subjected to frequent disturbances, mostly
in feed composition and ambient temperature.

3.1.1. Economic Interests of the Operation

The Natural Gas Processing Unit of the present application receives gas from different
sources, mainly including offshore oil production. The continuity of gas processing is vital
for the offshore plant to continue operating with a proper destination of the produced gas.
As previously mentioned, column T-02 was acting only as an accumulator tank during the
design and tests of the present work; therefore, the NGPU produced only RG, LPG, and
Naphtha. According to the most frequent economic configuration, the product with greater
market value is LPG, followed by Naphta, and than RG, which is commonly used as fuel
in the Thermal Oil Heating System.

Hence, the economic objective is to determine the optimal operating point that is able
to produce LPG with maximum efficiency, acting as follows:

1.  Minimizing the loss of propane at the top of the Demethanizer column;

2. Maximizing the content of ethane in LPG with respect to the established upper bound;
3.  Maximizing the content of pentanes in LPG with respect to the established upper bound;
4. Minimizing the consumption of energy demanded by the process.

3.2. Process Model in PETROX

The scope of the present RTO application was defined to be the optimization of
the Debutanizer column T-03; therefore, tower T-01 and tower T-02 were described in a
simplified way. This choice was carried out following the philosophy of small-scale RTO in
order to reduce computational cost and focus on optimizing the efficiency of the fractioning
to produce LPG and Naphta. The model was developed in PETROX 3.8 following the
“Modular Continuous with Successive Substitution” approach discussed in Section 2.1 and
its flow sheet can be visualized in Figure 4.
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Figure 4. Flow sheet of the process model in PETROX.

The input of data to the simulation is carried out by the several unconnected streams
added to the simulation. The function of the calculators at the left-hand side of the flow
sheet is to manage the information from the input streams to the main core of the simulation;
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they are also able to manage the information from a previous unit to a posterior unit. In
addition, the function of the calculators at the right-hand side of the flow sheet is to
manage the results of the simulation and to externalize results of interest, such as objective
functions, nonlinear constraints, and output variables, for instance. Further description of
the simulation calculators are provided in Appendix A.

The model has 13 components: nitrogen (N;), carbon dioxide (CO;), methane (C1),
ethane(C2), propane (C3), isobutane (iC4), n-butane (nC4), isopentane (iC5), n-pentane
(nC5), n-hexane (C6), n-heptane (C7), n-octane (C8), n-nonane (C9). The simulation starts
with the restoration of the feed stream; since the online chromatography is not complete, it
does not discriminate compounds heavier than C6 and its measurements are not synchro-
nized with the LPG analyzer, since there is an uncertain delay between these two analyzers.
Therefore, the feed composition is parameterized to be estimated in the parameter esti-
mation step. This is achieved by considering the components C3, nC4, and iC4 in such a
way that the proportion between C3 and the sum of nC4 and iC4 can be controlled and the
distribution between 1nC4 and iC4 would be the same as in the LPG composition:

feed _ ,_feed feed feed
Xc3 = (Yeam T Xucam T+ Xicam) 01 (142)
LPG
feed _ ,_feed feed feed 1-0 XnCd,m 14b
Xucs = (Xeam + Xncam T Xicam) (1—01) <IPG L IPG (14b)
nC4,m iC4,m
feed feed | feed feed xidy
ee _ ee ee ee _ 1 M
Xicy = (¥eam T Xucam T Xicam) (1 —01) <[PG_ L (LPG (14c)
nC4,m iC4,m

where x} and x/ represent the molar composition of component i in the stream j in the
simulation and measured, respectively; 0; € {0,1} is the estimated parameter to control
the proportion between propane and butanes.

A similar strategy is applied to the heavier components of the feed stream that are not

directly measured but lumped in the xéegfl, e

d d

it =l (1 6y) (15a)
d d

Xt = Xan 02 PC7 (15b)
d d

xle = xlel 02 pes (15¢)
d d

xlt = xlel, 02 poo, (15d)

where 6, € {0,1} is the estimated parameter to control the proportion between C6 and the
heaviest components, and p; is a typical proportion between component i and the heaviest
components obtained from lab reports. The feed measurements are directly used for the
other components.

The description of the Demethanizer model was carried out by a simplified approach
similar to the proposition of Ito et al. [50]. In order to reduce complexity and computational
cost, the tower is represented by a splitter and two flash drums to produce the two top and
bottom product streams using, respectively, a dew point and boiling point flash units. A
parameter is added to control the fractioning of T-01 considering the cut between ethane
and propane. However, since the reflux of the column is injected directly at the top tray, part
of the reflux stream is vaporized in the moment that it enters the tower, so the top product
is not in fact in the dew point due to the mixture between the saturated vapor that comes
from the first tray and the vaporized portion of the reflux stream. Therefore, to account
for this modeling characteristic, the top temperature cannot be used as a reconciliation
variable and more importance is given to the measurement of the C3 content in the RG
stream and the content of C2 and C3 in the LPG stream. With a simple mass balance, it is
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possible to fully specify the split flow rates considering the loss of C3 in the RG stream and
the flow rates of C2 and C3 in the LPG stream:

o
m
rc2/3 =9 —1pc  1pc (16a)
XCom T XC3m
F8S = xfS, (FLe + FLOT + L 4 B — reays FLS) (16b)
d
YO = reays (IS — FES), (16c)

where Fi] corresponds to the molar flow rate of component i in stream j, 7,3 is the ratio
of the fraction of C3 in the LPG stream over the sum of the fractions of C2 and C3 in the
LPG stream and 63 € {0, 1} is the parameter responsible for adjusting the fraction of C3 in
RG and C2 in LPG. The superscript LGN refers to the bottom product of tower T-01 that
feeds tower T-03. This strategy is able to match the loss of C3 in the RG with the plant
measurements. Additionally, as during the estimation of 83, the value of Equation (16c¢)
might be negative, a constraint is added to prevent this value from being negative.

The LNG stream passes through an expansion valve upstream of the feed preheat
exchanger (P-12) of the T-03. This heat exchanger is simulated in three steps in order to
avoid any loop that would include excessive iterations in the simulation. In the first step,
the simulation receives the input of the heat duty of the cold side (p1), which is a decision
variable added by the MCSS approach, and then goes to a reference tower to simulate an
approximation of the T-03 because the energy balance in the feed heat exchanger is not
satisfied. Then, the hot side of the feed heat exchanger is simulated by an HOCI (hot-out
cold-in) temperature difference approach based on the bottom product of the reference
tower. This HOCI approach is added in order to enhance the robustness of the simulation,
avoiding physical inconsistencies in the temperature differences. The difference between
the outlet and the inlet temperatures are calculated from measurement, and this difference
is summed to the inlet temperature calculated by the simulation to produce the outlet
specification of the hot side of the heat exchanger. After the heat duty calculation, the cold
side is simulated again specifying the heat duty of the hot side and then the T-03 tower is
properly simulated. It is important to highlight that each heat exchanger must be analyzed
individually and, here, the HOCI approach is appropriate because the flow rate of the hot
fluid will always be inferior to the flow rate of the cold fluid.

The recirculation stream is also simulated by a pump-around in order to avoid un-
wanted loops. A parameter is added to vary the Murphree efficiency of the inner trays of
the tower, so that the internal profile of the tower may approximate the measured internal
profile. The reboiler and condenser efficiencies are kept fixed and equal to 1. The flow
rates of the reflux, recirculation, and bottom product were chosen as specifications of the
tower to improve robustness, since choosing temperatures might reduce the chances of
converging the simulation considering the whole operational range.

Finally, the pressures were defined following a backpressure propagation strategy. The
final pressure points were specified accordingly to the measurements for the top pressure
of T-01 and the condenser pressure of T-03 and these pressures were back-propagated by
typical pressure drops of the system. This approach showed to be very efficient for this case
study due to the larger values of pressures compared with the values of pressure drops.

It is important to highlight that all modeling choices were considered in order to
provide a suitable model developed in a sequential-modular simulator for optimization
purposes. Therefore, all excessive iterations of numerical methods are avoided and the
main responsibility of converging the model is given to the optimization layer, or through
the addition of constraints, either through a successive substitution generated naturally by
the several calls of the model function by the optimization algorithm.
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3.3. Formulation of the Data Reconciliation Problem

The formulation of the objective function for the data reconciliation simultaneously
with parameter estimation was carried out in a weighted least squares estimator with
normalized variables:

2 2
My, ym' _ yrec Ny, um. — ytrec
Troe = Zwly (kll> +Y w! (klml> ) (17)
i=1 i

m
i—1 Yx.i Uy

where wY € R™r and w" € R™ are weight vectors of the output and input variables,
respectively.

Table 1 presents the measured output variables and their respective weights consid-
ered in the objective function.

Table 1. Measured output variables.

Variable Description Weight (wY)
Volumetric fraction of nC5 and iC5 in LPG 103
Top temperature of tower T-03 10*
Bottom temperature of tower T-03 10°
Condenser temperature of tower T-03 10°
Fraction C3/(nC4 + iC4) in LPG 10*
Temperature of the control tray of tower T-03 10*

As previously commented, the developed model specifies the C3 loss in the RG
stream given the chromatographic measurement, so this value cannot be reconciled. The
top temperature and the volumetric fractions of #C5 and iC5 are considered reconciled
variables. Both of these measurements compete to specify the top of tower T-03, since they
represent the same information in essence. In Table 1, more importance is given to the
top temperature rather than the analyzer, because the analyzer has lower measurement
frequency and is potentially more noisy. The bottom temperature of tower T-03 is an
estimated output that is influenced by the content of heavier components of the feed stream,
which is controlled by adjusting parameter 6,. Similarly, the condenser temperature is an
estimated output that is influenced by the content of C2 in the LPG stream; this composition
is controlled by adjusting parameter 63, which represents the cut between C2 and C3 in
tower T-01. The fraction C3/(nC4 + iC4) in LPG is also an estimated output; this variable is
influenced by the ratio between propane and butanes in the feed stream, which is controlled
by the parameter ¢;. Finally, the temperature of the control tray is an estimated output
controlled by the Murphree efficiency of the column.

Table 2 presents the input variables and parameters considering degrees of freedom
in the reconciliation simultaneously with the parameter estimation problem, their bounds,
and their weights in the objective function, in the case where measurements are available.
It is important to highlight that when the abbreviation DCS is assigned for a bound value,
this value is defined by the operator in the Digital Control System (DCS) of the plant. The
specific values of the limits defined in the DCS are not disclosed because these limits varied
considerably during the analyzed time period. The flow rates of the column (bottom, reflux,
and recirculation) are considered degrees of freedom to specify the column variables. For
the reflux and recirculation streams, the available volumetric measurements are uncertain,
so these variables are also reconciled but with smaller weights than the reconciled outputs,
so the optimization may have more flexibility to deviate from the measurements.
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Table 2. Input variables and parameters for the data reconciliation simultaneous with the parameter
estimation problem.

Degree of Freedom Weight (w") Lower Bound Upper Bound
Bottom flow rate of tower T-03 (kmol/h) — 0 100
Reflux flow rate of tower T-03 102 DCS DCS
Recirculation flow rate of tower T-03 102 DCS DCS
Murphree Efficiency of tower T-03 — 0.8 1
Heat duty of P-12 p; (Mcal/h) — 10 500
Parameter 6 — 0 1
Parameter 6, — 0 1
Parameter 63 - 0 1

Table 3 presents the constraints of the data reconciliation problem and their bounds.

Table 3. Constraints of the Data Reconciliation Problem.

Constraint Description Lower Bound Upper Bound
Molar fraction of C4— in Naphta 0 0.015
Pressure loss on the feed valve of T-03 (kgf/ cm?) 1 00
Ratio of C2/C5+ in LPG 0 16
Vapor flow rate after flash P108 0 0
Molar flow rate of C2 in LNG 0 0
Heat duty difference of cold and hot side of P-12 0 0

The added constraints are the minimum requirements to guarantee that the simula-
tion converges in an expected way. This is achieved by forcing the pressure loss on the
valve upstream from the T-03 to be greater than 1 kgf/cm?, guaranteeing that the molar
flow of C2 in the LNG stream is greater than 0, as already discussed in Section 3.2, and
making sure that the liquid product stream of the flash P-08 is saturated; this flash unit
is downstream of tower T-01. In addition, the constraints in the maximum molar content
of components lighter than C4 (C4—) to be 0.015 and in the ratio of the composition of
ethane and components heavier than pentanes (C2/C5+) to be less then 16 are redun-
dancies to guarantee product quality requirements. Finally, the last constraint is added
due to the MCSS approach in order to guarantee the energy balance upon convergence of
the optimization.

3.4. Formulation of the Optimization Problem

In order to meet the economic interests of the operations described in Section 3.1.1—
except for objective 1, which would require a more detailed model for the system of column
T-01—the following objective function was designed:

1 LPGLPG , NN _ .RG__ Qr E
- WLPG 4 pNWN _ pRG__%r , 18
u70;7t W-IE:I\Z]G <P p p N LHVRG p QC ( )

where ptPG, pN, pRG and pf represent the price per unit of mass of LPG, Naphta, RG,
and electric energy, respectively; W_LC]}’G is the mass flow rate of LNG free of ethane that
feeds tower T-03; WEPC and WY are, respectively, the mass flow rates of LPG and Naphta
streams; Q, and Q. are the heat flow rates of the reboiler and condenser of the tower T-03,
respectively; 7 is the efficiency of the thermal oil furnace; and LHVRC is the lower heat
value of the residue gas used as fuel.

The idea of the developed objective function is that the optimization may be able to
maximize the efficiency of the fractioning process of the column for a given feed flow rate.
That is the reason for dividing the expression by the mass flow rate of the LNG stream free
of ethane. This value should be free from C2 because the content of ethane in the LNG
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stream is a decision variable of the problem, so it could take the wrong path minimizing
this variable.

The decision variables, or degrees of freedom, of the optimization problem are pre-
sented in Table 4, as well as the respective bounds.

Besides the constraints used in the data reconciliation problem, which are presented
in Table 3, the optimization problem has additional constraints, as presented in Table 5.

Table 4. Decision variables of the Optimization Problem.

Decision Variables Lower Bound Upper Bound
Bottom flow rate of tower T-03 (kmol/h) 0 100
Reflux flow rate of tower T-03 DCS DCS
Recirculation flow rate of tower T-03 DCS DCS
Condenser Pressure DCS DCS
Heat duty of P-12 p; (Mcal/h) 10 500
Parameter 63 0 1

The volumetric composition of ethane and pentanes have different specification values
defined by the operation. These specifications are provided by the technical team of the
operation in the DCS and the optimization must respect them. A constraint is added to the
value of the condenser temperature; as it is an air-cooler, in which the cold fluid is air at
ambient temperature, it would not be reasonable to allow the temperature of the hot fluid
at the outlet to be inferior to 30 °C. Even though this temperature is also constrained by
the composition of C2 in the LPG stream, this redundancy is added in order to prevent the
solution from finding an unreachable temperature.

Table 5. Additional constraints of the Optimization Problem.

Constraint Description Lower Bound Upper Bound
Volumetric composition of C2 in LPG DCS DCS
Volumetric composition of nC5 and iC5 in LPG DCS DCS
Condenser Temperature (°C) 30 )
Temperature of the control tray of tower T-03 DCS DCS
Bottom temperature of tower T-01 DCS DCS

In addition to those constraints, two more are added with respect to safety operational
limits defined by the operator in the DCS—one for the temperature of the control tray of
T-03 and another at the bottom temperature of T-01. It is worth mentioning that this last
constraint is another redundancy with the content of C2 in the LPG stream, as the bottom
stream of T-01 is saturated and its temperature depends mostly on the content of the lighter
component—C2 in this case.

3.5. Integration between RTO and the DCS

The purpose of this paper is not to deeply describe the control system of the unit.
However, some points are interesting to be noted in order to clarify how the integration
between the RTO and the DCS is carried out.

The regulatory control system is composed by a multiloop single-input single-output
PID controller mainly designed with cascades feedback loops. The operation team of the
plant can decide whether to manually define the setpoints of these controllers or to turn
on the supervisory control layer. This supervisory control layer is a model predictive
controller that solves an optimization problem aiming to minimize the quadratic deviation
between the measured outputs and inputs from reference trajectories and target trajectories,
respectively, subjected to input-output models and constraints. The algorithm uses the step
response model and is based on the DMC algorithm proposed by Cutler and Ramaker [51].
However, the algorithm was modified to account for an adaptive strategy that is able
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to adjust the internal model of the MPC based on the current operational condition of
the plant.

Above the MPC layer, there is a simple optimization layer that aims to maximize
an economic objective function subjected to the same adaptive input—output model of
the MPC layer, resulting in quadratic programming (QP). When the loop of the RTO is
closed to the supervisory control layer, which is also a decision of the plant operator, that
simple optimization layer becomes an intermediate QP problem between MPC and RTO,
as proposed by Rotava and Zanin [52]. Therefore, when the RTO is in closed loop, the
intermediate optimization problem aims to minimize the distance between the solution
of the RTO and the achievable values based on the input-output model of the MPC. This
is a way to translate the solution of the economic optimization subjected to a detailed
nonlinear model to the space of linear models, preventing infeasible targets to be sent to
the control layer.

The chosen variables to perform the integration were the content of ethane and
pentanes in LPG, the reflux and recirculation of T-03, and the bottom temperature of T-01.

3.6. Estimation of the Economic Return

The economic return was evaluated following the novel methodology proposed in
Section 2.3. The profit function was defined as the sum of the incomes with products minus
the costs with Natural Gas:

jprofit _ pLPGWLPG + pNWN + pRGWRG _ pNGWNG, (19)

where pNG and WNC are the price per mass unit and mass flow rate of the Natural Gas
stream, respectively.

Three data windows were collected for the analysis of each operation mode, as defined
in Section 2.3, and a data treatment was performed to remove any gross errors, outliers,
and regions where the unit was not operating, resulting in the following;:

1. Regulatory control—an interval of 97 days of operation resulting in 60,350 points with
a sampling time of 2 min;

2. Supervisory control—an interval of 138 days of operation resulting in 20,583 points
with a sampling time of 2 min;

3.  Optimization—an interval of 96 days of operation resulting in 49,043 points with a
sampling time of 2 min.

In the three data windows, the variables frequently violate the allowable bounds due
to measurement noise. Although this violation was expected, it is alarming, especially for
the upper bounds of the content of ethane and pentanes in the LPG stream, since values
above these upper bounds would result in values of the profit function greater than the
optimum solution. This effect would enable the performance index to be greater than 1,
which is unacceptable. Hence, all points above these upper bounds were excluded from the
analysis for the supervisory and optimization operating modes, resulting in the removal of
28.5% of the points in the supervisory data window and 24.8% of points in the optimization
data window. However, in the regulatory mode, the bounds of the manipulated and output
variables were not well specified in the system, since in this mode, the operation team is
mainly focused in the PID’s setpoints. So, these bounds were arbitrarily chosen in order to
remove some percentage of points from the analysis. As it is expected that the variability of
data would be higher in the Regulatory control, this percentage was conservatively chosen
as equal to the RTO data window.

Another issue that hinders the effort to calculate the performance index is that in
the regulatory and supervisory control modes, the RTO was not operating in open loop.
Therefore, no results of the data reconciliation and the optimization problem were available.
Therefore, in order to enable the analysis, a mass balance spreadsheet was developed in
order to calculate the profit function for all points in each operation mode, in which the
reconciled solutions were obtained by the use of the available chromatography measure-
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ments and the optimal solutions were approximated using the upper bounds as desirable
specifications. This way, the computation of the performance index was made possible
regarding the specificity of each operating condition.

4. Results and Discussion

In the following, the results presented in Sections 4.1 and 4.2 are related to the first
month of the RTO’s operation. It is noteworthy that no fixed time frequency was set for
the RTO run time. Instead, RTO runs in its own variable frequency, depending on the
computational cost to run each iteration. This practice is usually avoided by commercial
applications aiming not to excessively disturb the supervisory controller with frequent
changes of reference values and targets. In the present study, this fact is not an issue due to
the fact that the MPC controller is imbued with constraints of minimal movement, which
prevents sudden transients. Additionally, due to the nondisclosure agreement with the
industrial partner, the results are presented in a normalized form.

4.1. Data Reconciliation

This section presents the results related to the simultaneous data reconciliation and
parameter estimation problem. As the RTO ran N = 920 times within the 30-day window
herein analyzed, only a fragment of the data window is provided to compare the plant
data with the reconciled value in the figures of this section. Therefore, in order to have a
sensibility of the whole picture, a relative average error in percentage was calculated for
each variable of interest as follows:
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where eiy is the relative average error of output i. The error of the reconciled inputs is
calculated analogously.

Figure 5 illustrates the results related to the content of ethane in the LPG stream—that
is, the condenser temperature of T-03, the bottom temperature of T-01, and the volumetric
fraction of ethane in LPG itself. The dark-gray regions around the plant data points
represent a deviation of 5% of the plant data at instant k, while the light-gray represents a
deviation of £10%. For this set of variables, it is interesting to note that only the temperature
of the condenser of tower T-03 is considered in the objective function of the problem and
the other two are adjusted as a consequence of it. The relative error of these variables
are 0.63%, 1.34%, and 3.81%, respectively. The higher error on the volumetric fraction
was expected since this measurement has a low sampling frequency and considerably
high noise.

Figure 6 shows the result of the bottom temperature of T-03, which presented a low
relative error of 0.60%. This result is a consequence of the estimation of the content of the
heavier components, which are not measured. Figure 6 also illustrates the variables that
are related to the content of pentanes in LPG, which are the top temperature of column
T-03 and the volumetric fraction of pentanes in LPG; both variables were reconciled.

The relative error of the top temperature was 4.01%, while the error of the volumetric
fraction of pentanes was 7.84%. Moreover, a bias is observed in the reconciled top tem-
perature value, consistently remaining below the plant data, which can be explained by
the position of the sensor near the second tray. The sensor may be presenting interference
due to the higher temperature of the tray below; therefore, the use of another temperature
sensor will be considered in the future.

Figure 7 shows the results of the temperature of the control tray of tower T-03, the
ratio of propane over butanes in LPG, and the reflux flow rate.
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Figure 5. Data reconciliation results: (a) condenser temperature of T-03; (b) bottom temperature of
T-01; (c) ethane content in LPG stream.
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Figure 6. Data reconciliation results: (a) bottom temperature of T-03; (b) top temperature of T-03;
(c) pentanes content in LPG stream.
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(a) Temperature of the control tray of T-03
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Figure 7. Data reconciliation results: (a) temperature of the control tray of T-03; (b) ratio of the
content of propane over butanes in LPG; (c) Reflux flow rate of T-03.

The temperature of the control tray of T-03 is an estimated output variable that is
adjustable by the estimation of the Murphree efficiency of the column, which explains
the low relative error of 1.97% of this variable. In addition, the ratio of propane over
butanes in the LPG is also an estimated output, which is adjusted by the manipulation of
the ratio of propane over butanes in the feed stream of the process; this variable presented
a relative error of 2.12%. Lastly, the reflux flow rate of tower T-03 is an estimated input,
but a relatively low weight is assigned to this variable due to a high uncertainty in the
measurement of the liquid streams. However, even with this uncertainty, an error of 5.02%
is considered low.

The results herein presented attest to the quality of the developed model and its ability
to represent the variables of the system. Therefore, the model is adherent to plant in study.

4.2. Optimization

During the first month of RTO operation, there were two moments that are delimited
in the results of this section. First, the RTO was set to run in open loop with the DCS, so
its behavior could be observed and any required adjustment could be made. Then, after
approximately 17 days of operation, the RTO loop was closed with the DCS—that is, the
control system started reading the solution of the RTO and tracking the optimal operation.

Figure 8 shows the result of the objective function variation in percentage, that is, the
optimal value of the objective function minus the value calculated in the reconciliation
problem over this last value. The vertical dashed line indicates the moment when the RTO
loop was closed.
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Figure 8. Optimization results: variation of the optimal objective function from the reconciliation solution.

The zero line is marked to denote the boundary between actual economic gain or loss
provided by the optimal solution. When the value is positive, there are economic gains,
otherwise there are economic losses. It is possible to see that there is a considerable number
of times that the optimization crossed the zero line to the economic loss region. However,
this can be explained by the violation of the constraints where the plant may operate, so
the optimization may decide to reduce the economic gain in order to bring the plant back
to a feasible region. Despite this fact, the overall economic gain is achieved and is verified
by a positive value on the numerical integration of the curve.

Figure 9 shows the trend of the volumetric fraction of ethane in LPG displaced by the
optimal value, which is the most sensitive variable in the economic function. The horizontal
dashed lines illustrate the resultant standard deviation upward and downward in both
time windows. The results show that the content of ethane, which is sent to the DCS as a
reference value, was more concentrated around the optimal value after closing the loop of
the RTO, with a reduction of 31.9% on the standard deviation value.

Ethane content in LPG stream
! T T

displaced plant data
optimal value
— — —+/— standard dev. |°

time (days)

Figure 9. Optimization results: ethane content in LPG deviated from the optimal value before and
after the RTO loop closing.

Figure 10 illustrates the result related to the content of pentanes in the LPG stream,
which is sent to the DCS as a reference value. This result shows a high concentration of the
data points around the optimal value, with a reduction of 217% in the standard deviation
value after closing the loop—the right-hand section after the vertical dashed line. This
result reinforces the operational benefits resulted from the implementation of the RTO.
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Figure 10. Optimization results: pentanes content in LPG deviated from the optimal value before
and after the RTO loop closing.

A similar result is also observed in the bottom temperature of tower T-01, as showed in
Figure 11, and in the reflux flow rate, in Figure 12, with decreases in the standard deviation
around the optimal values of 59.9% and 19.7%, respectively. The bottom temperature
of tower T-01 and the reflux flow rate are sent to the DCS as a reference value and a
target, respectively.

Bottom temperature of T-01

1 T T L T T T
] ] l ! , | ’ . displaced plant data
| | U ) 1] | ' . L optimal value
] i' U Y] | i | — — —+/— standard dev.
! | ! IO X ul
o _id) A ETTIC FILT T e
-t A R by R L e
H il S48 v 1 4
oS AVME) B l i ?.)"'\’.’x.‘w‘ib i e {! 'iﬂfr. { “.‘, iy T ;_j ™,
i "" : M Il T " ANV N
L el sk AUEEEE S8 T RN KO T
: 1 H I
i Lo ' !
' * . i| Pt , V! o
[} | 1 ' ' |
1 ! ! L. | 1 I
0 5 10 15 20 25 30

time (days)

Figure 11. Optimization results: bottom temperature of T-01 deviated from the optimal value before
and after the RTO loop closing.

Reflux flow rate of T-03
1 T T T T
| . displaced plant data
optimal value

o . — — —+/— standard dev.

time (days)

Figure 12. Optimization results: reflux flow rate of T-03 deviated from the optimal value before and
after the RTO loop closing.

Regarding the recirculation flow rate, which is sent as a target to the DCS, it possible
to see in Figure 13 that, even though there is a decrease in the standard deviation around
the optimal value of 19.7%, the data points kept consistently below the optimal value. This
suggests that the control layer may be neglecting the optimal target of this variable and
adjustments must be carried out in the future.
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Figure 13. Optimization results: recirculation flow rate of T-03 deviated from the optimal value
before and after the RTO loop closing.

The results shown support the fact that the RTO provides an economic benefit by the
positive variation of the objective function and also provides an operational benefit by the
reduction of the variability of the data points. In general, the communication between RTO
and the control layer was successfully achieved.

4.3. Computational Cost and MCSS Performance

As previously mentioned, the cycle of the RTO is not fixed. Therefore, there is no spe-
cific frequency for each RTO run; in fact, each run will have its own time length depending
on the computational cost needed for the reconciliation problem and the optimization prob-
lem, which are the most costly stages of the cycle. This computational cost is dependent on
the set of initial points given for each problem, if this set is far from the optimal solution,
the problem may take more time to converge. As the initial guess is constituted by the
actual plant data, the computational cost is highly dependent on the quality of the input
data. Table 6 shows the average, the minimum, and the maximum time spent in each stage
in the first month of operation.

Table 6. Computational cost of each stage of the RTO cycle.

Stage Average Time (min) Minimum Time (min) Maximum Time (min)
Reconciliation problem 13.5 1.9 46.3
Optimization problem 19 0.1 16.0

Total cycle 154 3.1 47.1

The presented small-scale RTO presents a fast cycle compared to full-scale commercial
solutions. This result is not only due to the fact that the scope is reduced, but also due to
the proposed “Modular Continuous with Successive Substitution” approach adopted in
the simulation. With the philosophy to avoid convergence loops, the cost to run the model
was around 2 s, if that was considered otherwise, the cost to converge the model could vary
between 30 s to 60 s, which could significantly delay the optimization algorithm—especially
in the gradient estimation stage, where the model has to be called twice for each decision
variable at each optimization iteration.

Therefore, the present RTO has potential to be spread not only to other small-scale
applications, but also to applications where there is already a slow commercial RTO
implemented; in this case, the small-scale RTO can provide intermediate optimal solutions
during the long cycle of the full-scale optimization. This could be in order to improve the
robustness to frequent disturbances and fast dynamics in the whole optimization approach.

The proposed MCSS approach was compared to the classical MC approach in terms
of computational cost. The data reconciliation problem and the optimization problem were
run offline for a single point and for different values of the optimizer feasibility tolerance.
Tables 7 and 8 show the obtained results.
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Table 7. Comparison between MCSS and MC: Data Reconciliation problem.

Approach Feasibility Loop Optimizer Simulator Total Time

PP Tolerance Constraint Iterations Calls (min)
101 20x 1072 53 908 13.0

MCSS 102 55x 1073 102 1747 26.4
104 1.4 x 1074 158 2689 37.2

101 44 x 1072 147 2513 28.3

MC 102 8.8x1073 152 2587 30.1
10~* 6.0 x 1074 196 3346 37.7

Table 8. Comparison between MCSS and MC: Optimization problem.

Avproach Feasibility Loop Optimizer Simulator Total Time

PP Tolerance Constraint Iterations Calls (min)
101 2.2 %1072 9 129 2.1
MCSS 102 1.0 x 1072 11 165 2.5
104 1.5 x 1074 20 283 43
101 2.6 x 1072 20 272 35
MC 102 1.0 x 1072 36 480 5.7
104 34x107% 36 492 6.2

As can be seen, the proposed MCSS resulted in less numbers of optimizer iterations
and simulator calls, which implied a significant reduction in the total spent time when
compared to the classic MC approach for all values of the feasibility tolerance tested. An
acceleration of the convergence is also observed, as the number of optimizer iterations was
significantly reduced. The MCSS spent, on average, 0.24 min per optimizer iteration; the
MC spent, on average, 0.18 min per iteration, due to the fact that the model used in the
MC approach is computationally cheaper since it does not perform the extra calculations
required for the successive substitution method. Therefore, it might have a trade-off
regarding the feasibility tolerance and the additional computational time of the reference
module (see Figure 1) for the acceleration to be advantageous.

In the present application, the MCSS approach presented a real benefit in improving
the computational cost of RTO, enabling to fasten RTO cycles and decrease the chances of
operating in suboptimal conditions.

4.4. Economic Return

The evaluation of the economic return of RTO was performed following the method
proposed and described in Section 2.3 and applied to the industrial case in the study as
presented in Section 3.6. The economic return is measured by the performance index for
each operational mode. These indexes are calculated by the fraction of the profit function
calculated in the data reconciliation problem over the value calculated in the optimization
problem. This can be interpreted as the distance between the actual economic performance
of the operational mode from the utopian economic performance resulted from the opti-
mization. Table 9 presents the performance index calculated for each operational mode.

Table 9. Performance index for each operational mode.

Operational Mode Performance Index

Regulatory control 0.9888

Supervisory control 0.9913
Optimization 0.9951

Just by analyzing the performance index, it is possible to note that the economic
benefit follows the expected tendency—that is, the supervisory control presents higher



Processes 2021, 9, 1179

26 of 29

return compared with the regulatory control, and the optimization presents higher return
compared with the supervisory control. As previously commented, it is possible to have
a better sensibility of the economic return by fixing a reference scenario of optimal profit
return—not shown due to the nondisclosure agreement. In spite of that, it is possible to
evaluate the relative return by directly analyzing the performance indexes, as shown in
Table 10.

Table 10. Relative return comparing the operational modes.

Comparison Relative Return
Supervisory control—regulatory control 0.253%
Optimization—supervisory control 0.383%
Optimization—regulatory control 0.636%
Potential gain of the optimization 0.492%

The potential gain of the optimization, mentioned in Table 10, is measured by the
distance between the performance index of the optimization mode and a utopian opera-
tional mode with performance index equal to 1. Although this utopian operation is not
achievable, the distance between the actual operation and this utopian operation can be
decreased by improving the synergism between the layers, the tuning of the control layers,
and possibly the quality of the models used in the supervisory control layer.

Another way of visualizing this result is to construct a “utopian operational path chart
is presented in Figure 14.

”

RC

SC
22

Sy O

0

Figure 14. “Utopian operational path” chart. RC—regulatory control; SC—supervisory control;
O—optimization; * —utopian value.

This graphic is constructed by normalizing the performance index between 0 and
100, with 0 being the performance of the Regulatory Control and 100 being the utopian
performance. It is possible to see that the Supervisory control was able to move 22 points
in the utopian path and the Optimization was able to move 54 points. This is a good way
of visualizing the benefit of the implementation of RTO and the potential for improvement
of the control and optimization strategies.

5. Conclusions

The present paper describes the development of an RTO strategy for small-scale
applications and its implementation to a Debutanizer section of a Natural Gas Processing
Unit. The whole methodology is disclosed, including a proposition of a new modeling
method for enhancing the effectiveness of the use of sequential-modular models inside
an optimization framework and a new method to account for the economic benefit of
applications based on optimization frameworks after a period of operation. The developed
model proved to be adherent to measured data, which emphasizes its adequacy to be
applied for optimization purposes. The implementation of RTO in a closed loop presented
not only an economic benefit, but also operational benefits observed from the reduction of
variability of the key variables of the process. Moreover, the low computational cost and
the great economic benefits indicate the success of the proposed Modular Continuous with
Successive Substitution in enhancing the efficiency of sequential-modular simulators in
optimization schemes. In addition, it also indicates the potential to spread the application
of small-scale RTO to other applications and even to applications where a slow RTO
has already been implemented. Finally, RTO showed an increase in operational aspects,
as observed by the reduction in variability of the main variables of the system, and in
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economic aspects, as shown by an increase of 0.64% in profit return when compared with
the operation of the regulatory control layer alone.
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Appendix A. Description of the Simulation Calculators

As presented in Section 3.2, the management of information throughout the model
flow-sheet is done via calculators modules inserted into the simulation. Here, the purpose
of each calculator is detailed:

e CAQl—receives the measurement of the top pressure of tower T-01 (DFLP) and
substitutes the pressure of modules FLO1 and FL02, such that

FLO1(Pressure) «+— DFLP(Pressure)
FLO2(Pressure) «— DFLP(Pressure) + 0.3 kgf/ cm?.

¢ CA02—receives the measurement of the feed composition, the composition of propane
and butanes in LPG, the values of parameters 6; and 6,, and substitutes the values of
the feed stream of the simulation accordingly to the procedure discussed in Section 3.2
in Equations (14) and (15);

e CAO03—implement the fractioning cut in module ST1A accordingly to the procedure
described in Section 3.2, Equation (16);

¢ CA(Q5—receives the measured temperature and pressure and substitutes them into
module P108;

e CAOQO6—receives the measured top pressure of tower T-03 and substitutes this value
into the top pressure of this tower and the condenser pressures of modules R-03
and T-03. Further, this value, incremented by 2.5 kgf/cm?, is inserted into the valve
module FV04;

*  CAO04—receives the simulated temperate of the stream downstream of module P12C,
the measured temperatures of the hot-out and cold-in streams and the value of
the decision variable p;1, and implements the HOCI approach strategy described in
Section 3.2;

¢ CA(Q7—receives the measurement of the reflux and recirculation flow rates and the
input of the molar flow rate of the bottom of tower T-03 and substitutes these values
into modules R-03 and T-03;

. CA12—receives the simulated duty of module P12H and inserts it into module R12C;

¢ FOBJ—calculates the objective function of the optimization problem;

e XOBJ—calculates all constraints of the optimization and data reconciliation problems;

*  CAll—calculates the objective function of the data reconciliation problem.
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