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Abstract: On the basis of binary perfectly inelastic collision theory, the time evolutions of kinetic
energy and surface area for a particle agglomerate system, due to Brownian motion, are investigated
by using the Taylor series expansion technology. The asymptotic behaviors over a long time period
show a significantly negative power function of time. The thermodynamic constraints of this system
are then obtained according to the principle of maximum entropy, which establishes a relationship
of inequality between the first three particle moments and some physical parameters (i.e., surface
tension and temperature). In the thermodynamic equilibrium state, this function provides a new
approach for estimating the effect of molecular structure on surface tension of liquid polymers.

Keywords: thermodynamic equilibrium; entropy criterion; Brownian agglomeration; moment
method; asymptotic solutions; population balance equation

1. Introduction

Particle agglomeration is a common phenomenon in both nature and industrial ap-
plications, such as particle synthesis and soot formation processes. It plays a significant
role in these aerosol processes by profoundly affecting the size distribution of a particle
system [1], which strongly determines the physical properties of aerosol particles, such
as light scattering, toxicity, deposition rate and diffusion. Nowadays with the escalation
of fine particle pollution, the agglomeration processes are also widely used in the field of
contamination control to improve removal efficiency, especially for the particles whose
diameters are less than 2.5 µm [2,3]. The main principle is that through physical or chemical
action, particles can coagulate with each other to form particles with larger particle size and
then be removed efficiently. An appropriate approach for investigating the time evolution
of particle size distribution (PSD) due to agglomeration is typically called the population
balance equation (PBE) or the classic Smoluchowski equation (SE), which can be expressed
as the following form [4]:

∂n(υ, t)
∂t

=
1
2

∫ υ

0
β(υ1, υ− υ1)n(υ1, t)n(υ− υ1, t)dυ1 −

∫ ∞

0
β(υ1, υ)n(υ, t)n(υ1, t)dυ1 (1)

where n(υ, t) is the number density function of the particles with volume from υ to υ + dυ at
time t; β(υ, υ1) is the collision frequency function between particles with volume υ and υ1.

Due to the strong non-linear integro-differential structure, the PBE is difficult to solve
analytically. By trading off between accuracy and computational cost, three main numerical
methods are proposed and developed, including the method of moments (MOM) [5,6],
sectional method (SM) [7] and Monte Carlo method (MCM) [8]. It can’t be ignored that the
analytical solutions show great merit in computational cost and direct physical insights
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into agglomeration mechanisms. Thus, some researchers focus on the asymptotic or
analytical solutions of the moments of PSD by converting the original PBE to a system of
ordinary differential equations (ODEs). Due to the complexity of its kernel function and
the universality of Brownian motion, the study on the solution of the PBE for Brownian
agglomeration is considered to be important but one of the most difficulties. Mainly using
the log-normal method of moments (LG-MOM) [6] or the Taylor series expansion method of
moments (TEMOM) [9], the asymptotic behavior of moments, due to Brownian coagulation
(for spherical particles) and agglomeration (for agglomerates) over the entire particle size
regimes [10–13], the analytical solution for Brownian coagulation in the free-molecule
and the continuum regime [14], and so on, are obtained. These articles reveal that the
geometric standard deviation will reach a constant for a long period of time, namely, the
self-preserving size distribution theory [15].

Particle coalescence upon collisions subject to conservation of mass and momentum
is called ballistic aggregation, but it is well known that the kinetic energy of this system
decreases with time [16]. However, the loss of particle kinetic energy after collisions is
rarely taken into account in the framework of PBE. Nowadays, with an assumption of a
perfectly inelastic collision process, the rate of change for kinetic energy is correlated with
that of particle number density, and the relationship of inequality between particle mo-
ments and some physical parameters (i.e., surface tension and temperature) for Brownian
coagulation have been firstly proposed by Xie and Yu based on the principle of maximum
entropy [17,18]. In this paper, we will extend their efforts to Brownian agglomeration, and
the asymptotic behaviors of kinetic energy, surface area and entropy over a long period of
time are obtained.

2. Theory and Model
2.1. Brownian Agglomeration

Particle agglomeration due to thermal motion is called Brownian agglomeration.
Unlike spherical particles, agglomerates are not rigid structures and can be described as
fractal morphology statistically. They are clusters of primary particles, which are ideally
considered to be spherical with point contacts and uniform size. Considering the case
of monodisperse primary particles, which form power law agglomerates, the Brownian
agglomeration kernels β are represented as [1]:

βFM = B1(υ
−1
i + υ−1

j )
1/2

(υ
1/D f
i + υ

1/D f
j )

2
(2)

βCR = B2(υ
1/D f
i + υ

1/D f
j )(υ

−1/D f
i + υ

−1/D f
j ) (3)

Here, the subscripts FM and CR stand for agglomeration in the free molecular and

continuum regimes, respectively; the constants B1 =
(

6kBT
ρp

) 1
2
(3/4π)2/D f−1/2a

2−6/D f
p0 and

B2 = 2kBT/3µ, with kB the Boltzmann’s constant; T is the temperature; µ is the gas viscosity;
ρp is the particle density; ap0 is the radius of a primary particle; υ is the particle volume;
Df is called the fractal dimension, which can be related to the arrangement of the primary
particles within an agglomerate. It should be noted that Df < 2 is not applicable for Equation
(2) in physics [1], thus the following discussions are limited to a range of 2 ≤ Df ≤ 3.

2.2. Taylor Series Expansion Method of Moments

With the definition of k-th order moment Mk,

Mk =
∫ ∞

0
υkn(υ)dυ (4)

Equation (1) can be converted into a system of original differential equations by
multiplying both sides with νk and then integrating over all particle sizes:
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dMk
dt

=
1
2

∫ ∞

0

∫ ∞

0

[
(υ + υ1)

k − υk − υ1
k
]

β(υ, υ1)n(υ, t)n(υ1, t)dυdυ1 (5)

The main objective of all MOMs is to achieve the closure of Equation (5). In the
classic TEMOM, this is accomplished in two procedures [9,19]: (1) the collision kernel is
directly approximated by a two-variable third-order Taylor series expansion, for example,

the power function (υ−1
i + υ−1

j )
1/2

in Equation (2) can be expanded with respect to mean
volume u = M1/M0; (2) and all the higher and fractional moments are approximated by the
polynomial equation with respect to the first three moments:

Mk =
Mk

1

Mk−1
0

[
1 +

k(k− 1)(MC − 1)
2

]
(6)

Here the dimensionless moment MC = M0M2/M1
2 is the function of geometric stan-

dard deviation σ which can be noted as ln(MC)/9 = ln2 σ [6]. The moment equations
based on TEMOM in the free molecule regime are obtained [11]:

dM0
dt

∣∣∣
FM

= −
√

2B1 M0
2

64D4
f

(
M1
M0

) 4−D f
2D f (a1MC

2 + a2MC + a3)

dM1
dt

∣∣∣
FM

= 0

dM2
dt

∣∣∣
FM

= −
√

2B1 M1
2

32D4
f

(
M1
M0

) 4−D f
2D f (b1MC

2 + b2MC + b3)

(7)

where the coefficients a1, a2, a3, b1, b2, b3 are:

a1 = D4
f − 24D3

f + 70D2
f − 48D f + 16

a2 = 54D4
f − 144D3

f + 52D2
f + 96D f − 32

a3 = 73D4
f + 168D3

f − 122D2
f − 48D f + 16

b1 = 3D4
f + 16D3

f + 10D2
f − 16D f − 16

b2 = 2D4
f − 96D3

f − 212D2
f + 32D f + 32

b3 = −133D4
f + 80D3

f + 202D2
f − 16D f − 16

(8)

Now the most important moments for describing the particle dynamics, namely, the
particle number density M0, total particle volume M1 and a polydispersity variable M2, can
be obtained. Here, M1 remains constant due to the rigorous mass conservation requirement.
The corresponding moment equations in the continuum regime are:

dM0
dt

∣∣∣
CR

= − B2 M0
2

4D4
f
(p1MC

2 + p2MC + p3)

dM1
dt

∣∣∣
CR

= 0

dM2
dt

∣∣∣
CR

= B2 M1
2

2D4
f
(p1MC

2 + p2MC + p3)

(9)

where the coefficients p1, p2, p3 are:

p1 = 1− D2
f ; p2 = −2 + 6D2

f ; p3 = 1− 5D2
f + 8D4

f (10)

2.3. Principle of Maximum Entropy

As a characteristic function composed of internal energy U, total particle volume
M1, and particle number M0, the rate of change for entropy S of a disperse system can be
expressed as:
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dS
dt

=
∂S

∂M0

dM0

dt
+

∂S
∂U

dU
dt

+
∂S

∂M1

dM1

dt
(11)

According to the thermodynamic analysis [18], the rate of change for S can be arranged
and then correlated with that of M0, the particle kinetic energy ke, and the particle specific
surface area s:

dS
dt

= −kB ln(M0λ3
th)

dM0

dt
+

1
T

(
dke

dt
+ γ

ds
dt

)
(12)

in which λth is the thermal wavelength and γ is the surface tension. Thus, the focal point is
to determine dke/dt and ds/dt. With the assumption of simplified physical model according
to the binary perfectly inelastic collision theory, the loss of particle kinetic energy after
collision for two colliding particles and the whole system are [18]:

∆ke = −
kbT

2

(
1−

2
√

υ1υ2

υ1 + υ2

)
≤ 0 (13)

dke

dt
= − kBT

4

∫ ∞

0

∫ ∞

0

(
1−

2
√

υ1υ2

υ1 + υ2

)
β(υ1, υ2)n(υ1, t)n(υ2, t)dυ2dυ1 (14)

Assuming that υ1 is the larger particle, the relative loss of ke increases with a larger
ratio of υ1 to υ2, which is illustrated in Figure 1. This shows that a wider range of PSD,
namely, a larger MC, would lead to a more rapid reduction in ke. Substituting Equation (2)
into the above equation and then using the Taylor series expansion technology, we can get
the rate of change for kinetic energy in the free molecular regime:

dke

dt

∣∣∣∣
FM

= kBT
x1M2

C + x2MC + x3

a1MC
2 + a2MC + a3

dM0

dt
(15)

in which x1, x2, x3 are:
x1 =

(
D4

f − 12D3
f + 8D2

f

)
/2

x2 = 15D4
f + 12D3

f − 8D2
f

x3 =
(
−31D4

f − 12D3
f + 8D2

f

)
/2

(16)
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Figure 1. The relationship between |∆ke/ke| and υ1/υ2.

As the structure of agglomerate is complex, modeling of its surface area is even more
difficult, given the scarcity of experimental data. It is also very difficult to numerically
determine which part of primary particles are the boundary particles and which part of
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the surface of these boundary particles forms the agglomerate surface. For an ideal case
that k primary particles agglomerate with point contacts, its surface area equals 4kπa2

p0,
where ap0 is the radius of primary particle [20]. Obviously, it is more suitable for chain-like
structures with Df→1 but not compact aggregates with Df →3. In a statistical sense, the
collision radius of agglomerates composed of k monomer is [1]:

r = Aap0

(
υ

υ0

)1/D f

= Aap0k1/D f (17)

where A is the dimensionless proportionality constant and can be assumed to be in unity to
simplify calculations. In this paper, we will use this collision radius to calculate the surface
area approximately:

s = 4πr2 = 4πk2/D f a2
p0 = B3υ2/D f (18)

in which the constant B3 = 4π(3/4π)2/D f a
2−6/D f
p0 . Thus, for chain-like structures with

Df = 2, s = 4kπa2
p0 equals to that of an agglomerate without necking and for compact

aggregates with Df = 3, s = (36π)1/3υ2/3 equals to that of a spherical particle. Apparently,
the agglomerates composed of the same number of primary particles with smaller Df
would have larger specific surface area and collision radius. Now the total surface area of
this system can be expressed as:

s =
∫ ∞

0
sn(υ, t)dυ = B3M2/D f

(19)

and the rate of change for s can be written as:

ds
dt

= B3
dM2/D f

dt
(20)

ds
sdt

=
dM2/D f

M2/D f
dt

(21)

where the fractional moment M2/Df is approximated by using Equation (6):

ds
sdt

=
dM2/D f

M2/D f
dt

(22)

and its derivative with time t can be achieved:

dM2/D f

dt
=

(1− 2/D f )

D f

M
2/D f
1

M
2/D f
0

[
(1/D f − 1)(2MC − 2− D f )

dM0

dt
−

M2
0dM2

M2
1dt

]
(23)

Combining the first and third equations in Equation (7) gives:

dM2

dt

∣∣∣∣
FM

=
2M2

1
M2

0

b1MC
2 + b2MC + b3

a1MC
2 + a2MC + a3

dM0

dt
(24)

Then Equation (23) can be rearranged as:

dM2/D f

dt

∣∣∣∣∣
FM

=
(1− 2/D f )

D f

M
2/D f
1

M
2/D f
0

[
(1/D f − 1)(2MC − 2− D f )−

2(b1 MC
2+b2 MC+b3)

a1 MC
2+a2 MC+a3

]
dM0

dt
(25)

Substituting the above equation into Equation (21), the rate of change for s in the free
molecular regime has the following form:



Processes 2021, 9, 1218 6 of 13

ds
dt

∣∣∣∣
FM

=
(1− 2/D f )

[
(1/D f − 1)(2MC − 2− D f )−

2(b1 MC
2+b2 MC+b3)

a1 MC
2+a2 MC+a3

]
D f + (2/D f − 1)(MC − 1)

sdM0

M0dt
(26)

Analogously, the rate of change for particle kinetic energy and surface area in the
continuum regime can be calculated as:

dke

dt

∣∣∣∣
CR

= kBT
q1MC

2 + q2MC + q3

p1MC
2 + p2MC + p3

dM0

dt
(27)

ds
dt

∣∣∣∣
CR

=
(1− 2/D f )

[
(1/D f − 1)(2MC − 2− D f ) + 2

]
D f + (2/D f − 1)(MC − 1)

sdM0

M0dt
(28)

where q1, q2, q3 are noted as:

q1 = (−9D4
f + 12D2

f )/16

q2 = (34D4
f − 24D2

f )/16

q3 = (−25D4
f + 12D2

f )/16

(29)

Finally, the rate of change for S can be found:

dS
dt

=
1
T

(
−kBT ln(M0λ3

th) + kBTC2 +
γs
M0

C1

)
dM0

dt
(30)

in which C1, C2 are functions of the dimensionless moment MC and fractal dimension Df:

C1|FM =
(1− 2/D f )

[
(1/D f − 1)(2MC − 2− D f )−

2(b1 MC
2+b2 MC+b3)

a1 MC
2+a2 MC+a3

]
D f + (2/D f − 1)(MC − 1)

(31)

C1|CR =
(1− 2/D f )

[
(1/D f − 1)(2MC − 2− D f ) + 2

]
D f + (2/D f − 1)(MC − 1)

(32)

C2|FM =
x1M2

C + x2MC + x3

a1MC
2 + a2MC + a3

(33)

C2|CR =
q1MC

2 + q2MC + q3

p1MC
2 + p2MC + p3

(34)

From the viewpoint of the second law of thermodynamics, the entropy of an isolated
system will never decrease: dS/dt≥ 0. Moreover, the total particle number M0 will decrease
with time due to agglomeration: dM0/dt < 0. Thus, the thermodynamics constraints for
Brownian agglomeration at a certain temperature and pressure can be obtained:

γs
kBT

≤
M0(ln(M0λ3

th)− C2)

C1
(35)

The equality would hold in the thermodynamic equilibrium state, and the critical
time to reach this state can be determined. Moreover, the growth of the mean particle size
M1/M0 will tend to a limit depending on the operating temperature and specific surface
energy for thermal agglomeration technology.

3. Results

According to the self-preserving size distribution theory, the dimensionless particle
moment MC will tend to a constant at long time periods, and the asymptotic solutions of
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particle moments based on the TEMOM model can be found [11]. Here, the results are
listed in the Appendix A. In the free molecular regime, the asymptotic solution of kinetic
energy can be solved by directly integrating Equation (15) with respect to t:

ke|FM = C3 + kbTC2M0 → kbTC2[g1t]
−

2D f
3D f −4 (36)

where C3 = ke(t1) − keTC2(t1)M0(t1) is the integral constant, t1 is the critical time in which
the particle size distribution approaches self-preserving and the definition of g1 is shown
as Equation (A7). In our previous work [21], a criterion to calculate this critical time has
been given based on the asymptotic solution of M0 in the continuum regime, which can
also be available in the free molecular regime. Now the effect of primary particle size ap0
on ke can be obtained, which is as the same as that on M0:

ke|FM ∝ ap0

12−4D f
3D f −4 (37)

Thus, its relative dissipative rate becomes:

dke

kedt

∣∣∣∣
FM

=
dM0

M0dt
= −

2D f

3D f − 4
t−1 (38)

The asymptotic solution of surface area and the effect of primary particle size can
be expressed as the following forms after substitution of Equations (A6) and (22) into
Equation (19):

s|FM → B3M
2/D f
1

[
1 +

(2/D f − 1)(MC − 1)
D f

]
[g1t]

−
2D f −4
3D f −4 (39)

s|FM ∝ ap0
−

6−2D f
3D f −4 (40)

and its relative dissipative rate becomes:

ds
sdt

∣∣∣∣
FM

=
D f − 2

D f

dM0

M0dt
= −

2D f − 4
3D f − 4

t−1 (41)

For simplification and without loss of generality, the calculation can be non-dimensionalized
through the following relations: M0 * = M0 /M00, M1 * = M1/M10, M2 * = MC0M2/M20,
t∗ = tB1M(3D f−4)/2D f

00 M(4−D f )/2D f
10 , ke * = ke/(M00kbT), s∗ = sM2/D f−1

00 M−2D f
10 /B3. Then the

Equation (7) coupling with Equations (15) and (19) can be solved numerically by means of
fourth-order Runge–Kutta method with the initial dimensionless conditions set as M00 = 1,
M10 = 1, M20 = 4/3, ke0 = 1/2 (the star symbol ‘*’ is omitted thereafter). The numerical and
asymptotic solutions of kinetic energy and surface area are shown in Figure 2. According
to the principle of equipartition of energy, the agglomerates share the molecular thermal
motion of the fluid and have the same initial kinetic energy, thus the dissipative rate of ke
strongly depends on the collision rate. The evolutions of kinetic energy with time show
the larger descent at lower fractal dimension because of the larger collision radius, which
result in a more rapid agglomerated rate [22]. Oppositely, the contacting surface between
primary particles in an agglomerate with smaller fractal dimension is less than that in an
agglomerate with larger fractal dimension, thus the decay of surface area shows the reverse
trend in the dual role of the higher specific surface area and more rapid agglomerated rate.
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Analogously, the asymptotic solutions of kinetic energy and surface area, as well as
their relative dissipative rates, in the continuum regime can be expressed as:

ke|CR → kbTC2M0 = kbTC2g−1
2 t−1 (42)

dke

kedt

∣∣∣∣
CR

=
dM0

M0dt
= −t−1 (43)

s|CR → B3M
2/D f
1

[
1 +

(2/D f − 1)(MC − 1)
D f

]
[g2t]2/D f−1 (44)

ds
sdt

∣∣∣∣
CR

=
D f − 2

D f

dM0

M0dt
= −

D f − 2
D f

t−1 (45)

where g2 is a function of Df showed as Equation (A12). The results are showed in Figure 3.
These allow us to simplify the rate of change for S as the asymptotic form in both the free
molecular and continuum regime:
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dS
dt

=
1
T

(
−kBTM0 ln(M0λ3

th) + ke +
D f − 2

D f
γs

)
dM0

M0dt
(46)

And the corresponding thermodynamics constraints are:

γs
kBT

≤
M0(ln(M0λ3

th)− C2)

1− 2/D f
(47)
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And the corresponding thermodynamics constraints are: 
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4. Discussion

The above equation establishes an inequality relationship between moments and some
physical parameters, such as temperature and specific surface energy, and the equality holds
if and only if the system reaches the thermodynamic equilibrium. Obviously, increasing
temperature leads to decreasing particle number density and greater mean volume, which
can be useful for dust collection efficiency. It also shows the effect of molecular structure
on surface tension. By substituting the expression of surface area into this equation, we can
get the following formula in the thermal equilibrium state:
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γB3
M

2/D f
1

M
2/D f
0

[
1 +

(2/D f − 1)(MC − 1)
D f

]
=

(
ln(M0λ3

th)− C2
)

1− 2/D f
kbT (48)

For liquid pure substance, M0λth
3 usually takes the value as Vm in the free molecular

regime and M1/M0 = Vm /NA, where Vm is the molar volume and NA is the Avogadro
constant. A modification coefficient γ∞, which is equal to the value of surface tension at
infinite molar volume, should be introduced because the surface tension decreases almost
linearly with the increase of temperature. Then a correction function of molar volume can
be constructed:

γ = γ∞ −
k1

Vm2/3 (49)

where k1 is a function of the temperature and fractal dimension:

k1 =
(ln Vm − C2)

Vm
2/D f−2/3

N
2/D f
A D f

B3

(
1− 2/D f

)[
D f + (2/D f − 1)(MC − 1)

] kbT (50)

The surface tension increases as molar volume increases and tends toward the constant
γ∞ at infinite molar volume, and it decreases monotonously with increasing temperature
and tends to zero at the critical temperature. Unfortunately, it should be noted that some
important factors, i.e., the effect of end groups, cannot be considered. It also can be written
as the molecular weight-surface tension relationship with Vm = M/ρ,

γ = γ∞ −
k2

M2/3 (51)

k2 =
(ln(M/ρ)− C2)

M2/D f−2/3

(ρNA)
2/D f D f

B3

(
1− 2/D f

)[
D f + (2/D f − 1)(MC − 1)

] kbT (52)

where M is the molecular weight and ρ is the density. Some research shows that the
correlation with molecular weight is better than that with molar volume for alkanes and
perfluoro alkanes, but the discrepancy can be ignored for the siloxanes [23]. The effect
of fractal dimension on the slope k2 is illustrated in Figure 4 for n-alkanes at 0 ◦C, where
ap0 = 0.2 nm is equal to the radius of methane and n is the number of carbons. Compared
to bulks, the surface tension of molecules with long-chain structure generally increases due
to the large contact areas and intermolecular forces, which leads to a small slope k2. In the
range of 2.7 to 2.8, the result is mostly close to the value k2 = 360 of least-squares fitting
based on experimental data [24].
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5. Conclusions

On the basis of the theory of maximum entropy and binary perfectly inelastic collision,
the thermodynamic constraints of Brownian coagulation for spherical particles are extended
to agglomerates, and a relationship of inequality between particle moments and some
physical parameters is established using the TEMOM. Meanwhile, the evolutions of kinetic
energy and surface area with time are presented, as well as their asymptotic behaviors.
While some of our present simplifying assumptions will have to be relaxed, even our
present results are of potential interest for a number of applications, for example, the
estimation of surface tension of liquid polymers and the enhancement of dust collection
efficiency.
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Q.H. All authors have read and agreed to the published version of the manuscript.
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Appendix A. The Asymptotic Solutions of TEMOM Model for Brownian Agglomeration

The self-preserving size distribution theory implies that the dimensionless moment
MC approaches a constant as time advances, thus we have:

dMC
dt

=
M2

M2
1

dM0

dt
+

M0

M2
1

dM2

dt
= 0 (A1)

Substituting the first and the third equations of Equation (7) into Equation (A1) leads
to a third-order algebraic equation of MC in the free molecular regime:

c1MC
3 + c2MC

2 + c3MC + c4 = 0 (A2)

In which c1, c2, c3 and c4 are functions of Df:

c1 = a1 = D4
f − 24D3

f + 70D2
f − 48D f + 16

c2 = a2 + 2b1 = 60D4
f − 112D3

f + 72D2
f + 64D f − 64

c3 = a3 + 2b2 = 77D4
f − 24D3

f − 546D2
f + 16D f + 80

c4 = 2b3 = −266D4
f + 160D3

f + 404D2
f − 32D f − 32

(A3)

and for a given value of Df, the solution of MC, which is also an invariant constant, can be
solved as [11]:

MC1|FM = 1
6c1

(
(d1 + d2)

1/3 − 4d3

(d1+d2)
1/3 − 2c2

)
MC2|FM = 1

12c1

(
−(d1 + d2)

1/3 + 4d3

(d1+d2)
1/3 − 4c2

)
MC3|FM =

−c3+
√

c2
3−4c2c4

2c2

(A4)

where d1, d2 and d3 are:
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d1 = 12c1

√
3(27c2

1c2
4 − 18c1c2c3c4 + 4c1c3

3 + 4c3
2c4 − c2

2c2
3)

d2 = −108c2
1c4 + 36c1c2c3 − 8c3

2

d3 = 3c1c3 − c2
2

(A5)

Then the asymptotic solution of M0 can be obtained:

M0|FM → (g1t)
−

2D f
3D f −4 (A6)

where g1 is a function of Df:

g1 =

√
2B1(3D f − 4)

128D5
f

M1

4−D f
2D f (a1M2

C + a2MC + a3) (A7)

And its relative agglomerate growth rate is:

dM0

M0dt

∣∣∣∣
FM
→ −

2D f

3D f − 4
1
t

(A8)

Analogously, the asymptotic solution of MC in the continuum regime is:

MC|CR = 2 (A9)

And the asymptotic solution of M0 and its relative growth rate are:

M0|CR → (g2t)−1 (A10)

dM0

M0dt

∣∣∣∣
CR
→ −1

t
(A11)

where g2 is a function of Df:

g2 =
B2(1 + 3D2

f + 8D4
f )

4D4
f

(A12)
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