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Abstract

:

Traditional extraction techniques have lost their optimum performance because of rising consumer demand and novel technologies. In this regard, several techniques were developed by humans for the extraction of plant materials from various indigenous sources, which are no longer in use. Many of the techniques are not efficient enough to extract maximum plant material. By this time, evolution in extraction has led to development of various techniques including microfiltration, pulsed electric fields, high pressure, microwave assistance, enzyme assistance, supercritical fluid, subcritical fluid and ultrasonication. These innovations in food processing/extraction are known as “Green Food Processing”. These technologies were basically developed by focusing on three universal parameters: simplicity, energy efficiency and economy. These green technologies are practical in a number of different food sectors, mostly for preservation, inhibition of microorganisms, inactivation of enzymes and extraction of plant material. Like the others, ultrasonication could also be used for the said purposes. The primary objective of this review is to confine the potential use of ultrasonication for extraction of oils, pectin and phytochemicals by reviewing the literature systematically.
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1. Introduction


Innovation and technological study, along with diffusion of technologies, are the main drivers in the face of potential challenges. Moreover, they are important elements for a model of sustainable development that can assess economic growth suitable for meeting the needs of international systems in terms of well-being in the short, medium and long term, responding to the needs of the present without sacrificing future generations’ aspirations.



Changes in consumer expectations and the need to produce healthy, high-quality foods drive the evolution in the food processing industry. Emerging technologies seem to be the perfect solution to the above-mentioned characteristics. Such systems, including the use of high pressure, electrical pulses, microfiltration and ultrasonics, are specifically designed for economy, flexibility and energy efficiency. In addition, ultrasound used in “Green Food Manufacturing” guarantees high-quality and healthy food [1]. Ultrasound is considered an new method of regulating, enhancing and accelerating processes without harming the quality of food [2]. It implies acoustic energy; thus, it is a non-ionizing, non-invasive and non-polluting mechanical energy source.



Recently, ultrasonic devices have been used for food processing. Ultrasonic is characterized as sound waves exceeding the human hearing limit. Based on the ultrasonic wave frequency spectrum, it can be used in many industrial applications, including food processing. High-power and low-frequency ultrasonic systems seek to enhance food product quality, while ultrasonic low-power and high-frequency systems were used for non-destructive assessment of the physicochemical properties of the foods. The most important benefits of ultrasonic technology are low food production costs, low power consumption, flexibility compared to other techniques, keeping in mind the suitability for the handling of solid and liquid foods and environmental protection and friendliness [3]. In the food industry, ultrasound is used for the dissolution and crystallization, mixing and homogenization, activation/deactivation of enzymes, preservation, hydrogenation, stabilization, tenderization of meat, aging and oxidation, emulsification, dispersion and as an adjuvant for the acceleration and enhancement of active ingestion extraction [4].



Extraction was possibly used after the discovery of fire. Egyptians and Phoenicians, Jews and Arabs, Indians and Chinese, Greeks and Romans and even Mayans and Aztecs all had revolutionary extraction and distillation methods for perfumes, cosmetics and food. Nowadays, you cannot find a production line in food, pharmaceutical, cosmetic, nutraceutical or bioenergy industries that do not use extraction processes such as maceration, extraction with solvents, steam or hydro-distillation, cold pressing or squeezing, among others. With these energy prices and the push to minimize greenhouse gas emissions, food and plant-based chemical industries are challenged to develop new solutions to minimize energy usage. Considering the industrial requirement, sonication could be an emerging technology for the extraction of intracellular plant materials [5]. In fact, one of the major applications of ultrasound in food industry is the extraction of intracellular plant material [6]. Food industry’s most popular applications include cell destruction and intracellular material extraction [4]. The flow-mode extraction processes using cavitation phenomena enable an easier scaling up to industrial production. By developing and scaling up a pilot plan, and therefore narrowing the gap between research laboratories and industry in a technologically innovative process that considers industry to be a driving force, amazing results could be obtained at large scales [7,8,9]. Ultrasound alone or in combination with other technologies could lead to extremely efficient extraction (Table 1).




2. Systematic Literature Review Methodology


The current review focused on reviewing reliability and efficiency of sonication for extraction of phytoconstituents from plant sources systematically [15].



2.1. Search Terms Used


“Sonication”, “ultrasound”, “ultrasonication”, “extraction”, “ultrasound-assisted extraction (UAE)” were the major search terms used for gathering the literature. Initially, 210 articles were selected from Web of Science, 172 articles were selected from Scopus and 131 articles were selected from Google Scholar.




2.2. Inclusion and Exclusion


The systematic literature review methodology has been illustrated in Figure 1.



It was made sure that all the articles to be included in this review should be indexed by Scopus/WOS, to be published from 2015 to 2021, to be in the English language, to be research articles, to be peer-reviewed and should not be reports. This resulted in a selection of 340 articles. All the articles were imported to the Mendeley library and duplicates were removed, which resulted in 211 articles. Then, a deep screening was done by title, abstract and full text, which resulted in 172, 113 and finally 56 articles, respectively. The screening was done to confine studies conducted on ultrasonic extraction only, while studies on ultrasonic processing and preservations were excluded. All the articles were separated with their respective nature of bioactive compounds (22), oils (16), pectin (18), proteins (9) and combined with other technologies (6).





3. History and Applications of Ultrasound in the Food Industry


The history of technological advancements and the invention of ultrasound had its origins in sound experiments, with Sir Isaac Newton introducing his theory of sound waves in 1687 [16]. Ultrasound is a state-of-the-art non-thermal food processing technology that, thanks to its comparatively high efficacy, lower costs of production and environmentally friendly nature, has drawn increased interest as a replacement for or adjuvant to conventional processing techniques [17]. In the food industry, ultrasound was used for the tenderization, curing and microbial inactivation of meats [18,19]. Moreover, it enhanced bioactive elements, β-glucan content, cereal, fruit and vegetable phenolics and cereal starch extraction [6,20,21,22,23,24]. High-intensity ultrasound extraction methods increase quality and speed of a vast range of food components such as oils, flavourings, pigments and bioactive substances, including antioxidants and essential oils from aromatic plant material, such as basil, artemisia and lavender [25].




4. Types of Ultrasound Equipment


The core parts of ultrasonic equipment consist of sound emitter devices, an electrical power generator and a transducer. The core part that determines the type of ultrasound is the emitter, whose primary purpose is to send the ultrasonic waves to the system physically [3]. Based on this, the ultrasonic devices that are used in UAE can be roughly divided into 2 categories, which includes ultrasonic bath mode and sonotrode (ultrasonic probe) mode.



4.1. Ultrasound Bath


In the ultrasound bath type, multiple transducers are normally mounted below a stainless-steel tank, which is the ultrasound source. Few tanks still have thermostatically operated heaters. Ultrasound levels produced by most commercial ultrasonic baths are usually adequate for washing, degassing solvents and removing adsorbed metals and organic contaminants from environmental samples, although they are less efficient for extracting matrix-bound analytes [3]. The strength should be high enough to induce cavitation within the bath extraction vessel; this is not often done with traditional ultrasonic baths [26]. A significant factor determining extraction performance is the location of the vessel within the bath. The extraction vessel must be placed just above the transducer for a bath with a single transducer at the base, as power distribution would be optimum at this location [27].



Figure 2 deeply illustrates the base parts of an ultrasonic bath. All of the parts are holed in a stainless-steel tank. There exists a bath space where the regent bottles/sample is placed. Usually, distilled water is used as a medium where the sample is placed. Usually on one side, there is a valve through which the water is removed from the system. There is a control panel on the front side through which temperature, time and frequency of the system could be controlled. There could be up to two transducers that cannot be physically seen but are located in the bottom middle of the ultrasound bath.




4.2. Ultrasound Probe Type


Probe-type sonicators can provide up to 100-fold greater power to the extraction medium than an ultrasonic bath, so an improved performance is expected. One key feature for efficient implementation of ultrasonic samples for many chemical processes is that the ultrasonic energy is not passed to the extraction vessel via the liquid medium, but is inserted directly into the device [28].



Figure 3 deeply illustrates the base parts of an ultrasonic probe type. It usually consists of a single transducer attached to a control panel with the aid of a wire, through which temperature, time and frequency of the system can be controlled. Then, there is a separate stainless-steel tank where the sample is placed and the ultrasonic treatment is given.





5. Mechanism of Extraction


Extraction is one of the most important unit operations in industries such as pharmaceuticals and nutraceuticals. The basic objective of extraction in these industries is to get a whole plant extract or a highly specific compound. Alongside these industries, extraction is done in the food industries in the development of natural functional foods [29].



The use of transducers, which are the main components of ultrasonic equipment since they are responsible for transforming mechanical or electrical energy into acoustic wave shapes, were used in the UAE. The sound wave moves across the vessel filled with the medium during the UAE until acoustic resonance is produced by transducers, and compression and rarefaction (high and low pressure regions) are formed [17]. The cavitation and implosion triggered by sonication leads to cell-wall rupture and increases the number of disrupted cells. When the cell is disrupted, the solvent enters the cell and the intracellular plant material is incorporated in the solvent [4]. Figure 4 illustrates the possible extraction mechanism of ultrasonic-assisted extraction.




6. Influence of Treatment Conditions on Extraction


Temperature, ultrasound frequency, extraction time and solvent/medium nature affect not only the extraction yield, but also the composition of the extract.



6.1. Influence of Temperature


Extraction temperature is a crucial factor in traditional extraction and one that promotes diffusion and permeation of the solvent into the solid matrix [17]. A higher temperature may lead to a better extraction, but it may damage the plant material [30]. The cavitation nuclei number depends on temperature. A rise in temperature from 10 to 50 °C induces an increase in tension and an increase in vapor pressure inside the cavity, which can result in a lower Pmax and in a decrease of sonochemical effects [28].



Adjusting the temperature, two things must be kept in mind: the boiling point of the solvent being used and the target component. If the temperature is above the boiling point of the solvent, there are chances of an un-economical extraction. Moreover, there are a number of different phytoconstituents that are susceptible to a higher temperate, since when the critical limit is exceeded, the component may start degrading.




6.2. Influence of Frequency


When using a high frequency, loops are shortened. Thus, inadequate time to produce adequate negative pressure prevents bubble formation [31]. Thus, cavitation bubble formation reduces as ultrasonic frequency increases. This is due to inadequate time for the rarefaction period to enable the bubble to expand and create the liquid disruption [28].



While adjusting the temperature, it must be kept in mind to determine the optimal frequency level. Using a higher frequency may lead to an uneconomical extraction process. Furthermore, a greater frequency may lead to degradation of the phytoconstituents. In a study conducted by Zhu et al. [32], a relationship between ultrasonication frequency and degradation of catechin was established. It was articulated by the authors that a higher frequency might lead to the degradation of catechin.




6.3. Influence of Time


There is a great influence of time on extraction [33]. Better extraction is done with an elevated time period, but after certain limits the plant material may start degrading [34].



While adjusting the temperature, it must be noted that a longer period of time may lead to an uneconomical extraction. Moreover, a longer period of time may lead to the degradation of phytoconstituents.





7. Extraction of Bioactive Compounds


Effective biological active compounds are available in plants that are known as phytochemicals. Effective phytochemicals can be extracted from different parts of the plants such as barks, leaves, seed coat, seed, roots, pulps and flowers, and particularly nominated as the direct medicinal agent’s sources. Phytochemistry explains that there are more secondary metabolites available in the plants [35,36,37,38,39]. Various techniques are applied to extract bioactive compounds such as flavonoids, phenolic acids, keratin, tanshinone, terpenoids, tocols, xanthones, carrageenans, a-mangostin, isoflavones, apigenin, genistin and many others [40,41,42,43].



Natural sources might be used to extract bioactive compounds, since they possess beneficial impacts on the health of human. Fruits and vegetables contain high amounts of phenolic compounds, carotenoids and vitamin C as compared to others. The process of extraction of these compounds is based on various factors such as the raw material, the organic solvent and the applied technique. Generally, conventional techniques need large quantities of organic solvents, maximum expenditure for energy and consume more time, which has produced interest in novel technologies known as green or clean technologies [44,45]. These can eliminate or reduce the toxic solvents used, and therefore preserve resources of natural environment [46].



Numerous innovative non-thermal extractions (e.g., high-pressure, pulsed electric fields, ultrasound-assisted extraction, etc.) have been suggested for the extraction of biologically active compounds. Conceptually, such techniques are “green”, shorter, elude toxic chemicals and are capable to enhance the extraction quality and yields with decreased solvents and energy consumption [47]. Ultrasound could be used as green, valuable and alternative techniques to improve the bioactive compounds extraction through solvent [48]. UAE is a rapid, novel, green and developing technology appropriate for improving and scaling up the efficiency of bioactive compound extraction. Ultrasound mostly generates cavitation bubbles and acts in the biological matrix. Inclusively, it has been described for attaining high rates of extraction and yields of bioactive compounds. Furthermore, remarkable environmental benefits and economic could be improved and ultrasound has maximum potential for application and development [49]. Table 2 shows various studies conducted on the extraction of bioactive compounds by ultrasonic-assisted extraction.



7.1. Extraction of Oils


Edible plant oil (EPO) is an essential resource of nutrition for human health. Numerous oil-bearing plant cultivars are produced worldwide, and the compositions of chemicals from different oils of plants are varied. The exceptionally complex oil components lead to varied standards for estimating the safety and quality of several EPOs. The environmental stances are great encounters for the quality and safety of EPOs during the entire chain of industry, containing harvesting, plant cultivation, storage and oil processing [70].



Great importance has been given to consider the impact of ultrasound technology on the efficiency of oil extraction from seeds and on the extracted oil properties as well. The phenomenon of cavitation is persuaded by ultrasound, which improves the yield of oil as it smashes the primary seeds’ cell wall and develops an easy oil release. Therefore, the maximum yield of oil is gained when UAE is utilized in comparison with conventional techniques. The UAE oil properties such as the content of free fatty acid, oxidative stability and crystallization are influenced by the ultrasonic temperature, time, solvent type and intensity during extraction [71].



Oil extraction through the UAE is likely to lessen the ecological and economic influences of the process on the oil and fat industry [72]. Extraction of oil through UAE has improved the performance and decreased the time for extraction without disturbing the quality of oil [73]. This extraction is extensively used to extract valuable intracellular components from different parts of the plant. As an escalating technique for the process, edible oil extraction through ultrasonic methods, such as avocado oil, extra virgin olive oil, flaxseed oil, sunflower seed oil, as compared to others, has improved the extracted oil (fatty acids) yield, reduced the time of extraction and avoided the consumption of solvent. Being a non-thermal technique of extraction, the operational principle of extraction through ultrasonically assisted means depends on the acoustic cavitation phenomenon. Acoustic cavitation by ultrasonic methods generates powerful shear forces, which disturb the cell walls and enhance the transfer of mass between the surrounding solvent and the interior of the cell. Therefore, ultrasonic extraction is regarded as a superior technique for the isolation and extraction of compounds entrapped in the cells of the plant [74]. Table 3 shows various studies on the ultrasonic-assisted extraction of oils.




7.2. Extraction of Pectin


Heteropolysaccharides that are mainly composed of α-1-4 d-galacturonic acid unit are known as pectin. This natural cell wall of the plant may or may not be methyl esterified and contains neutral branching of sugars that harbor moieties functionally. Physicochemical factors such as temperature, cosolute presence, pH and concentration of ions directly affect the gelling capacity and yield of pectin through extraction. The structural and chemical features of polysaccharide allow its interaction with an extensive molecule range, a property that experts utilize to form novel composite matrices for controlled/target therapeutic cells, molecules or gene delivery. As part of a measured prebiotic diet of fiber, pectin encounters various regulations, including applications of health within the pharmaceutical industry as an agent and as a raw material for cancer prevention [90]. Pectin is an appreciated hydrocolloid with numerous functional properties and applied in the cosmetic, pharmaceutical and food industries [91].



The degradation of ultrasonic methods has been converted into a promising strategy for developing modified pectin (MP). The treatment of ultrasonic methods at numerous pH values can be established as viable resources to extract the desirable MP [92]. Innovative processing techniques processing (enzymatic extraction, ultrasound-assisted extraction and microwave extraction) are utilized to extract pectin from by-products and different wastes. The extraction of pectin differs based on the studied matrix and time, pH, solvents, solid-to-liquid ratio and temperature as well. The utilization of innovative processes of extraction such as microwave, enzymes and ultrasound can be a valuable means to escalate the pectin quality and yield, and for decreasing the extraction temperature, use of toxic solvents, time and strong conditions of acids for the recovery of pectin. Furthermore, the solvent modelling combination and the particular processes of extraction can facilitate the selective pectin recovery [93]. For pectin, which is a soluble fiber, the disruption and cavitation of cells initiated by waves of ultrasounds may progress the mass transfer, and consequently enhance the process of extraction [94]. Table 4 shows various studies on ultrasonic-assisted extraction of pectin.




7.3. Extraction of Protein


Proteins perform a significant role in nourishing life through foods obtained from animals and plants. Protein contents vary in every food, and the properties of proteins are higher in foods to be performed. Proteins contribute to providing the nutritional properties in foods through the provision of amino acids that are considered to be essential in the maintenance and growth of humans; proteins provide the structural basis for several foods’ functional properties [113]. Proteins are a biomolecules’ ubiquitous class that perform a chief role in the food industry as constituents to impart sensory, functional and nutritional properties to the formulations of food. The proteins’ ability to perform actions in these capacities depends on their exceptional physicochemical properties that are based on the protein’s structure at several organizational levels in turn (i.e., quaternary, tertiary, secondary and primary) [114].



Extraction is a major stage for the recovery and isolation of proteins. Various methods such as conventional alkaline, reverse micelle, salt, enzyme extraction and organic solvent have been utilized to extract proteins from plants [18]. A unique extraction technique is required to perform the procedure of protein extraction. UAE is a proficient technique for extraction due to its extraordinary benefits of high extraction yield, low solvent quantity and short extraction time [115]. Ultrasound technique has been used extensively for peptide and protein extraction from natural products, achieving maximum yields and extraction rates. Peptide encapsulation with biodegradable polymers can improve bioavailability and stability through ultrasound-assisted methods. Furthermore, in applications of sonophoresis, minimum-frequency ultrasound can be utilized to transfer peptide drugs with maximum molecular weight [116].



UAE decreased the particle size and the microstructure dimension in gluten and albumin, representing that ultrasound can unfold aggregates of protein. Moreover, UAE enhanced the emulsifying activity (EA), solubility, foam stability (FS) and foaming capacity (FC) of the proteins. The consequences reveal that ultrasound extraction is an encouraging approach to enhance the properties and extraction yield of proteins [117]. Table 5 shows various studies on the ultrasonic-assisted extraction of protein.





8. Conclusions, Challenges, and Future Perspectives


The advantages of UAE are recognizable, and so the food industry is especially interested in its acceptance. Consequently, there are numerous novel techniques for enhancing this method to improve the efficiency of extraction and meet the requirements of “natural chemistry”. In the current situation, ultrasound combinations with other traditional or new innovations are a unique topic. These combinations predominantly involve supercritical fluids, enzymes and microwave-assisted extractions mutual with ultrasound to achieve the synergistic impact of such techniques. To meet demands for green extraction, UAE should alter the conventional extraction solvents with unique solvents such as deep eutectic solvents, ionic liquids, cloud point techniques and multi-phase solvents. New developments in advancing ultrasonic instruments to enhance the interaction with ultrasound, having a sample matrix in a system of continuous flow, are also in request.



In the food sector, ultrasound is considered a new technology. It has the advantages of reducing taste loss, increasing homogeneity, conserving energy, increasing production, improving quality, reducing chemical and physical dangers and being environmentally friendly. Its efficiency rises when pressure and/or temperature are applied, but caution is required to determine and control nutrition.



Comparatively, despite the minimum cost of ultrasonic devices, industrial pilot-scale or even scale-up usage is deliberated due to the requirement for ad hoc modified plants, limiting the optimization and investigation of operations on a large scale. The impact of highly powerful intensities or prolonged time duration on the component’s stability in the matrices of food under treatment by ultrasound could cause significant compound oxidation or degradation, which could reduce its applications and use.



The research gap should be filled with material, the location of the vessel, study length and geometric characteristics concerning ultrasound extraction. Adopting improved cavitometers may offer essential distribution information and cavitation intensity. Calorimetric tests are performed to measure the actual ultrasonic power incoming towards the vessel. In order to accomplish excellence in the industrial tests of scaling-up, geometric design, location ultrasonic power and ultrasonic strength must be taken into interpretation. UAE is not a linear procedure, so that, simply, only the ultrasonic equipment size is impractical and limited to consider, as confirmed by findings from experiments in a laboratory. Hence, other technical parameters must be taken into consideration during up-scaling, containing ultrasound strength, geometric design, kinetic studies and control. Moreover, some sturdy agents of reducing, such as ascorbic acid and ethanol, should be added to free radical scavenging generated by cavitation, therefore protecting components of food. Chemical processes and reactions under the impact of sonochemical methods on components of food are needed to be deliberated to improve and adjust the process conditions of ultrasound methods and achieve excellence in the product quality.
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Figure 1. Methodology for systematic literature review. 
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Figure 2. Ultrasonic bath mode. 
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Figure 3. Ultrasonic probe mode. 
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Figure 4. Possible extraction mechanism of ultrasound. 
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Table 1. Combination of ultrasound with other techniques for extraction of bioactive compounds.
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Material

	
Pre-Treatment

	
Extraction Type

	
Extraction Conditions

	
Solid-Liquid Ratio

	
Solvent

Conc.

	
Yield

	
TPC

	
TFC

	
Antioxidant Activity

	
Ref.




	
DPPH

	
FRAP

	
IC50






	
Grape skin

	
NR

	
Ultrasound-assisted enzymatic

	
Time: 28 min; Temp.: 50 °C;

Power: 400 W;

Pectinase: 0.16%

	
1:30 g/mL

	
60%

EtOH

	
3.0 mg/g 1

	
NR

	
NR

	
NR

	
NR

	
NR

	
[10]




	
Rosemary

by-product

	
PEF freq.: 10 Hz;

Pulse width: 30µs; Pulses:167;

Electric field: 1.1 kV/cm;

Specific energy input: 0.36 kJ/kg;

24 g of 0.1% NaCl (1: 1.4 w/v)

	
Ultrasound-assisted

	
Time: 28 min;

Temp.: 50 °C;

Power: 400 W;

Pectinase: 0.16%

	
1:20 g/mL

	
55.19%

EtOH

	
NR

	
297 mg GAE/ 100 g FW

	
NR

	
593 mg TE/ 100 g FW

	
NR

	
NR

	
[11]




	
Thyme

by-product

	
PEF freq.: 10 Hz; Pulse width: 30µs; Pulses:167;

Electric field: 1.1 kV/cm;

Specific energy input: 0.46 kJ/kg; 24 g of 0.1% NaCl (1: 1.5 w/v)

	
460 mg GAE/ 100 g FW

	
570 mg TE/ 100 g FW

	

	




	
Periploca

forrestii Schltr

	
Ultrasound freq.: 40 kHz;

Power: 200 w; Time: 15–35 min

	
Microwave-assisted extraction

	
Microwave conditions:

	
1:21 g/mL

	
60%

EtOH

	
NR

	
NR

	
9.1% 2

	
NR

	
NR

	
1.033 mg/mL

	
[12]




	
Time: 210 s; Power: 140–350 W




	
Passion fruit rinds

	
NR

	
UAPLE

	
Time: 68.5 min;

Temp.: 60 °C;

Ultrasonic intensities: 360 W/cm2;

Pressure: 10 MPa;

Solvent flow rate: 10 g/min

	
S/F: 14.6 kg solvent/kg fresh rinds

	
70%

EtOH

	
6.8%

	
1.7 mg GAE/g DW

	
NR

	
NR

	
7.5 mg TE/g DW

	
NR

	
[13]




	
Mango peels (Ataulfo variety)

	
NR

	
UMAE

	
Time: 10 min;

	
1:5 g/mL

	
50%

EtOH

	
NR

	
54.2 mg/g DW

	

	
94%

	
NR

	
NR

	
[14]




	
Microwave freq.: 2450 MHz;




	
Ultrasound freq.: 25 kHz








1 Anthocyanins. 2 Flavonoid extraction yield. DW: dry weight. GAE: Gallic acid equivalent. NR: Not recorded. S/F: Solvent to feed mass ratio. TE: Trolox equivalent. UAPLE: Ultrasound-assisted pressurized liquid extraction. UMAE: Ultrasound–microwave-assisted extraction. Temp.: Temperature; EtOH: Ethanol; PEF: Pulse electric field; TPC: Total phenolic content; DPPH: 2, 2-diphenyl-1-picrylhydrazyl; FRAP: Ferric-reducing antioxidant power; TFC: Total flavonoid content; IC: Inhibitory concentration.
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Table 2. Extraction of bioactive (antioxidant) compounds by ultrasonic-assisted extraction.
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Material

	
Extraction Device

	
Extraction

Conditions

	
Solid-Liquid

Ratio

(g/mL)

	
Solvent Conc.

	
Yield

	
TPC

	
Antioxidant Activity

	
Ref.




	
DPPH

	
FRAP

	
ABTS

	
SRSP






	
Mango peel

	
Ultrasound bath

	
Time: 60 min;

Temp.: 45 °C;

Ampl.: 100%

	
1:20

	
80% EtOH

	
NR

	
67.6 mg GAE/g

	
83.2%

	
31.5 mM/100 g

	
NR

	
67.2%

	
[33]




	
100% MeOH

	
NR

	
49.1 mg GAE/g

	
59.2%

	
24.8 mM/100 g

	
NR

	
52.0%




	
Wild raspberry fruit

	
Ultrasound bath

	
Time: 15 min;

	
1:10.04

	
20% MeOH

	
NR

	
383 mg GAE/g

	
29.0 μmol TE/g

	
NR

	
39.5 μmol TE/g

	
NR

	
[50]




	
Temp.: 80 °C




	
Blue butterfly pea flower

	
Vibra cell crusher

	
Time: 150 min;

	
1:15

	
Double distilled water

	
∼29%

	
87 mg GAE/g

	
931.5 μg Trolox/g

	
5834.6

μg Trolox/g

	
13,488 μg Trolox/g

	
NR

	
[51]




	
Temp.: 50 °C;




	
Ampl.: 70%




	
Lime peel

	
Ultrasonic processor VCX 750

	
Time: 4 min;

	
1:30

	
55% EtOH

	
NR

	
54 mg GAE/g

	
19 μM Trolox/g

	
NR

	
465 μM Trolox/g

	
NR

	
[52]




	
Temp.: 50 °C;




	
Ampl.: 38%




	
Lime peel

	
Ultrasound bath

	
Time: 30 min;

Temp.: 40 °C

	
1:10

	
Double distilled water

	
40.25 mg/g

	
74.8 mg GAE/g

	
NR

	
NR

	
NR

	
NR

	
[53]




	
Orange peel

	
66.4 mg GAE/g




	
Tangerine peel

	
58.7 mg GAE/g




	
Laurus nobilis L.

	
Ultrasound bath

	
Time: 40 min;

	
1:12

	
35% EtOH

	
NR

	
17.3 mg GAE/g

	
94.7%

	
NR

	
NR

	
NR

	
[54]




	
Temp.: room temp




	
Kinnow mandarin peel

	
Ultrasound bath

	
Time: 45 min;

	
1:15

	
80% MeOH

	
19.24%

	
32.5 mg GAE/g

	
72.8%

	
27.7 mM/100 g

	
NR

	
64.8%

	
[55]




	
Temp.: 45 °C




	
Myrciaria dubia

	
Ultrasound probe

	
Time: 5 min;

	
1:4

	
Water

	
NR

	
25.8 mg GAE/g

	
NR

	
NR

	
216.2 mmol TE/g

	
NR

	
[56]




	
Temp.: 60 °C;




	
Ampl.: 30%




	
Bitter gourd

	
Ultrasound probe

	
Time: 12 min;

	
0.25:1

	
Water

	
NR

	
104.5 mg GAE/g

	
77.9%

	
NR

	
NR

	
NR

	
[57]




	
Temp.: 68.4 °C




	
Wheatgrass

	
Ultrasound bath

	
Time: 28 min;

	
1:10

	
56% EtOH

	
NR

	
15.5 mg GAE/g

	
NR

	
NR

	
NR

	
NR

	
[58]




	
Temp.: 59 °C




	
Myrtus communis L.

pericarp

	
Ultrasound bath

	
Time: 7.5 min;

	
1:28

	
70% EtOH

	
NR

	
235.5 mg GAE/g

	
90.7%

	
NR

	
NR

	
NR

	
[59]




	
Temp.: 60 °C;




	
Ampl.: 30%




	
Psidium guajava leaves

	
Ultrasound bath

	
Time: 38 min;

	
1:40

	
Deionized water

	
NR

	
59.8 mg GAE/g

	
NR

	
NR

	
NR

	
NR

	
[60]




	
Temp.: 63 °C




	
Garlic

	
Ultrasound bath

	
Time: 13.5 min;

	
1:20

	
71% MeOH

	
NR

	
19.5 mg GAE/g

	
NR

	
NR

	
NR

	
NR

	
[61]




	
Temp.: 59 °C




	
Limonium sinuatum flower

	
Ultrasound bath

	
Time: 9.8 min;

	
1:56.9

	
60% EtOH

	
NR

	
NR

	
483.0 μmol Trolox/g

	
NR

	
NR

	
NR

	
[62]




	
Temp.: 40 °C




	
Pomegranate fruits (Bhagwa)

	
Ultrasound probe

	
Time: 15 min;

	
1:20

	
70% EtOH

	
42.5%

	
354.7 mg GAE/g

	
94.8%

	
NR

	
NR

	
NR

	
[63]




	
Temp.: 50 °C;




	
Ampl.: 30%




	
Black soybeans

	
Ultrasound probe

	
Time: 8.59 min;

	
1:49.1

	
Distilled water

	
NR

	
941.0 mg

GAE/100 g

	
NR

	
NR

	
242.5 mg/100 g

	
NR

	
[64]




	
Temp.: 20 °C;




	
Ampl.: 81.4%




	
Olive mill leaves

	
Ultrasound bath

	
Time: 50 min;

	
1:5.9

	
47% EtOH

	
17.8%

	
2420 mg

GAE/100 g

	
NR

	
NR

	
NR

	
NR

	
[65]




	
Temp.: 20 °C




	
Orange peel

	
Ultrasound bath

	
Time: 35 min;

Temp.: 42 °C; Freq.: 40 kHz;

Power: 150 W

	
1:15

	
6 L Olive oil

	
1.85 mg/100 g DW 1

	
NR

	
NR

	
NR

	
NR

	
NR

	
[66]




	
Fresh Gac leave

(Momordica cochinchinensis Spreng.)

Young leave

	
Ultrasound bath

	
Time: 20 min;

	
NR

	
50% EtOH

	
NR

	
4897 mg

GAE/100 g DW

	
NR

	
NR

	
NR

	
NR

	
[67]




	
Power: 150 W;




	
Temp.: 25 °C




	
Mandarin epicarp

(Oneco variety)

	
Ultrasonic Cleaner HB-S49DHT

	
Time: 60 min;

	
0.0004:1

	
NR

	
140.7 mg

β-carotene/100 g DW

	
NR

	
NR

	
NR

	
NR

	
NR

	
[68]




	
Temp.: 60 °C




	
Apple peel

Pomegranate Peel

	
Ultrasound

bath

	
Time: 60 min;

	
1:20

	
75% Acetone

	
25.45%

	
44.71 mg GAE/g

	
81.05%

	
NR

	
NR

	
NR

	
[6]




	
Temp.: 45 °C

	
50% MeOH

	
31.45%

	
72.21 mg GAE/g

	
93.84%




	
Lemongrass leaves

	
Ultrasound bath

	
Time: 60 min;

	
1:20

	
50% EtOH

	
26.68%

	
61 mg GAE/g

	
NR

	
NR

	
NR

	
NR

	
[69]




	
Temp.: 45 °C

	
70% EtOH

	
NR

	
NR

	
73.85%








1 Carotenoid content. DW: dry weight. EtOH: Ethanol. GAE: Gallic acid equivalent. MeOH: Methanol. NR: Not recorded. TE: Trolox equivalent; Temp: Temperature; Ampl: Amplitude; Freq: Frequency; TPC: Total phenolic content; DPPH: 2, 2-diphenyl-1-picrylhydrazyl; FRAP: Ferric-reducing antioxidant power; ABTS: 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); SRSP: Superoxide radical scavenging power assay.
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Table 3. Extraction of oils by ultrasonic-assisted extraction.
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Material

	
Extraction Device

	
Extraction Conditions

	
Solid-Liquid Ratio (g/mL)

	
Solvent

	
Oil Yield

	
Reference






	
Papaya seed

	
Ultrasound bath

	
Time: 38.5 min;

Temp.: 62.5 °C;

Freq.: 40 kHz

	
1:∼7

	
n-Hexane

	
23.3%

	
[75]




	
Canola seed

	
Ultrasound bath

	
Time: 87 min;

Temp.: 55 °C;

Freq.: 35 kHz

	
1:6.39

	
Hexane

	
22.4%

	
[76]




	
Time: 69.5 min;

Temp.: 55 °C;

Freq.: 35 kHz

	
1:9.12

	
Hexane–isopropanol mixture (3:2)

	
30.7%




	
Chia seed

	
Ultrasound bath

	
Time: 40 min;

Temp.: 50 °C;

Freq.: 40 kHz

	
1:12

	
Ethyl acetate

	
27.2%

	
[77]




	
Kolkhoung kernel

	
Ultrasound bath

	
Time: 20 min;

Temp.: 50 °C;

Freq.: 30 kHz

	
1:4

	
n-Hexane

	
77.5%

	
[78]




	
Olive pomace

	
Ultrasound

cleaning bath

	
Time: NR;

Temp.: 60 °C;

Freq.: 60 kHz

	
1:12

	
n-Hexane

	
11.0%

	
[79]




	
Crambe seed

	
Ultrasound bath

	
Time: 90 min;

Temp.: 60 °C;

Freq.: 25 kHz

	
1:10

	
Mixture of methyl acetate and n-hexane

	
~37%

	
[80]




	
Macauba kernels

	
Ultrasound bath

	
Time: 45 min;

Temp.: 60 °C;

Freq.: 40 kHz

	
1:12

	
Ethyl acetate

	
40.6%

	
[81]




	
Papaya Seeds

	
Ultrasound bath

	
Time: 30 min;

Temp.: 50 °C

	
1:25

	
n-Hexane

	
25.3%

	
[82]




	
Apricot kernel oil

	
Ultrasound bath

	
Time: 43.95 min;

Temp.: 51.72 °C;

Freq.: 40 kHz

	
1:19.8

	
n-Hexane

	
44.7%

	
[83]




	
Moringa peregrina oil

	
Ultrasound bath

	
Time: 26.3 min;

Temp.: 30 °C;

Freq.: 20 kHz

	
1: 17.8

	
n-Hexane

	
53.1%

	
[84]




	
Paeonia lactiflora

Pall. Seeds

	
Ultrasound bath

	
Time: 26.3 min;

Temp.: 30 °C;

Freq.: 20 kHz

	
1:12

	
n-Hexane

	
28.9%

	
[18]




	
Castor seeds

	
Ultrasound probe

	
Time: 9 min;

Temp.: 50 °C;

Freq.: 50 kHz

	
1:16

	
Isopropanol:

Methanol (1:3)

	
70.1%

	
[85]




	
Hainan/Eksotika papaya seeds

	
Ultrasound bath

	
Time: 20 min;

Temp.: 50 °C

	
1:16

	
n-Hexane

	
32.3%

	
[86]




	
Canarium odontophyllum

kernel (COK)

	
Qsonica Q500

sonicator

	
Time: 45.79 min;

Freq.: 20 kHz;

Power: 500 W;

Ampl.: 38.30%;

	
1:50

	
n-hexane

	
63.5%

	
[87]




	
Swietenia macrophylla seed

	
Ultrasonic

processors

	
Time: 14.4 min;

Temp.: 60 ± 5 °C;

Freq.: 20 kHz;

Power: 750 W;

Ampl.: 90%;

	
1:4.5

	
Ethanol

	
27.7%

	
[88]




	
Black cumin seed

	
Ultrasound probe

	
Time: 45 min;

Freq.: 20 kHz;

Power: 200 W

	
1:20

	
Hexane

	
94.8%

	
[89]








Temp.: Temperature; Freq.: Frequency; NR: not recorded.
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Table 4. Extraction of pectin by ultrasonic-assisted extraction.
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Material

	
Extraction Device

	
Extraction Conditions

	
Solid-liquid Ratio (g/mL)

	
Solvent

	
Acidifying Agent

	
pH

	
Pectin Yield

	
Reference






	
Walnut green husk

	
Ultrasound probe

	
Time: 10 min;

Temp.: NR;

Freq.: 20 kHz

	
1:15

	
Distilled water

	
Citric acid

	
1.5

	
12.8%

	
[95]




	
Mango

Peels

	
Ultrasonic bath

	
Time: 20 min;

Temp.: 80 °C;

Freq.: 37 kHz

	
1:20

	
Water

	
Lemon juice

	
2.5

	
∼27%

	
[96]




	
Opuntia ficus indica cladodes

	
Ultrasonic bath

	
Time: 70 min;

Temp.: 70 °C;

Freq.: 40 kHz

	
1:30

	
Water

	
NR

	
1.5

	
18.1%

	
[97]




	
Peanut shell waste

	
Ultrasonic bath

	
Time: 10 min;

Temp.: 80 °C;

Freq.: 40 kHz

	
1:3.03

	
Distilled water

	
HCl

	
2.0

	
1.7%

	
[98]




	
Passion fruit peel

	
Ultrasound probe

	
Time: 10 min;

Temp.: 85 °C;

Freq.: 20 kHz

	
1:30

	
Water

	
HNO3

	
2.0

	
12.7%

	
[99]




	
Tomato Waste

	
Ultrasonic bath

	
Time: 15 min;

Temp.: 80 °C;

Freq.: 37 kHz

	
NR

	
NR

	
NR

	
NR

	
35.7%

	
[100]




	
Sour Orange peel

	
Ultrasound probe

	
Time: 10 min;

Temp.: 30 ◦C;

Freq.: 20 kHz

	
1:20

	
Distilled water

	
Citric acid

	
1.5

	
28.1%

	
[101]




	
Eggplant peel

	
Ultrasound probe

	
Time: 30 min;

Temp.: NR;

Freq.: NR

	
1:20

	
Distilled water

	
NR

	
1.5

	
35.4%

	
[102]




	
Chayote

	
Ultrasonic bath

	
Time: 40 min;

Temp.: 70 °C;

Freq.: NR

	
1:50

	
NR

	
NR

	
NR

	
6.2%

	
[103]




	
Dragon fruit peel

	
Ultrasonic bath

	
Time: 25 min;

Temp.: 70.8 °C;

Freq.: 37 kHz

	
1:35.6

	
Water

	
Citric acid

	
2.0

	
7.5%

	
[104]




	
Sisal waste

	
Ultrasound probe

	
Time: 26 min;

Temp.: 50 °C;

Freq.: 20 kHz

	
1:28

	
Distilled water

	
NR

	
NR

	
29.3%

	
[105]




	
Musa balbisiana waste

	
Ultrasound probe

	
Time: 27 min;

Temp.: NR;

Freq.: 20 kHz

	
1:15

	
Water

	
Citric acid

	
3.2

	
9.0%

	
[106]




	
Grape pomace

	
Ultrasonic bath

	
Time: 60 min;

Temp.: 75 °C;

Freq.: 37 kHz

	
1:10

	
Water

	
Citric acid

	
2.0

	
∼32.3%

	
[107]




	
Jackfruit peel

	
Ultrasound probe

	
Time: 24 min;

Temp.: 60 °C;

Freq.: NR

	
1:15

	
Distilled water

	
NR

	
1.6

	
14.5%

	
[108]




	
Pomegranate peel

	
Ultrasound probe

	
Time: 28.31 min;

Temp.: 61.90 °C;

Freq.: 20 kHz

	
1:17.52

	
Distilled water

	
NR

	
1.27

	
23.9%

	
[109]




	
Custard apple peel

	
Ultrasound probe

	
Time: 18.04 min;

Temp.: 63.22 °C;

Freq.: 20 kHz

	
1:23.52

	
Water

	
HCl

	
2.36

	
8.9%

	
[110]




	
Grapefruit peel

	
Ultrasound probe

	
Time: 27.95 min;

Temp.: 66.71 °C;

Freq.: 20 kHz

	
1:50

	
Deionized water

	
HCl

	
1.5

	
27.3%

	
[111]




	
Lemon peel

	
Ultrasonic

water bath

	
Time: 45 min;

Temp.: 75

	
1:30

	
HNO3

HCl

	
NR

	
2

	
10.1%

	
[112]




	
Mandarin peel

	
11.3%




	
Kiwi peel

	
17.3%








Temp.: Temperature; Freq.: Frequency; NR: Not recorded.
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Table 5. Extraction of proteins by ultrasonic-assisted extraction.
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	Material
	Extraction Device
	Extraction Conditions
	Solid-Liquid Ratio (g/mL)
	Solvent
	Recovery Rate
	Reference





	Rice bran
	Ultrasound probe
	Time: 10 min;

Temp.: Room temp.;

Freq.: 20 kHz
	0.5:10
	Water
	75.6%
	[115]



	Chlorella vulgaris
	Ultrasound probe
	Time: 10 min;

Temp.: 20 °C;

Freq.: NR
	1:10
	0.4 M NaOH

0.4 M HCl
	79.1%
	[118]



	Coffee

Silverskin
	Ultrasonic generator
	Time: 10 min;

Temp.: 50 °C;

Freq.: NR
	1:40
	0.2 M NaOH

0.6 M HCl
	13.5%

14.0%
	[119]



	Spirulina
	Ultrasound probe
	Time: 20 min;

Temp.: 24 °C;

Freq.: 20 kHz
	1:2
	Distilled water
	49.8%
	[120]



	Sesame bran
	Ultrasonic

equipment
	Time: 65 min;

Temp.: 55 °C;

Freq.: 35 kHz
	1:10
	Deionized water
	58.5%
	[121]



	Sunflower meal
	Ultrasound probe
	Time: 15 min;

Temp.: 45 °C;

Freq.: 35 kHz
	1:20
	Deionized water
	54.3%
	[122]



	Peanut flour
	Ultrasound

probe
	Time: 15 min;

Temp.: 23 °C;

Freq.: 24 kHz
	1:10
	Distilled water
	100%
	[123]



	Rice Dreg Flour
	Ultrasound probe
	Time: 40 min;

Temp.: 40 °C;

Freq.: 20 kHz
	1:20
	NaOH
	88.4%
	[124]



	Olive Kernel
	Ultrasound probe
	Time: 20 min;

Temp.: 25 °C;

Freq.: 24 kHz
	1:20
	Ethanol
	25%
	[125]







Temp.: Temperature; Freq.: Frequency; NR: Not recorded.
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