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Abstract: The aim of the study was to estimate the optimal parameters of apple drying and the
rehydration temperature of the obtained dried apple. Conducting both processes under such con-
ditions is aimed at restoring the rehydrated apple to the raw material properties. The obtained
drying parameters allow the drying process to be carried out in a short drying time (DT) and at
low energy consumption (EC). The effect of air velocity (vd), drying temperature (Td), characteristic
dimension (CD), and rehydration temperature (Tr) on rehydrated apple quality was studied. Quality
parameters of the rehydrated apple as: color change (CC), mass gain ratio (MG), solid loss ratio
(SL), volume gain ratio (VG) together with DT and EC were taken into consideration. The artificial
neural network was used for modeling of rehydrated apple quality parameters, DT, and EC. A
multi-objective genetic algorithm was developed in order to optimize parameters of the drying and
rehydration processes. The simultaneous minimization of CC, SL, DT, EC, and the maximization
of MG and VG were considered with the following drying and rehydration processes parameters:
Td: 50–70 ◦C, vd: 0.01–2 m/s, Tr: 20–70 ◦C. The best solution has been found at drying temperature
56.1 ◦C, air velocity 1.3 m/s, characteristic dimension 2.0 mm, and rehydration temperature 59.2 ◦C.
This apple drying and rehydration resulted in MG = 3.51, SL = 0.57, VG = 4.77, CC = 11.2, DT = 5.4 h,
EC = 159.8 GJ/kg. The parameters of apple drying and rehydration processes can be recommended
for the industry application.

Keywords: apple; artificial neural network; drying; genetic algorithm; optimization; rehydration

1. Introduction

Apples are one of the basic horticultural products and apple plantations are present
all over the world. Poland is a significant global producer of these fruits. Apples are
low caloric fruits and play a significant role in the human diet. They typically contain
about 86% of H2O, 12–14% of carbohydrate, 0.3% of protein, 0.2% of lipids, 2% of dietary
fiber and many very important minerals (Ca, Mg, K). Apples may help in reducing the
effect of asthma and cholesterol levels [1–3]. Dried apples (instead of fresh) may be used
in many processed or ready-to-eat foods due to advantages such as the convenience of
transportation, storage, preparation, and use. Dehydrated apples sometimes are rehydrated
before consumption or further processing.

Drying is one of the most common and important unit operation applied in such
industrial sectors producing solid products as food, pharmaceutical, and chemical. Drying
generally is defined as removing of fluid or moisture from wet body by changing the
moisture into a gaseous phase [4,5]. Drying belongs to the processes that need high energy
because of the high value of the latent heat of water evaporation and low energy efficiency
of dryers. Moreover, the energy consumption and drying efficiency depend highly on the
drying methods and the materials being dried [6]. The dryers consume approximately
12% of the energy employed in manufacturing processes, whereas on average about 10%
of the energy used in the food industry is allocated to the drying process [4,7,8]. About
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50–70% of energy employed in wood process is used for drying [9]. It is stated that in such
manufacturing processes where material dehydration is needed, the drying cost amounts
to 60–70% of the total cost [4]. Therefore, increasing efficiency of drying systems for good
quality of dried products has been an important research area of the drying industry.

Many papers related to the drying of apple cubes have been found in the literature.
Dependence of temperature, relative humidity, velocity, and material size of thin-layer
apple (var. Idared) cubes on their drying kinetics [10] as well as the effects of the dry-
ing variables on the quality characteristics such as shrinkage and color of dried apple
were evaluated [11]. The kinetics of apple cubes drying with the convective method was
described by Figiel [12]. According to the author, apple cubes dried with the combined
method demonstrated better rehydrating properties manifested by absorption capacity,
dry-mater-holding capacity, and rehydration ability as compared to the apples dried only
with the use of the convective method.

Many methods of drying apples such as using heat pump, vacuum-microwave, or
intermittent techniques can be used in commercial scale for modification of the texture
attributes according to potential consumer preferences. However, heat pump vacuum-
microwave method is the best drying technique to produce crispy and healthy apple
snack with nice appearance, as reported by [13]. Pasławska et al. [14] investigated the
possibility of using the vacuum impregnation as a pre-treatment before drying apple cubes.
Apple cubes were dried by convective drying and microwave-vacuum drying. The above
drying methods allow to obtain the dried apples characterized by the reduced compressive
resistance, increased resistance to cutting, and less elasticity in relation to the raw material.
Diamante and Yamaguchi [15] investigated the effects of temperature, air velocity, and
loading density on the drying of infused apple. They optimized drying temperature, air
velocities, and loading densities, and drying times for hot air drying using response surface
method. Assis et al. [16] studied the effects of the osmotic pre-treatment with sucrose or
sorbitol solutions and different drying methods on the rehydration kinetics of apple cubes.
Samples were dried by hot air at 70 ◦C, by microwave at 500 W, and by freeze-drying. The
rehydration rate and the rehydration capacity of the apple cubes dried by these methods
were not affected by the solute used in the pre-treatment with sucrose and sorbitol. Product
quality is becoming very important in the storage and drying processes [17,18]. The wide
variety of dried products and the interesting concern for meeting energy conservation and
product quality emphasize the necessity of dehydration optimization [19]. The rehydration
capability is one of the quality attributes of some food materials whereas some dried
products must be rehydrated before further processing or consumption [20].

Rehydration is a complicated process that indicated the degree of physical and chemi-
cal changes occurring during processing (treatments preceding drying, dehydration, and
rehydration) [21,22]. It can be accepted that rehydration indicates the degree of structural
and cellular damage caused to the product [23,24]. Rehydration can be described as a
process of moistening dry material, mainly using water. Three simultaneous processes
occur during rehydration, namely: the imbibition of moisture into dehydrated product,
the swelling, and the leaching of solubles (sugars, acids, minerals, and vitamins) [21,25].
Generally speaking, rehydration is a complex mass-transfer process that consists of several
physical mechanisms, including absorption of water, internal diffusion, convection inside
the large open pores and at the surface of product, and relaxation of solid structure [26].

Conventional optimization algorithms using linear and non-linear programming
sometimes have difficulty in finding the global optima or in case of multi-objective op-
timization, the Pareto front. A lot of research has now been directed toward genetic
algorithms (GAs) to solve multi-objective optimization problems. Genetic algorithms are a
biologically inspired highly parallel mathematical search algorithm pioneered by Holland.
GAs generate entire population of points, each with associated fitness value, tests each
point independently, and combines qualities from existing points to form a new population,
containing improved points [27]. They compute the fitness value using the information
concerning the quality of the solution produced by the members of the population (ob-
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jective function values) [28]. This adaptive evolutionary learning process relates to the
evolutionary selection procedure of genetic chromosomes. Genetic Algorithms rely on
the Darwinian principle of reproduction and survival of the fittest and natural genetic
operations like mutation [29,30]. Multi-objective genetic algorithm (MOGA) optimization
involves minimizing or maximizing multiple objective functions subject to a set of con-
straints. The basic steps of the multi-objective genetic algorithm were described in detail
by authors [31].

In literature the multi-objective optimization of apple drying was done [31,32]. The
simultaneous minimization of color difference, maximization of the volume ratio, and water
absorption capacity was successfully applied. Authors found optimal solution: drying
air velocity and temperature [31]. The simultaneous minimization of color difference and
volume ratio and the maximization of water absorption capacity were considered. The
optimal solution: drying air temperature, air velocity, rehydration temperature and kind of
rehydrating medium were conducted in [32].

Determining the optimal parameters of drying is important for solving the problems
of product quality and optimizing the quantity of energy consumed during dehydration.
However, to our knowledge, there are fewer or no items in the literature about this problem.
Darvishi et al. [33] conducted the optimization of dehydration process of sawory leaves,
taking into consideration criteria such as: drying variables (drying air temperature, drying
air velocity, infrared power density), minimum drying time, energy consumption, color
change, and maximum rehydration and moisture extraction ratios. There are no informa-
tion in the literature about optimization of the quantity of energy consumed during apple
dehydration.

The study aims to estimate the optimal parameters of apple drying and the rehydration
temperature. Conducting both processes under such conditions ensures the restoration of
the raw material properties of rehydrated apples. The obtained parameters allow the drying
process to be carried out in a short drying time (DT) and at low energy consumption (EC).

2. Materials and Methods
2.1. Materials

Apples var. Ligol, bought from Warsaw market (Poland), were used for conducting
the experiments. The initial moisture content of the apples was approximately 5.7 kg
water/kg dry mass (0.85 kg water/kg wet mass). They were washed, peeled, and cut into
slices (3 ± 1 and 10 ± 1 mm thickness) or cubes (10 ± 1 mm thickness).

The characteristic dimension (CD) of apples was calculated as [34]:

• For slices CD = s;
• For cubes 1

CD2 = 3
s2 ;

where s (mm) is the half of the slice thickness and cube thickness, respectively.

2.2. Drying

The apple samples were dried using forced convection in a laboratory dryer con-
structed in the Institute of Mechanical Engineering, Warsaw University of Life Sciences,
Warsaw, Poland. The dryer consisted of an airflow control unit, an electrical fan, a heating
and heating control unit, the drying chamber, and a measurement sensor. The airflow
control unit regulated the velocity of the drying air flowing through the drying chamber.
The desired air temperature was obtained by electrical resistance heating and controlled by
the heating control unit. The drying air velocity and temperature were measured directly
in the drying chamber. The samples were placed on a stainless steel wire tray of known
weight. The weighing of samples was done manually outside the chamber. Prior to placing
the apples in the dryer, the system was run for at least one hour to obtain stable conditions.

The drying air velocity (vd) amounted to 0.5 m/s and 2.0 m/s. The drying air tem-
peratures were following (Td): 50, 60, and 70 ◦C. The final moisture content of the dried
apples was approximately 0.1 kg water/kg dry mass (0.09 kg water/kg wet mass). The
dehydration processes were conducted, in given conditions, in triplicate. The drying time
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(DT) was measured using a stopwatch (1 s accuracy). The dried material (given drying
conditions) was mixed and next stored in a container (no exposure to sunlight) for a week
at the temperature amounted to 20 ◦C.

2.3. Rehydration

The process of dried apple rehydration was conducted in distilled water at following
temperatures (Tr): 20, 45, and 70 ◦C. The experiments lasted from 3 (Tr = 70 ◦C) to 6 h
(Tr = 20 ◦C) and was carried out in triplicate. The initial mass of the sample (dried apples)
showing rehydration was approximately 10 g. The dried apples mass (at beginning of the
process) to the mass of distilled water ratio amounted to 1:20. The water temperature was
constant, and it was not stirred during rehydration.

2.4. Mass and Volume

The mass of the sample (m) (dried and rehydrated apple, dry matter) was measured us-
ing an electronic scale WPE 300 (RADWAG, Radom, Poland; ±0.001 g accuracy). The apple
dry matter was determined before and after rehydration according to AOAC standards [30].
The mentioned measurements were conducted in three replicates. The maximum relative
error in the determination of the mass amounted to 0.1%.

The volume of the sample (V) (dried and rehydrated apple) was measured using the
buoyancy method in petroleum benzine [31]. The volume measurement was conducted
in triplicate. The maximum relative error in the determination of the volume amounted
to 5%.

2.5. Color

The scanner (CanoScan 5600F, Canon Inc., Tokyo, Japan, 4800 × 9600 dpi) was used to
the color determination of fresh and rehydrated apple samples. The images were loaded
into the sRGB color space, and then the mean brightness of pixels in each RGB channel
of the image was taken to express color parameters. The mean RGB values were linearly
transformed to CIE XYZ color space and then nonlinearly converted to CIELab coordinates.
The values of reference for the color parameters XYZ, at the standard observer of 10◦ and
illuminant D50, were 96.72, 100, 81.43, respectively [35]. According to [36], the Chroma (C)
and the hue angle (h) specific for CIELCh color space were defined. Details of the color
measurement can be found in [31].

2.6. Energy Consumption EC

The energy consumed during dehydration per kg of dried apples (EC) is defined
as [37–39]:

EC =
EQ + EW

md
(1)

where: EQ (GJ) is the energy needed for heating the drying air, EW (GJ) is the energy
needed to drive the drying air through the dryer, and md (kg) is the mass of the obtained
dried apples,

EQ = AvρC∆Tτ (2)

EW = ∆PvAτ (3)

where: A (m2) is the cross-section area, v (m/s) is the air velocity, ρ (kg/m3) is the air
density, C (GJ/(kg K)) is the air specific heat, ∆T (K) is the temperature difference, τ (s) is
the drying time, and ∆P (GPa) is the pressure drop.

2.7. Quality Parameters QP

The color change (CC), mass gain ratio (MG), solid loss ratio (SL), and volume gain
ratio (VG) were applied for the quality determination of rehydrated apple samples. The
quality parameters (QP) are defined in Table 1.
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Table 1. Equations for quality parameters calculating of rehydrated apple.

Parameters Equation No.

CC =

√(
∆L

KLSL

)2
+
(

∆C
KCSC

)2
+
(

∆H
KH SH

)2 (4)

MG = mr−md
md

(5)
SL = mdm d−mdm r

mdm r
(6)

VG = Vr
Vd

(7)

where: SL, SC, SH—the weight functions (adjusting internal non-uniform structure of CIELab (SL = 1,
SC = 1 + 0.045C, SH = 1 + 0.015C), KL, KC, KH—the variation from the reference conditions, ∆L, ∆C, ∆H—the
difference between tested (T) and standard (S) samples in luminance (L), chroma (C), and hue (H) (∆L = LT − LS

∆C = CT − CS, ∆H = 2
√

CT · CS · sin
(

∆h
2

)
), m—mass (kg), V—volume (m3), subscripts d, dm, and r refer to dry,

dry matter, and rehydrated, respectively.

2.8. QP, DT, and EC Modeling Using the Artificial Neural Network

Artificial neural networks (ANN) comprise of autonomous processing elements (neu-
rons) with associated weights and activation functions. These neurons are simplified
computational models based on our understanding of biological neurons. The weights
represent the relationship between the neurons [40]. Various architectures including feed
forward neural networks with associated learning schemes such as back-propagation have
been proposed using networks of these neurons. Variants include recurrent networks and
radial basis function networks. The learning schemes provide a means of modifying the
weights [41]. Stone-Weierstrass and Kolmogorov theorems prove that feed forward neural
networks can approximate continuous functions to the desired degree of accuracy [42].
Moreover, the ANN can be used to learn non-linear relationships in a given data set.

The artificial neural network was used to QP, DT, and EC modeling. The ANN task
was to map input variables: Td, v, CD, and Tr (parameters of the drying and rehydration
processes) on to six output variables: CC, MG, SL, VG (quality parameters), DT and EC
to obtain the lowest mean squared error (MSE) and high: correlation coefficient (R) and
adjusted R-square.

Values of input and output parameters were normalized in the range from 0 to 1
(division by using their maximum values: 70, 2, 5.8, 70, 42.02, 3.6, 0.67, 4.8, 9.25, 397 for Td,
v, CD, Tr, CC, MG, SL, VG, DT (in h) and EC (in GJ/kg), respectively). Data cases have
been randomly divided into training (70%), testing (15%), and validation (15%) sample
sets. A feed forward neural network with a backpropagation algorithm was employed.
The MATLAB Neural Networks Toolbox R2018a software with Lavenberg-Marquardt
algorithm for training was used.

2.9. Optimization Problem

A genetic algorithm (GA) was chosen to optimize the process parameters. GA is a
powerful optimization tool especially in irregular experimental regions. In the process
of drying and rehydration, complex and highly nonlinear phenomena take place [43].
Therefore, it is easy to estimate relationships between the input and the output of this
complex system using ANN and GA techniques. The main characteristic of GA over
the other optimization techniques is that they operate simultaneously with a huge set of
searching points to find optimal architecture instead of a single point [28]. GA performs
better than response surface methodology (RSM) when a large number of experiments
are affordable.

The multi-objective optimization (MOO) task was aimed to define the set of optimal
conditions of the dehydration and rehydration processes. The following functions: CC,
DT, EC, and SL were minimized whereas MG and VG ones were maximized according to
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constraints on the drying (Td, v, CD) and rehydration (Tr) parameters. The Equation (8)
presents the mentioned problem.

min(x) =



min CC(Td, vd, CD, Tr)
min DT(Td, vd, CD, Tr)
min EC(Td, vd, CD, Tr)
min SL(Td, vd, CD, Tr)

max MG(Td, vd, CD, Tr)
max VG(Td, vd, CD, Tr)

50 ◦C ≤ Td ≤ 70 ◦C
0.5 m/s ≤ vd ≤ 2.0 m/s

1.5 mm ≤ CD ≤ 5.78 mm
20 ◦C ≤ Tr ≤ 70 ◦C

(8)

The Pareto front for the MOO has been formulated applying nondominated sorting ge-
netic algorithm (NSGA II), implemented in MATLAB Global Optimization Toolbox R2018a.
The mentioned algorithm was discussed in [25], whereas NSGA II parameters are following:
the crossover function—intermediate, the crossover rate—85%, the migration—forward, the
mutation function—uniform, the mutation rate—15%, the number of generations—300 num-
ber of variables, the Pareto front population fraction—0.8, the size of the population—20
number of variables, the selection function—Tournament size = 2.

3. Results and Discussion
3.1. ANN

Different ANN structures (various transfer functions) for the approximation of the
relationship between the variables of dehydration and rehydration (Td, v, CD, and Tr) and
apple quality parameters QP (CC, MG, SL, VG), drying time DT, and energy consumption
EC were tested (Table 2).

Table 2. ANN architectures tested.

ID. Activate Function
in the Hidden Layer

Number of Neurons in
the Hidden Layer

Activate Function
in the Output Layer

Statistical Analysis

MSE R Adjusted R-Square

1 4 0.002020 0.9914 0.9820
2 6 log-sigmoid 0.000309 0.9914 0.9820
3 log-sigmoid 8 0.001207 0.0990 0.0430

4 4 0.001664 0.9886 0.9761
5 6 pureline 0.000825 0.9917 0.9826
6 8 0.001983 0.9944 0.9883

7 4 0.003444 0.9853 0.9693
8 6 pureline 0.000970 0.9931 0.9855
9 tansig 8 0.000952 0.9950 0.9895

10 4 0.003110 0.9706 0.9390
11 6 log-sigmoid 0.004624 0.9743 0.9466
12 8 0.000520 0.9953 0.9901

On account of high adjusted R-square (0.9820), R-value (0.9914), and low MSE (0.0003),
the ANN with four neurons in the input layer (Td, v, CD, and Tr), six neurons in the hidden
layer, and six neurons in the output layer (CC, MG, SL, VG, DT and EC) with log-sigmoid
transfer function for hidden and output layers was developed (ID 2 in Table 2). The best
validation performance was after 114 iterations (Figure 1a). The values of Adjusted R-
square and R were high enough, namely: 0.9841 and 0.9926 for training data, 0.9579 and
0.9865 for validation ones, 0.9685 and 0.9899 for test data, respectively (Figure 1b).
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Figure 1. The best performance of the ANN (a) and the ANN fit goodness (b).

3.2. MOGA

Table 3 shows 19 design points of the Pareto optimal set. Figures 2–4 presents the
non-dominated points of Pareto front.

Table 3. Pareto optimal sets.

ID
Inputs Outputs

Td (◦C) vd (m/s) CD (mm) Tr (◦C) MG (-) SL (-) VG (-) CC (-) DT (h) EC (GJ/kg)

1 62.44 1.2594 3.5581 56.41 2.60 0.63 4.42 7.67 4.44 283.84
2 66.99 1.6903 3.1241 37.41 3.07 0.62 4.61 8.47 4.54 294.00
3 60.48 1.2513 4.2814 47.66 2.07 0.57 3.85 9.74 4.57 396.82
4 66.64 1.4174 2.8837 50.61 3.35 0.60 4.71 9.54 4.61 248.83
5 64.98 1.2986 2.6938 56.03 3.46 0.58 4.75 10.39 4.67 216.07
6 60.28 1.3288 3.5348 44.76 2.53 0.63 4.38 7.60 4.68 308.62
7 62.11 1.6584 2.0158 47.86 3.59 0.43 4.79 14.91 4.88 342.51
8 55.33 1.7493 2.5717 42.51 2.97 0.63 4.57 8.00 5.10 281.57
9 55.75 1.5048 2.6483 57.37 3.04 0.63 4.60 7.96 5.36 262.38

10 56.10 1.2456 1.9942 59.16 3.51 0.57 4.77 11.16 5.43 159.80
11 53.83 1.5361 1.5146 48.42 3.55 0.53 4.78 13.96 6.00 235.15
12 63.85 1.3485 5.7152 55.26 1.83 0.43 3.19 12.40 6.24 396.98
13 60.81 0.7190 3.3839 45.81 2.74 0.63 4.50 7.31 6.51 261.63
14 64.24 1.2258 5.6621 51.41 1.82 0.43 3.20 12.33 6.73 396.98
15 58.02 1.8172 5.1563 46.69 2.43 0.43 3.84 11.77 7.06 396.98
16 64.45 1.1341 5.6831 47.77 1.93 0.44 3.37 12.17 7.77 396.98
17 59.07 0.6460 3.2791 54.20 2.98 0.63 4.60 7.03 8.04 235.70
18 55.53 1.1483 1.5125 31.98 3.26 0.61 4.57 16.41 8.08 145.40
19 53.81 0.9368 1.5520 41.26 2.91 0.63 4.18 17.86 8.80 138.71
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Figure 2. Pareto fronts: (a) EC-MG, (b) EC-SL, (c) EC-VG, (d) EC-CC, (e) EC-DT; +—data, O—the best solutions, —ECmin,
—MGmax, —DTmin, —CCmin, —VGmax-, —SLmin.
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Figure 3. Pareto fronts: (a) DT-MG, (b) DT-SL, (c) DT-VG, (d) DT-CC; +—data, O—the best solutions, —ECmin, —MGmax,
—DTmin, —CCmin, —VGmax-, —SLmin.
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Figure 4. Pareto fronts: (a) MG-CC, (b) MG-SL, (c) VG-CC, (d) SL-CC, (e) MG-VG, (f) SL-VG; +—data, O—the best solutions,
O—ID 7 and ID 10.
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ID10 (Figure 2) was the best solution for the faced optimization task (Equation (8)). It
is important to obtain, with possibly low energy consumption, a rehydrated product with
acceptable quality parameters from the dried material acquired by drying in a short time.

The solution features the following drying and rehydration parameters: Td = 56.1 ◦C,
vd = 1.25 m/s, CD = 2.0 mm, and Tr = 59.2 ◦C. The rehydrated product obtained in such
conditions shows CC = 11.2, DT = 5.4 h, MG = 3.51, SL = 0.57, VG = 4.77, EC = 159.8 GJ/kg
(CC 37.0% higher than CCmin, DT 18.2% higher than DTmin, MG 2.1% lower than MGmax,
SL 24.7% higher than SLmin, VG 0.5% lower than VGmin, and EC 13.2% higher than ECmin).
However, for the EC-SL relation (Figure 2b), we can notice that solution ID11 indicates
lower SL values (compared to ID 10) but with a higher EC. Solution ID 11 indicates the
following drying and rehydration parameters: Td = 53.8 ◦C, vd = 1.54 m/s, CD = 1.5 mm,
and Tr = 48.4 ◦C, and the obtained rehydrated product shows CC = 13.96, DT = 6.0 h,
MG = 3.55, SL = 0.53, VG = 4.78, EC = 235.2 GJ/kg (CC 49.60% and 20.0% higher, DT
26.8% and 9.5% higher, MG 1.0% lower and 1.1% higher, SL 19.4% higher and 7.0% lower,
VG 0.3% lower and 0.2% higher, and EC 41.0% and 32.1% higher than the minimum or
maximum values, respectively, and the value for ID10). For relations EC-CC (Figure 2d)
and EC-DT (Figure 2e), we may also accept solution ID5 to be an optimum solution that
indicates Td = 65.0 ◦C, vd = 1.30 m/s, CD = 2.7 mm, and Tr = 56.0 ◦C. The rehydrated
product obtained in such conditions shows CC = 10.39, DT = 4.67 h, MG = 3.46, SL = 0.58,
VG = 4.75, EC = 216.1 GJ/kg (CC 32.3% higher and 7.5% lower, DT 5.1% higher and 16.2%
lower, MG 3.5% and 1.4% lower, SL 26.5% and 2.4% higher, VG 0.8% and 0.3% lower, and
EC 35.8% and 26.0% higher than the minimum or maximum values, respectively, and
the value for ID10). Additionally, for the ED-CC relation, solution ID 17 (Td = 59.1 ◦C,
vd = 0.65 m/s, CD = 3.3 mm, and Tr = 54.2 ◦C) shows a lower CC (7.0) with just a slightly
higher EC (compared to ID 5) being 235.7 GJ/kg. For ID17, the CC is the lowest of all
values and 58.8% lower than the CC value obtained for ID 10. The comparison of the values
obtained for ID 17 to the minimum or maximum values, respectively, and the value for
ID 10 is as follows: DT 44.8% and 32.5% higher, MG 16.9% and 15.1% lower, SL 32.5% and
10.3% higher, VG 4.1% and 3.7% lower, and EC 41.2% and 32.2% higher.

ID7 (Figure 3) is the best solution for the faced optimization task (Equation (8)), where
it is important to obtain, with possibly short drying time, a rehydrated product with
acceptable quality parameters and acceptable consumption of energy used for drying
(however, this solution is not optimal for CC). The solution features the following drying
and rehydration parameters: Td = 62 ◦C, v = 1.66 m/s, CD = 2.0 mm, and Tr = 47.9 ◦C. The
rehydrated product obtained in such conditions shows CC = 14.9, DT = 4.9 h, MG = 3.59,
SL = 043, VG = 4.79, EC = 342.5 GJ/kg (CC 52.8% higher than CCmin, DT 9.0% higher than
DTmin, MG = MGmax, SL 0.2% higher than SLmin, VG = VGmin, but EC as much as 59.5%
higher than ECmin).

Given the charts for DT-MG (Figure 3a) and DT-VG (Figure 3c), we can conclude that
the optimum solutions also include ID4 and ID5 (Td = 66.6 ◦C, v = 1.42 m/s, CD = 2.9 mm,
Tr = 50.6 ◦C, and Td = 65.0 ◦C, v = 1.30 m/s, CD = 2.7 mm, Tr = 56.0 ◦C, respectively), but
with ECID4 > ECID5. When drying with the indicated parameters, we quickly (4.6 h and
4.7 h, respectively) obtain dried material, which then, in the rehydration process, intensively
increases both its weight and volume (MG: 3.4 and 3.5; VG: 4.7 and 4.8, respectively).
However, energy consumption is high (ECID4 = 248.8 GJ/kg; ECID5 = 216.1 GJ/kg), being
44.3% and 35.8% higher, respectively, compared to ECmin.

Nevertheless, if we consider the chart for DT-CC (Figure 3d), then solutions ID1 and
ID6 show such drying and rehydration parameters where the color of the rehydrated
product indicates the slightest change compared to the product taken for drying. Solution
ID 1 indicates the following drying and rehydration parameters: Td = 62.4 ◦C, vd = 1.26 m/s,
CD = 3.6 mm, and Tr = 56.4 ◦C, and the rehydrated product obtained in such conditions
shows CC = 7.67, DT = 4.4 h, MG = 2.6, SL = 0.63, VG = 4.42, EC = 283.8 GJ/kg (CC
9.1% higher, DT = DTmin, MG 27.5% lower, SL 48.5% higher, VG 7.8% lower, and EC
104.6% higher than the minimum or maximum values, respectively). Solution ID6 (which,
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when compared to ID1, shows a CC 1% lower with a DT being 5.5% higher) indicates the
following drying and rehydration parameters: Td = 60.3 ◦C, vd = 1.33 m/s, CD = 3.5 mm,
and Tr = 44.8 ◦C, and the rehydrated product obtained in such conditions shows CC = 7.60,
DT = 4.7 h, MG = 2.5, SL = 0.63, VG = 4.38, EC = 308.6 GJ/kg (CC 8.1% higher, DT 5.5%
higher, MG 29.5% lower, SL 48.3% higher, VG 8.6% lower, and EC 122.5% higher than the
minimum or maximum values, respectively).

Considering only the quality parameters of rehydrated apples it could be stated that
for the optimization problem expressed using Equation (8), ID 7 and ID 10 are the best
solution (Figure 4). However, when comparing the energy consumption for both cases
(ECID 7 = 342.5 GJ/kg, ECID 10 = 159.8 GJ/kg), solution ID 10 should be recommended.
Experimental verification proved that maximum error of modeling was lower than 4.86%.

In the previous research about multi-objective normalization of apple drying [31] and
drying and rehydration [32] the critical factors—drying time and energy consumption for
drying were not considered. Taking these factors into account is very important from the
point of view of material acquisition costs. The material should be of the best quality with
the lowest possible expenditure for its processing.

The new experimental run (Td = 56 ◦C, vd = 1.3 m/s, CD = 2.0 mm, and Tr = 59 ◦C
was used to verify the developed model. The experimentally determined values (Table 4)
were very close to the predicted values under the same drying and rehydration conditions.
The maximum absolute error obtained in the validation process was 4.46%. It proved the
consistency and accuracy of the obtained model.

Table 4. Validation results.

Validation
Quality of Rehydrated Apples

MG SL VG CC DT EC

Experimental values (yei) 3.48 0.59 4.68 11.7 5.3 162
Predicted values (ypi) 3.51 0.57 4.77 11.2 5.4 159.8
Errors = yei−ypi

ypi
·100% 0.85 3.5 1.88 4.46 1.85 1.38

4. Conclusions

The effect of drying (drying temperature Td: 50–70 ◦C, air velocity vd: 0.5–1 m/s,
characteristic dimension CD: 1.5–5.78 mm) and rehydration (rehydration temperature
Tr: 20–70 ◦C) parameters on the quality of rehydrated apples: color change (CC), mass gain
ratio (MG), solid loss ratio (SL), and volume gain ratio (VG) and on the drying time (DT)
and energy consumption (EC) required for drying of apple were investigated.

A multi-objective optimization algorithm, based on Pareto optimization, genetic
algorithm and artificial neural network, was developed. Optimization objectives for
simultaneous maximization, MG and VG, and for minimization, CC, SL, DT, EC, were
used, whereas the objective functions were determined by application of an artificial neural
network. The Pareto optimal set was formulated applying non-dominated sorting genetic
algorithm II.

The parameters of apple drying and rehydration processes, derived from optimization
of both processes, can be recommended for the industry application. Use of the following
parameters: Td = 56.1 ◦C, vd = 1.3 m/s, CD = 2.0 mm, and Tr = 59.2 ◦C results in 3.51 for MG,
0.57 for SL, 4.77 for VG, 11.2 for CC, 5.4 h for DT, and 159.8 GJ/kg for EC. Conducting both
processes under received conditions allowed to obtain rehydrated apple with properties
similar to the raw material properties with comparatively shorter drying time and lower
energy consumption for drying.
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