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Abstract: Today, real-time fault detection and predictive maintenance based on sensor data are
actively introduced in various areas such as manufacturing, aircraft, and power system monitoring.
Many faults in motors or rotating machinery like industrial robots, aircraft engines, and wind turbines
can be diagnosed by analyzing signal data such as vibration and noise. In this study, to detect failures
based on vibration data, preprocessing was performed using signal processing techniques such as
the Hamming window and the cepstrum transform. After that, 10 statistical condition indicators
were extracted to train the machine learning models. Specifically, two types of Mahalanobis distance
(MD)-based one-class classification methods, the MD classifier and the Mahalanobis–Taguchi system,
were evaluated in detecting the faults of rotating machinery. Their performance for fault detection
on rotating machinery was evaluated with different imbalanced ratios of data by comparing with
binary classification models, which included classical versions and imbalanced classification versions
of support vector machine and random forest algorithms. The experimental results showed the
MD-based classifiers became more effective than binary classifiers in cases in which there were much
fewer defect data than normal data, which is often common in the real-world industrial field.

Keywords: one-class classification; imbalanced classification; fault detection; Mahalanobis distance;
Mahalanobis–Taguchi system; smart manufacturing

1. Introduction

Recently, in manufacturing industry, there is much interest in smart manufacturing
to improve productivity and competitiveness. The smart manufacturing is realized using
advanced technologies such as the Internet of Things (IoT), artificial intelligence, and big
data analysis [1]. Increasingly complex facilities in manufacturing systems need to be
monitored and maintained in more sophisticated manners. To this end, the prognostics
and health management (PHM) technology is capable of diagnosing or predicting faults
by detecting or analyzing the condition of facilities using IoT, machine learning and big
data analytics.

In particular, rotating machinery such as industrial motors, aircraft engines, and wind
turbines are playing crucial roles in the automation of manufacturing systems. So, the
fault detection of rotating machines has a decisive influence on system productivity. Many
problems in rotary machines mainly come from the defects of bearing, gear boxes, or shaft
deviation. The failure of a rotating machine that transmits power to various facilities results
in great economic loss due to the performance degradation or shutdown of the system.

The rotating parts such as bearings often generate abnormal signal data if they have
some problems; so, it is possible to diagnose the abnormal conditions by investigating the
signal data. This signal data need appropriate preprocessing tasks based on various signal
processing techniques, which make the signal data meaningful information that the user
desires to analyze accurately and easily.
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In this study, vibration data generated from rotating machines were preprocessed
by applying appropriate signal processing techniques, and a fault-detection method was
developed that can diagnose the abnormality of equipment parts in real time. The vibration
data of normal and fault conditions were collected, and data standardization was then
performed to compare with the same distribution. Thereafter, the Hamming window
technique was applied to segment the vibration signal and a cepstrum technique was also
adopted for enhancing the inherent characteristics by eliminating the existing noise. After
preprocessing the data, 10 statistical condition indicators (SCIs), such as root mean squared
(RMS) and peak-to-peak, were extracted to use for training the machine learning models.
The extracted data were finally used to detect abnormal states by using the Mahalanobis
distance (MD)-based one-class classification methods.

The MD-based one-class classification methods construct the Mahalanobis space
(MS), represented by the MD using only the normal signal data, and then determine
whether a new signal sample belongs to the MS or not. On the other hand, typical binary
classification methods such as support vector machines (SVM) and random forest (RF)
need both normal data and abnormal data to train the models for detecting abnormal
condition of the system [2–5]. Unfortunately, in practical industrial systems, the amount of
the fault data that can be collected is extremely small. For this reason, it is often difficult to
apply typical two-class i.e., binary) classification techniques to construct the fault-detection
models in real-life industrial systems. For that reason, in this paper we aimed to analyze
the advantages and disadvantages of one-class classification techniques that consider data
distribution. In particular, two MD-based classification methods were evaluated. First,
the Mahalanobis distance classifier (MDC) used the Mahalanobis space based on MD to
detect outliers and, moreover, the Mahalanobis–Taguchi System (MTS) adopted the Taguchi
techniques to choose and use only key factors among all the variables.

The performances of the two MD-based classifiers were compared with binary classi-
fication methods and their imbalanced classification versions. The experimental results
of performance comparison were investigated for the same test data set after training the
models with different levels of imbalanced ratios (IRs) between normal and abnormal data
in the training data set.

The remainder of this paper is structured as follows. In Section 2, we introduce related
studies on the MD-based classification. In Section 3, we present the fault detection based
on vibration data with the framework of the research. The signal processing methods, data
preprocessing, and fault diagnosis classification models are also described. In Section 4,
we compare the performance between one-class classifiers and binary classifiers according
to different IRs of the same training data set. Finally, we conclude this paper with future
work in Section 5.

2. Related Work

The MDC defines a normal group and constructs the MS using data from the normal
group data [6]. A new sample is classified according to how far away it is from the pre-
trained MS. Meanwhile, Taguchi proposed the MTS method by combining the MD-based
classification method and the Taguchi method [7]. The Taguchi method is used to extract
only effective variables with a large influence on MD estimation. The MTS method has
been applied effectively to many fields such as diagnosis, pattern recognition, speech
recognition and optimization [8,9].

The MTS technique is generally used for multivariate analysis. There are various stud-
ies comparing the performance between MTS and other multivariate analysis techniques.
In large-scale samples, the performance of the techniques is similar, and there is a study in
which the MTS technique is superior in small samples [10]. Moreover, the MTS still has the
limitation of choosing optimal factors among all the variables [8,11], and so some studies
integrated to MTS a feature selection such as genetic algorithm (GA) [12], particle swarm
optimization [13], and ant colony optimization [14]. In particular, to improve the MTS
process, Chen et al. developed two-stage Mahalanobis classification system (MCS) [15]
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and the integrated MCS (IMCS) [16]. In this paper, we focused on traditional MDC and
MTS methods as one-class classifiers to compare their performance with binary classifiers
according to the varying imbalanced ratio in detecting the fault of rotating machines based
on the preprocessed vibration data.

Meanwhile, in the actual industry fields, there is little well-designed data that have
proper quantities of positive samples and negative samples. Therefore, many researchers
have studied to solve the imbalanced data set problem. According to [17], the number
of published papers that study the imbalance learning is increasing since 2006. In 2016,
118 papers were published, and this is about 17 times the number of papers in 2006.

There are analytical studies to diagnose faults of rotating machines using the MD-
based classification technique. Nader [18] used kernel whitening normalization and kernel
principal component analysis (KPCA) to get the MD and showed that the techniques
can be good choices when the training samples are small or the class is unique. Wei [19]
suggested a novel kernel, Mahalanobis, ellipsoidal learning for one-class classification.
Bartkowiak [20] used three methods, Parzen kernel density, mixture of Gaussians, and
Support Vector Data Description (SVDD) after calculating MD, to find outliers for diagnosis
of gearboxes.

3. Fault Detection Based on Vibration Data
3.1. Framework

The procedure for developing a fault-detection model that can classify normal and
abnormal data is shown in Figure 1. First, the vibration data of normal and abnormal states
are collected for analysis. The collected vibration data are subjected to the windowing
process. In this process, a continuous signal having a long length is divided into blocks by
using the Hamming window function, and the values are set to values near 0 toward the
boundary of the window frame. The original signal is then separated from the noise by
the cepstrum transform process and the signal is denoised. In this research, 10 SCIs, such
as mean, peak-to-peak, and RMS, were used to extract features for classification models.
Those indicators are often used to represent the features from time series data in bearing
fault-detection problems [21–24].
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Figure 1. Procedure for fault-detection evaluation in this research.

The preprocessed data were split into training and test sets to evaluate the MD-based
classification methods. By using the training sets of preprocessed data, two MD-based
classification models, MDC and MTS, were constructed as one-class classifiers. They
were evaluated by comparing their accuracy with two representative binary classification
methods, SVM and RF, and their imbalanced classification versions, cost-sensitive SVM
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and cost-sensitive RF. Finally, the performances of the developed models were compared
in terms of several classification performance measures with the same test sets.

3.2. Data Description

In this study, we used the vibration signal data of the ball bearing provided by the
Bearing Data Center of Case Western Reserve University [25]. It collected the vibration
data using the accelerometer in the sensors attached to the rotating machine. The data
set contained 12,000 digital signal values per second under the condition of RPM 1750. It
consisted of 12,000 continuous vibration values, and the class consisted of a normal state
and three abnormal states of system fault, ‘Ball’, ‘Inner race’, and ‘Outer race’.

In this experiment, we prepared four training data sets according to different imbal-
ance ratios (IR) to compare the performance of one-class classifiers and binary classifiers
by mimicking real-life industrial fields, where the fault data are extremely rare. The IR
was used to evaluate the imbalance rate of the binary data, which were calculated as in
Equation (1). The composition of the training data set according to IR is shown in Table 1.
The test set consisted of 25 data including 10 normal and 15 abnormal data (five for each of
three failure types).

IR =
(# o f majority data)
(# o f minority data)

=
(# o f normal data)
(# o f abnormal data)

(1)

Table 1. Data set configuration according to the imbalance ratio (IR). MDC and MTS use only normal
data for training, while binary classification methods use both normal and abnormal data.

Dataset IR # of Normal # of Abnormal (Fault Types)

Training Set

TS 1 1.000

20

20 (Ball 7, Inner 7, Outer 6)
TS 2 2.222 9 (Ball 3, Inner 3, Outer 3)
TS 3 3.333 6 (Ball 2, Inner 2, Outer 2)
TS 4 6.667 3 (Ball 1, Inner 1, Outer 1)

Test Set 0.667 10 15 (Ball 5, Inner 5, Outer 5)

3.3. Signal Processing and Data Preprocessing

In this subsection, we describe appropriate signal processing techniques. Signal pro-
cessing means processing digitized signals by an algorithm for modifying or improving the
signal for a specific purpose. In this research, the signal processing, such as standardization,
Hamming window, cepstrum transformation, and statistical indicator extraction, were
performed to be used for input of training fault-detection models.

3.3.1. Standardization

First, to compare the collected vibration data with the same distribution, standard-
ization was performed using Equation (2). The xi is the vibration value at time i in a
signal data, zi is the standardized value of xi. The x and s mean the average and stan-
dard deviation of the vibration values x1, . . . , xN , respectively, and N is the number of
vibration values.

zi =
xi − x

s
, i = 1 . . . .N (2)

3.3.2. Hamming Window and Cepstrum

The vibration data used in this study were the arbitrarily divided data from a continu-
ous vibration signal. There might have been a discontinuous part, that is, leakage error,
which occurred because of arbitrary cutting of time series data. To remove the leakage,
the Hamming window function was applied during Fast Fourier Transform (FFT). The
window function made signal values near 0 toward the boundary of the window frame.
By applying the Hamming window function, the signal periodicity can be ensured and a
more accurate spectrum can be obtained from the result of the FFT. The window function
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is used when multiplying the original signal, as in Equation (3), where windowed signal
gi is the multiplication of window function h(i) and input signal xi. Figure 2 shows the
signal before applying the Hamming window function and the signal data after applying
the Hamming window function.

gi = h(i)·xi (3)

h(i) = 0.54− 0.46 cos
(

2πi
N − 1

)
(4)

Processes 2021, 9, x FOR PEER REVIEW 5 of 15 
 

 

3.3.2. Hamming Window and Cepstrum 

The vibration data used in this study were the arbitrarily divided data from a contin-

uous vibration signal. There might have been a discontinuous part, that is, leakage error, 

which occurred because of arbitrary cutting of time series data. To remove the leakage, 

the Hamming window function was applied during Fast Fourier Transform (FFT). The 

window function made signal values near 0 toward the boundary of the window frame. 

By applying the Hamming window function, the signal periodicity can be ensured and a 

more accurate spectrum can be obtained from the result of the FFT. The window function 

is used when multiplying the original signal, as in Equation (3), where windowed signal 

𝑔𝑖 is the multiplication of window function h(i) and input signal 𝑥𝑖. Figure 2 shows the 

signal before applying the Hamming window function and the signal data after applying 

the Hamming window function. 

𝑔𝑖 = ℎ(𝑖) ∙ 𝑥𝑖 (3) 

ℎ(𝑖) = 0.54 − 0.46 cos (
2𝜋𝑖

𝑁 − 1
) (4) 

 

  
(a) (b) 

Figure 2. The vibration data (a) before and (b) after applying the Hamming window function. 

The cepstrum transform has the effect of obtaining an enhanced value of the original 

signal characteristic because it can extract the original signal, that is, the formant, from the 

noise, as depicted in Figure 3. The spectrum X(f), which is represented in frequency do-

main, was obtained by applying FFT to the time domain signal, x(t), then making it 

squared and giving it log function results in Log|X(f)|2. Finally, inverse FFT was applied 

and we could get the result. 

 

Figure 3. Cepstrum transformation process. 

3.3.3. Extraction of Statistical Condition Indicators 

SCIs are often used to effectively reflect the characteristics of the vibration data that 

have undergone signal processing [21–24]. Ten SCIs (mean, peak-to-peak, RMS, standard 

deviation, skewness, kurtosis, crest factor, shape factor, margin factor, and impulse factor) 

were extracted from the processed vibration data. Table 2 shows the formula of each in-

dicator. Although we could detect the occurrence of faults by observing the changes in 

the statistical index values, we used them as the features for fault-detection modeling. The 

10 SCIs were used as variables in the later classification modeling. 

Figure 2. The vibration data (a) before and (b) after applying the Hamming window function.

The cepstrum transform has the effect of obtaining an enhanced value of the original
signal characteristic because it can extract the original signal, that is, the formant, from
the noise, as depicted in Figure 3. The spectrum X(f), which is represented in frequency
domain, was obtained by applying FFT to the time domain signal, x(t), then making it
squared and giving it log function results in Log|X(f)|2. Finally, inverse FFT was applied
and we could get the result.
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3.3.3. Extraction of Statistical Condition Indicators

SCIs are often used to effectively reflect the characteristics of the vibration data that
have undergone signal processing [21–24]. Ten SCIs (mean, peak-to-peak, RMS, standard
deviation, skewness, kurtosis, crest factor, shape factor, margin factor, and impulse factor)
were extracted from the processed vibration data. Table 2 shows the formula of each
indicator. Although we could detect the occurrence of faults by observing the changes in
the statistical index values, we used them as the features for fault-detection modeling. The
10 SCIs were used as variables in the later classification modeling.

3.4. Fault Detection Using Mahalanobis Distance

To detect faults using the preprocessed data, we first used MDC, which is a MD-
based classification technique. The technique uses MD as a comprehensive measure and
constructs the MS using the MD of the normal signal group. The MD value of a signal will
be used to distinguish normal and abnormal groups. In addition, the MTS method uses the
Taguchi method to select only the important variables that have a major effect on the MD
value and proceeds with the same procedure as MDC using only these important variables.
The MTS method consists of four steps. Step 1 and step 2 are the classification procedure of
MDC, and step 3 and step 4, including the Taguchi method, are the additional procedure
for MTS.
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Table 2. List of statistical condition indicators (SCIs).

Indicator Formula Indicator Formula

mean xµ = 1
N

N
∑

i=1
xi

root mean
squared xRMS =

√
1
N

N
∑

i=1
x2

i

standard
deviation xstd =

√
1

N−1

N
∑

i=1
(xi − x)2 crest factor xCF =

xp
xRMS

skewness xske =
∑N

i=1(xi−x)3

(N−1)x3
std

shape factor xSF = xRMS
x

kurtosis xkt =
∑N

i=1(xi−x)4

(N−1)x4
std

margin factor xMF =
xp

( 1
N ∑N

i=1
√

xi))
2

peak-to-peak xp = max(xi)−min(xi) impulse factor xIF =
xp
x

3.4.1. Step 1: Constructing the MS with Normal Data

First, the normal and abnormal groups are distinguished from each other. MS is
constructed using the normal data of the data set, which are denoted as shown in Table 3.
The MS is a multi-dimensional unit space that is characterized with MD of the normal
group. The MD is calculated through the three steps below.

Table 3. Data schema of normal data.

No.
X1 X2 X3 X4 . . . Xk

xµ xstd xske xkt . . . xIF

1 x11 x21 x31 x41 . . . xk1
2 x12 x22 x32 x42 . . . xk2
3 x13 x23 x33 x43 . . . xk3

. . . . . . . . . . . . . . . . . . . . .
n x1n x2n x3n x4n . . . xkn

mean x1 x2 x3 x4 . . . . xk

std. s1 s2 s3 s4 . . . sk

1. Standardization of normal data

The mean of the pth feature, xp, and the standard deviation, sp, are first calculated
from the feature data of the normal group, Xp = (xpj) for j = 1 . . . n. The pth feature value
of the jth sample, xpj, is standardized to zpj as follows:

zpj =
xpj − xp

sp
, for p = 1 . . . k; j = 1 . . . , n (5)

2. Calculation of the correlation matrix

The correlation matrix R for the standardized data of the normal group is obtained. The
correlation coefficient between two variables, rpq, in the correlation matrix R is calculated
as follows.

rpq =
∑n

j=1
(
zpj − zp

)(
zqj − zq

)√
∑n

j=1
(
zpj − zp

)2
√

∑n
j=1
(
zqj − zq

)2
for p, q = 1 . . . k (6)

3. Calculation of the MD of normal data
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The MD of the jth normal data, MDj, is calculated in Equation (7). The MDj is often
called the scaled Mahalanobis distance since it was divided by the number of variables, k.

MDj =
1
k

ZT
j R−1Zj for j = 1 . . . n (7)

where Zj =
(

z1j, . . . , zkj

)T
is the standardized vector of the jth variable and R−1 is the

inverse of the correlation matrix. If the normal data are collected well, their MD values will
have a value close to 1, since the average of MDj is statistically 1. The MS constructed from
the MD values in this way is called a unit space.

In this study, we prepared four training data sets with different IRs, as presented in
Table 1, which, therefore, constructed different MS from their normal data. Table A1 in
Appendix A shows the SCI values of 20 normal data in the training data that were used
to construct its MS, and Table A2 in Appendix A shows the standardized data of the SCI
values. From the standardized SCI values, the correlation matrix can be calculated as shown
in Table 4. Finally, the final MD values of the normal data were calculated, as presented in
Table 5a. The values were distributed well around 1. Note that the transformation to MD
made the resulting distribution have the mean value of 1.

Table 4. Correlation matrix between standardized SCI for the normal data in training set.

No.
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

xµ xstd xske xkt xp xRMS xCF xSF xMF xIF

Z1 1.0000 0.1827 −0.5465 −0.5428 −0.1220 0.1830 −0.5381 −0.4997 −0.2303 −0.5233
Z2 0.1827 1.0000 0.6533 0.6536 0.9413 1.0000 0.6510 0.7603 0.8918 0.7319
Z3 −0.5465 0.6533 1.0000 1.0000 0.8704 0.6531 0.9994 0.9366 0.8712 0.9758
Z4 −0.5428 0.6536 1.0000 1.0000 0.8707 0.6534 0.9996 0.9345 0.8708 0.9745
Z5 −0.1220 0.9413 0.8704 0.8707 1.0000 0.9412 0.8690 0.9098 0.9675 0.9096
Z6 0.1830 1.0000 0.6531 0.6534 0.9412 1.0000 0.6508 0.7601 0.8917 0.7317
Z7 −0.5381 0.6510 0.9994 0.9996 0.8690 0.6508 1.0000 0.9288 0.8662 0.9708
Z8 −0.4997 0.7603 0.9366 0.9345 0.9098 0.7601 0.9288 1.0000 0.9381 0.9905
Z9 −0.2303 0.8918 0.8712 0.8708 0.9675 0.8917 0.8662 0.9381 1.0000 0.9274
Z10 −0.5233 0.7319 0.9758 0.9745 0.9096 0.7317 0.9708 0.9905 0.9274 1.0000

Table 5. Mahalanobis distances of training data.

(a) MD values of 20 normal data.

j 1 2 3 4 5 6 7 8 9 10

MDj 1.880 1.145 0.672 0.644 1.280 1.624 1.694 0.311 0.852 1.548

j 11 12 13 14 15 16 17 18 19 20

MDj 0.644 0.932 0.833 0.984 1.042 1.759 0.529 0.466 0.801 0.360

(b) MD values of 20 abnormal data.

j 1 2 3 4 5 6 7 8 9 10

MDj 36,679.5 6969.2 7641.3 1,423,858.3 2269.5 175,239.4 444,333.3 21,216.3 759,203 10,207.1

j 11 12 13 14 15 16 17 18 19 20

MDj 112,695.9 97,902.2 384,358.2 50,910.3 68,695.8 39,944.1 168,569.9 33,557.8 37,939.4 151,305.5

3.4.2. Step 2: MD Calculation of Abnormal Data and Validation of MS

To check the validity of the MS derived from Step 1, the MD values of abnormal data
in the training data set were tested. Mean xp, standard deviation sp, and the correlation
matrix R, which were obtained from the normal data in Step 1, were used again to calculate
the MD of the abnormal data. If the MS is properly constructed from the normal data, the
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MD values of the abnormal data will have much larger values than the mean value of the
normal group (i.e., 1).

The MD-based classifier for abnormality detection will decide a new data to abnormal
if its MD is greater than a predefined threshold. The threshold can be set by comparing the
MD values between normal data and abnormal data when they have enough abnormal
data. However, it is not proper in one-class classification problems, assuming the small
number of abnormal data. In this case, we set the MD threshold based on the chi-square
value of a specific confidence interval (e.g., CI = 99%) because the MD was known to follow
the chi-square distribution where the degree of freedom (df) is the number of variables [26].

1. Standardization of abnormal data

Abnormal data were prepared and denoted, as shown in Table 6. An abnormal data
ypj was standardized to wpj by using mean xi and standard deviation si of the normal data.

wpj =
ypj − xp

sp
for p = 1 . . . k; j = 1 . . . , n (8)

Table 6. Data schema of abnormal group data.

No.
X1 X2 X3 X4 . . . Xk

xµ xstd xske xkt . . . xRMS

1 y11 y21 y31 y41 . . . yk1
2 y12 y22 y32 y42 . . . yk2
3 y13 y23 y33 y43 . . . yk3

. . . . . . . . . . . . . . . . . . . . .
n y1n y2n y3n y4n . . . ykn

2. Calculation of the MD of abnormal data

The MD values of the abnormal data were calculated by using the correlation matrix R

of the normal data. Wj =
(

w1j, . . . , wkj

)T
was the standardized vector of the jth variable

for the abnormal data.
MDj =

1
k

WT
j R−1Wj for j = 1 . . . n (9)

3. Validation of the MS

The MD values of the abnormal data are shown in Table 5b. The minimum value of
the MD was 2269.5, and all the distance values were very far from the origin. Therefore, it
can be said that the MS of the normal data was constructed successfully.

Now, the MS prepared in Step 2 can be used as the MDC classifier. Using the validated
MS, MDC will classify a new data by comparing its MD with the specific threshold. Suppose
that the threshold is set as the chi-square value χ2

(10, 0.01) = 23.2 of CI = 99% and df = 10
since the number of variables is 10. If the MD value of a new data is greater than the
threshold, the data are classified to an abnormal state, and otherwise, to a normal state.

3.4.3. Step 3: Important Variable Selection (Taguchi Method of MTS)

In Steps 3 and 4, the MTS extracts key variables through the Taguchi method and
carries out the classification procedure by calculating the MD values in the same manner
as Steps 1 and 2.

In addition to the classification procedure of MDC, MTS removes the variables that
have no or little effect on the MD values and chooses the key variables. By constructing
MS using only the key variables, the system can be easily interpreted, and the classification
performance can also be better. In MTS, the Taguchi method is adopted for selecting key
variables [27]. The Taguchi method uses the signal-to-noise ratio (SN ratio) as a criterion
for determining the degree of influence on the MD values. SN ratio in quality engineering
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is a measure for evaluating system robustness; however, in the MTS, it is used as a measure
to select important parameters for pattern recognition. The formula of the SN ratio for the
larger-the-better characteristics is as follows.

SNR = −10 log

(
1
k

k

∑
j=1

1
MDj

)
(10)

To calculate the SN ratio, the experiment was planned with an appropriate two-level
orthogonal array. One should choose an orthogonal array that has a greater number of
columns than the number of the variables used in the experiment. Since the number of
variables used in this study was 10, we conducted the experiment with L12

(
211) as the

minimum two-level orthogonal array. Specifically, we used the Plackett–Burman L12
(
211),

as presented in Table 7, so that the interaction effects among features could be uniformly
diluted into all the columns of the arrays, as suggested by Dr. Taguchi [27].

Table 7. SN ratios with L12
(
211).

No.
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

SNR
xµ xstd xske xkt xp xRMS xCF xSF xCIF xIF dummy

1 1 1 1 1 1 1 1 1 1 1 1 −1.124
2 2 1 2 1 1 1 2 2 2 1 2 −1.929
3 2 2 1 2 1 1 1 2 2 2 1 −3.201
4 1 2 2 1 2 1 1 1 2 2 2 −1.793
5 2 1 2 2 1 2 1 1 1 2 2 −2.190
6 2 2 1 2 2 1 2 1 1 1 2 −1.659
7 2 2 2 1 2 2 1 2 1 1 1 −2.119
8 1 2 2 2 1 2 2 1 2 1 1 −1.808
9 1 1 2 2 2 1 2 2 1 2 1 −2.178
10 1 1 1 2 2 2 1 2 2 1 2 −1.487
11 2 1 1 1 2 2 2 1 2 2 1 −1.631
12 1 2 1 1 1 2 2 2 1 2 2 −1.358

Level 1 of the orthogonal array means that the corresponding variable was used, and
level 2 means that the variable was not used. As shown in Table 7, the MD values of the
normal and abnormal groups were calculated with 12 experimental conditions at each row.
The SN ratio was then calculated using the SN ratio formula in Equation (10).

Next, we calculated the gain using the difference of average between the case where
the variables were used and the case where the variables were not used. The gain of the
SN ratio was calculated as follows.

Gain = SNRL1 − SNRL2 (11)

Table 8 shows the results of calculating the gain of the SN ratio for each feature. If
a feature has negative gain of SN ratio, the feature will be excluded from the feature set
of MTS since the significance of the feature is low. If the gain of a feature is positive,
the feature is selected as the key variable that has a significant effect on the MD value
calculation. As shown in Table 8, seven features were selected as the key variables of MTS,
excluding peak-to-peak, root mean squared, and crest factor features.
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Table 8. Gain of SN ratio for each feature.

Level
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

xµ xstd xske xkt xp xRMS xCF xSF xCIF xIF

L1 −1.625 −1.757 −1.743 −1.659 −1.935 −1.981 −1.986 −1.701 −1.771 −1.688
L2 −2.122 −1.990 −2.003 −2.087 −1.811 −1.765 −1.761 −2.046 −1.975 −2.058

Gain 0.497 0.233 0.260 0.428 −0.124 −0.216 −0.225 0.345 0.204 0.370

+/– + + + + – – – + + +

3.4.4. Step 4: Fault Detection Using MTS

Now, a new MS was constructed by using the seven features determined in Step
3, and then the classification procedure of Step 1 and Step 2 was conducted again. The
threshold of determining the class was adjusted to the chi-square value, i.e., χ2

(7,0.01) = 18.5
of CI = 99% and df = 7, because the number of selected important features was seven.

3.5. Fault Detection Based on Machine Learning Methods

In this subsection, we describe briefly how to classify normal and abnormal states
by using binary classification machine learning methods. The models were developed by
using both normal and abnormal data, and then they were used to distinguish whether a
new data sample was a normal or abnormal state.

The four data sets shown in Table 1 were used for training two machine learning
algorithms, SVM and RF, which are known to show convincible classification performance.
In this study, as well as conventional SVM and RF, the imbalanced classification versions
of SVM and RF were also tested because three of the four training data sets contained
the small number of abnormal (fault) data, which is similar to real-life industrial field
conditions. Specifically, cost-sensitive SVM (CS_SVM) and cost-sensitive RF (CS_RF) were
used for the imbalanced classification algorithms. They adjust their class weights and make
the training better. Parameter tuning of four machine learning methods was performed by
using the grid search method under 3-fold cross validation.

4. Experiments
4.1. Classifiers and Datasets

To evaluate the proposed method, the classification performances using two MD-
based one-class classification methods, MDC and MTS, were compared with those of four
binary classification machine learning methods, which included classical versions of SVM
and RF and their imbalanced classification versions, CS_SVM and CS_RF.

As shown in Table 1, the training data were constructed differently according to the
imbalance ratio to investigate the change of binary classification methods. Note that MD
and MS use only normal data for training because they are used as one-class classification
methods. Twenty-five test data (10 normal and 15 abnormal) were used to compare the
performance among all the classification models.

4.2. Experimental Results

As described in Section 3, one-class classifiers, MDC and MTS, classify a new sample
based on the predefined threshold. We considered that the one-class classifiers do not
know abnormal data and, so, the threshold was set according to confidence interval. In
this research, the MDC used 10 features, and then the threshold was set to χ2

(10,0.1) = 16.0

for CI = 90%, χ2
(10,0.05) = 18.3 for CI = 95%, or χ2

(10,0.01) = 23.2 for CI = 99%. Additionally,
the MTS in this research used only seven important features and, therefore, the threshold
was χ2

(7,0.1)= 12.0 of CI = 90%, χ2
(7,0.05) = 14.1 of CI = 95%, or χ2

(7,0.01) = 18.5 of CI = 99%.
Table 9 shows the MD values of normal and abnormal data in test data set that were

calculated by MDC and MTS. All normal data except for sample #7 were classified by
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MDC and MTS to normal because their MDs were less than the threshold. However,
MDC misclassified sample #7 to abnormal because MD7 = 26.843 was a little greater than
χ2
(10,0.01) = 23.2.

Table 9. Mahalanobis distances of test data.

(a) MD values of 10 normal data of test data.

j Classifier 1 2 3 4 5 6 7 8 9 10

MDj
MDC 4.569 1.712 3.498 2.282 1.165 1.130 26.843 1.667 1.020 1.611

MTS 2.437 1.250 2.268 2.537 0.990 0.574 8.030 0.824 1.225 1.670

(b) MD values of 15 abnormal data of test data.

j Classifier 1 2 3 4 5 6 7 8

MDj
MDC 722,066.6 33,487.3 636,322.9 21,249.4 1,099,766.7 38,561.8 115,765.9 24,139.0

MTS 79,053.5 2804.4 85,754.0 1707.4 105,073.8 9267.4 7808.5 2743.2

j Classifier 9 10 11 12 13 14 15

MDj
MDC 24,254.3 21,776.8 254,774.4 268,589.7 2,895,042.0 865,706.8 1,994,251.8

MTS 3591.8 1424.0 20,894.4 19,864.0 244,433.8 107,917.9 170,577.2

The classification performances of MDC and MTS were compared with those of
balanced and imbalanced binary classifiers of SVM and RF in terms of four measures such
as accuracy, balanced accuracy, F-score, and G-mean. The last three measures are often
used for imbalanced classification.

As shown in Table 10 and Figure 4, MTS had perfect accuracy, while MDC had the
F-score of 0.968 and the G-mean 0.949 because the normal sample #7 was misclassified.
Note that MTS and MDC always had the same performance regardless of any of the four
training sets since they used only 20 normal data.

Table 10. Performance for the test set of classifiers trained with different training sets.

Training
Set

IR
(# Normal: #
Abnormal)

Classifier Parameter Accuracy Balanced
Accuracy Recall Precision F-Score G-Mean

Any set
∞

(20:0)
MDC n/a 0.960 0.960 1.000 0.938 0.968 0.949
MTS n/a 1.000 1.000 1.000 1.000 1.000 1.000

TS1
1.000

(20:20)

SVM C = 0.5 1.000 1.000 1.000 1.000 1.000 1.000
RF n = 100 1.000 1.000 1.000 1.000 1.000 1.000

CS_SVM C = 0.5 1.000 1.000 1.000 1.000 1.000 1.000
CS_RF n = 100 1.000 1.000 1.000 1.000 1.000 1.000

TS2
2.222
(20:9)

SVM C = 1.0 0.920 0.933 0.866 1.000 0.928 0.930
RF n = 100 0.880 0.900 0.800 1.000 0.888 0.894

CS_SVM C = 0.1 0.960 0.966 0.933 1.000 0.965 0.966
CS_RF n = 100 0.880 0.900 0.800 1.000 0.888 0.894

TS3
3.333
(20:6)

SVM C = 0.5 0.880 0.900 0.800 1.000 0.888 0.894
RF n = 100 0.880 0.900 0.800 1.000 0.888 0.894

CS_SVM C = 0.3 0.920 0.933 0.866 1.000 0.928 0.930
CS_RF n = 300 0.880 0.900 0.800 1.000 0.888 0.894

TS4
6.667
(20:3)

SVM C = 0.1 0.560 0.633 0.266 1.000 0.421 0.516
RF n = 100 0.560 0.633 0.266 1.000 0.421 0.516

CS_SVM C = 0.1 0.560 0.633 0.266 1.000 0.421 0.516
CS_RF n = 100 0.560 0.633 0.266 1.000 0.421 0.516
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Figure 4. Performance comparison among classifiers according to IRs. (a) F-score; (b) G-mean.

In the case of IR = 1.0, all of the four machine learning-based classifiers also showed
perfect performance since there were enough abnormal data in the training data. However,
as the number of abnormal data in training sets became smaller, which meant IR was
higher, the overall classification performances turned lower. In the case of IR = 2.222 and
IR = 3.333, CS_SVM showed similar performance to MDC and less than MTS, but SVM, RF,
and CS_RF had lower performances. When IR became 6.667, all the binary classification
methods had much lower performances than MDC and MTS.

Comparing two MD-based classifiers, MTS had better performance than MDC. More-
over, MTS can be said to be robust since it could be applied with smaller significant features
in our experiments. So, the model can easily be interpreted with the small number of
features in real-life industrial systems by using the important SCIs.

5. Conclusions and Future Work

In this study, we evaluated two MD-based one-class classification methods, MDC and
MTS, for fault detection of rotating machines using vibration data. To use the vibration
data for analysis, they were preprocessed by applying signal processing techniques such as
the Hamming window and the cepstrum transformation. Moreover, 10 SCIs such as mean,
standard deviation, peak-to-peak, and RMS were extracted and used as input variables for
model training. To obtain meaningful results in the real-life industrial field where there are
very few fault (abnormal) data compared with normal data, MDC and MTS were compared
with the binary classification methods of training the data sets with different IRs.

We focused on one-class classification methods using MD because they do not need
any abnormal data in training models. The two MD-based classifiers were compared
with balanced and imbalanced binary classification algorithms such as SVM and RF. In
the experiments, there was a tendency that the classification performances of the binary
classification models were highly degraded as the number of abnormal data in the training
set decreased. As a result, MDC and MTS showed much better performance than binary
classifiers in the case of small amounts of abnormal training data.

The experiments are significant in that most working industrial systems in real fields
rarely have fault data because they often stop the system before the occurrence of fault.
Although the collection of fault data is possible, it needs a long time or high cost. This
means that one-class classifiers are generally more useful in terms of cost, time, and effort
if they can work with acceptable performance.

In addition, between MD-based classifiers, the MTS that selects only key variables
through the Taguchi method can be useful in an actual operation environment since the
small number of features are easily interpretable, as well as being fast and convenient
to apply to the applications. In our experiment, MTS was robust enough to show better
performance than MDC.
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As future work, one can test many other signal processing techniques except for the
Hamming window and the cepstrum transformation. The classification performance may
be able to be improved by applying different signal processing techniques suited to the
characteristics of data. In addition, some improved MTS methods such as MCS [15] and
IMCS [16] have been developed, as described in Section 2. They can be evaluated with
the traditional MD classifiers and the machine learning methods, as well. Finally, the
performance may be able to be enhanced by applying recently developed deep learning
algorithms and other parameter optimization techniques. From the viewpoint of the imbal-
anced data, one can use sampling-based techniques such as SMOTE [28] and ADASYN [29]
in addition to applying cost-sensitive learning algorithms.
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Appendix A

Table A1. SCI values extracted from the normal data in the training set.

No.
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

xµ xstd xske xkt xp xRMS xCF xSF xMF xIF

1 0.0022 0.1110 88.2268 8450.7533 11.0849 0.1110 99.8530 51.5367 35,304.5702 5146.0979
2 0.0022 0.1088 85.1839 7926.0778 10.6683 0.1088 98.0390 49.3359 33,338.4755 4836.8438
3 0.0022 0.1071 82.8757 7521.9721 10.3422 0.1071 96.5281 48.3374 31,608.3525 4665.9227
4 0.0022 0.1080 84.0284 7719.7090 10.5124 0.1081 97.2737 49.2069 32,280.4954 4786.5324
5 0.0022 0.1067 85.6983 8014.0618 10.4954 0.1067 98.3520 49.5043 32,362.5771 4868.8510
6 0.0021 0.1035 82.9297 7525.5047 9.9935 0.1035 96.5338 48.3207 30,518.9838 4664.5823
7 0.0022 0.1053 83.3340 7602.2303 10.2032 0.1054 96.8374 48.0261 30,964.2083 4650.7214
8 0.0022 0.1073 84.6176 7826.8295 10.4786 0.1073 97.6769 48.8701 32,159.0700 4773.4776
9 0.0022 0.1092 84.7386 7847.4618 10.6801 0.1093 97.7501 49.4621 33,158.9821 4834.9262

10 0.0022 0.1080 84.3215 7775.5606 10.5262 0.1080 97.4880 48.7086 31,886.4665 4748.5030
11 0.0022 0.1059 83.2398 7585.7523 10.2491 0.1059 96.7739 48.3551 31,415.7581 4679.5124
12 0.0022 0.1070 82.3364 7425.0616 10.2932 0.1071 96.1474 48.1050 31,339.2463 4625.1750
13 0.0022 0.1092 85.1613 7917.7262 10.7028 0.1092 98.0027 49.7627 32,885.3843 4876.8778
14 0.0022 0.1065 83.1586 7568.6743 10.3045 0.1066 96.7040 48.6730 31,968.7986 4706.8751
15 0.0022 0.1083 86.4437 8143.7671 10.7034 0.1083 98.8077 49.8898 33,144.6951 4929.4946
16 0.0022 0.1076 82.4792 7446.4014 10.3577 0.1076 96.2233 48.7696 31,740.4204 4692.7704
17 0.0022 0.1081 83.0734 7556.5331 10.4562 0.1082 96.6625 48.4062 31,988.0596 4679.0603
18 0.0022 0.1092 85.5365 7985.3777 10.7279 0.1092 98.2489 49.7376 33,212.4547 4886.6603
19 0.0022 0.1075 85.6612 8005.2812 10.5669 0.1075 98.3177 49.5240 32,216.5177 4869.0815
20 0.0022 0.1070 82.7790 7503.3918 10.3252 0.1070 96.4533 48.2209 31,383.3289 4651.0622
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Table A2. Standardized SCI values of the normal data in the training set.

No.
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

xµ xstd xske xkt xp xRMS xCF xSF xMF xIF

1 −1.6567 2.1780 2.6094 2.5953 2.5595 2.1774 2.5130 3.0407 2.9609 2.9180
2 0.4734 0.7818 0.5919 0.6026 0.7863 0.7819 0.6287 0.3629 1.0589 0.4621
3 0.9235 −0.2833 −0.9385 −0.9321 −0.6018 −0.2830 −0.9406 −0.8520 −0.6148 −0.8952
4 0.0854 0.3070 −0.1742 −0.1812 0.1225 0.3070 −0.1662 0.2059 0.0355 0.0626
5 −1.5919 −0.5556 0.9329 0.9368 0.0501 −0.5561 0.9539 0.5679 0.1149 0.7163
6 −2.1366 −2.5826 −0.9027 −0.9187 −2.0860 −2.5831 −0.9347 −0.8723 −1.6686 −0.9058
7 −0.0113 −1.4129 −0.6346 −0.6273 −1.1934 −1.4128 −0.6194 −1.2308 −1.2379 −1.0159
8 0.0416 −0.1961 0.2164 0.2257 −0.0211 −0.1961 0.2527 −0.2039 −0.0820 −0.0411
9 0.6099 1.0627 0.2966 0.3040 0.8364 1.0628 0.3287 0.5165 0.8853 0.4469

10 0.9320 0.2460 0.0201 0.0310 0.1815 0.2463 0.0564 −0.4004 −0.3457 −0.2394
11 −0.1638 −1.0676 −0.6971 −0.6899 −0.9981 −1.0676 −0.6853 −0.8305 −0.8011 −0.7873
12 1.2926 −0.3375 −1.2961 −1.3002 −0.8102 −0.3371 −1.3360 −1.1347 −0.8751 −1.2188
13 0.0177 1.0312 0.5769 0.5709 0.9331 1.0311 0.5911 0.8822 0.6206 0.7800
14 −0.2039 −0.6550 −0.7509 −0.7548 −0.7625 −0.6550 −0.7579 −0.4436 −0.2661 −0.5700
15 −0.9441 0.4700 1.4272 1.4294 0.9357 0.4696 1.4272 1.0369 0.8715 1.1979
16 0.5359 0.0347 −1.2014 −1.2192 −0.5360 0.0349 −1.2573 −0.3261 −0.4870 −0.6820
17 1.6720 0.3712 −0.8074 −0.8009 −0.1168 0.3717 −0.8010 −0.7683 −0.2474 −0.7909
18 0.0483 1.0196 0.8257 0.8278 1.0399 1.0195 0.8468 0.8516 0.9370 0.8577
19 −0.9893 −0.0694 0.9083 0.9034 0.3547 −0.0697 0.9182 0.5917 −0.0264 0.7181
20 1.0654 −0.3423 −1.0026 −1.0027 −0.6739 −0.3419 −1.0183 −0.9938 −0.8324 −1.0132
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