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Abstract: An adaptive control system for the set-point control and disturbance rejection of
biotechnological-process parameters is presented. The gain scheduling of PID (PI) controller parame-
ters is based on only controller input/output signals and does not require additional measurement
of process variables for controller-parameter adaptation. Realization of the proposed system does
not depend on the instrumentation-level of the bioreactor and is, therefore, attractive for practi-
cal application. A simple gain-scheduling algorithm is developed, using tendency models of the
controlled process. Dissolved oxygen concentration was controlled using the developed control
system. The biotechnological process was simulated in fed-batch operating mode, under extreme
operating conditions (the oxygen uptake-rate’s rapidly and widely varying, feeding and aeration rate
disturbances). In the simulation experiments, the gain-scheduled controller demonstrated robust
behavior and outperformed the compared conventional PI controller with fixed parameters.

Keywords: PID (PI) control; gain-scheduling; mathematical model; biotechnological cultivation
process; dissolved oxygen concentration

1. Introduction

Intense global competition, business strategies that are mainly based on profit, promptly
developing social and economic conditions, high interest in better-quality control, increased
safety concerns, and stringent environmental norms are prompting many process industries
to automate their operations using accurate, robust, reliable, efficient, optimal, adaptive
and intelligent advanced control systems [1,2]. Control-system design is greatly influenced
by the number of nonlinearities present within the process. Classical controllers, such as
proportional–integral–derivative (PID) or proportional–integral (PI) are adequate if the
nonlinearity encountered is very mild. In presence of significant number of nonlinearities,
however, such linear models are ineffective, since even small disturbances can force the
process away from the operating point [3]. Control quality is influenced by the controller’s
ability to provide a stable performance while dealing with process variability and dis-
turbances [1,2,4]. Accurate control of technological parameters during microorganism
cultivation processes is necessary for retaining currency with desired technological regimes
and reproducibility of processes. However, the dynamical parameters of batch and fed-
batch cultivation processes vary widely over the cultivation cycle. Therefore, conventional
control systems with fixed-gain controllers are not able to provide the required perfor-
mance [5]. Temperature, pH, dissolved oxygen concentration, and other basic process
variables are usually controlled in these systems [6].

Adaptive control systems of various complexity have been developed for the auto-
matic control of cultivation process parameters under time-varying operation conditions.
The system, based on process tendency models and online measurements of process vari-
ables [4,7,8], provides high-quality control under extreme operating conditions (oxygen
uptake rate rapidly changing within a wide range, feeding and aeration rate disturbances).
However, development of a model-based control algorithm is a time-consuming task, and,
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in addition, online measurements of the process variables require advanced instrumen-
tation of the controlled process. Expert, knowledge-driven adaptive fuzzy systems are
effective; however, they require deep process knowledge [3,6,9]. An approach of develop-
ment for the control systems of dissolved oxygen concentration (DOC) and pH based on
artificial neural network (ANN) models is presented in [10,11]. A. Mészáros et al. present
ANNs that are trained off-line to predict the nonlinear dynamics of controlled processes
and the inverse ANNs are used in the control systems as feedback controllers [10]. Du, Xi-
anjun, et al. developed a radial basis function neural network based adaptive PID controller
for DOC control [11]. Such development of ANN model-based control systems requires a
sufficient amount of informative process data and time expenses for training the ANNs.
For to these reasons, application of complex control systems is not attractive in industrial
bioprocess-control engineering practice.

Model–reference adaptive control (MRAC) uses a reference model of the process that
defines how the process output should respond to a command signal [12]. Although MRAC
is a good alternative to PID it must be tuned for each particular process, and the tuning
depends on the presence of lag, delay and other factors. For non-well-known processes, the
controller must be tuned experimentally, and it could be a disadvantage from a commercial
or business point of view [3].

Several gain-scheduling approach-based control systems have been developed for
adaptive control of batch bioreactors. In the control systems, the oxygen uptake rate
(OUR) [13,14] and the carbon dioxide evolution rate (CER) [15] are used as gain-scheduling
variables. In the control systems, the OUR and CER are estimated from the online analysis
of an exhaust gas. A requirement for practical realization of the above systems is that the
bioreactor system is equipped with the exhaust gas analyzer.

DOC control systems have been also developed [16,17], in which the PID (PI) controller
adaptation does not require additional measurements of process variables. The controller
adaptation is based on the online statistical analysis of controller input and output data.
Computer simulations of the control systems performance show the working capacity of
the adaptation algorithms. However, optimal values of the algorithm tuning parameters
are determined by a “trial and error” approach that is time-consuming. Various other PID
controller-tuning approaches are presented in [18–21]. A feedforward–feedback controller
was proposed, in [22], in which processes that evolve exponentially were controlled.

In order to simplify controller adaptation algorithms and practical realization of the
adaptive control systems for cultivation process control, in this contribution the authors
propose the gain scheduling approach, which is based on controller input/output signals
only and does not require additional online measurements of cultivation process variables
for adaptation of controller parameters.

2. Materials and Methods
2.1. Development of Adaptation Algorithm for DOC Control

Dynamics of the dissolved oxygen concentration (DOC) in culture medium can be
represented by a simple tendency model based on the mass balance for DOC:

dc
dt

= KLa(csat − c)− OUR, (1)

where KLa is oxygen transfer coefficient:

KLa = αuβqγ, (2)

c is DOC, csat is saturation value of DOC, OUR is oxygen uptake rate, u is stirring speed
(control variable), q is air supply rate, α, β and γ are parameters, and t is time.
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Linearization of eq. (1) around the process state point at time tk with respect to the
state (c) and the control (u) variables represents the DOC dynamics equation at time tk:

d∆c
dt

= −
[
αuβqγ

]
t = tk

∆c +
[
αβuβ−1qγ(csat − c)

]
t = tk

∆u. (3)

From Equation (3), the DOC dynamics can be represented by a first-order transfer
function model:

G∆c/∆u(s) =
∆c(s)
∆u(s)

=
Kpr(tk)

Tpr(tk)s + 1
, (4)

where Kpr(tk) =

[
β(csat − c)

u

]
t = tk

, (5)

Tpr(tk) =

[
1

αuβqγ

]
t = tk

. (6)

Kpr(tk) and Tpr(tk) are process controller gain and integration time constant at time point tk,
respectively, s is Laplace operator.

The resultant dynamics of controlled process in the DOC control system also depends
on the stable dynamical parameters of the motor–stirrer system and the DOC electrode. As
the time constants of the above control system elements are significantly smaller, compared
with the time constant Tpr(tk), their influence on controlled-process dynamics is taken into
account by adding some time delay to the transfer function model (4).

Therefore, dynamics of the DOC control process can be roughly represented by the
first-order-plus-time delay (FOPTD) model:

G∆c/∆u(s) =
Kpr(tk)

Tpr(tk)s + 1
e−τ , (7)

where τ is time delay representing influence of the control system elements dynamics.
According to PI controller tuning rules (Ziegler–Nichols, internal model control (IMC),

etc. [23]), the controller gain Kc is proportional to the ratio Tpr/Kpr/τ and the integration
constant Ti is proportional to the resultant time constant Tpr. Taking into account the
functional relationships (5), (6), and assuming that the controlled value of the DOC during
cultivation process is close to the set-point value (c ∼= cset), a character of relationships
between the controller tuning parameters and the controller output and the set-point
signals can be estimated:

Kc ∼ Tpr/Kpr, /τ =
1

αuβqγ

u
β(csat − c)

. (8)

Based on relationship (8), the gain scheduling algorithm for controller gain adaptation
takes the following form:

Kc(tk) =
KKc

(u(tk))
β−1(csat − cset(tk))

, (9)

where u and cset are the gain scheduling variables; KKc is coefficient for tuning the controller
to obtain desired performance of the control system (approximate values of the coefficient
can be taken from the desired controller tuning rules). The power β of stirring speed in the
oxygen transfer rate estimation Equation (6) is typically β ∼= 2 [24] and the formula (9) for
scheduling the controller gain coefficient can be reduced to:

Kc(tk) =
KKc

u(tk)(csat − cset(tk))
. (10)
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A character of relationships between the controller integration constant and the con-
troller output is the following:

Ti ∼ Tpr =
1

αuβqγ
. (11)

Based on relationship (11), the gain scheduling algorithm for controller integration
time constant adaptation takes the following form:

Ti(tk) =
KTi

(u(tk))
2 , (12)

KTi = kTi
1

αqγ
. (13)

where kTi is coefficient for tuning the controller to obtain desired performance of the control
system (approximate value of the coefficient can be taken from the desired controller tuning
rules). DOC model parameter values and initial conditions of the state variables are given
in Table 1.

Table 1. DOC model parameter values and initial conditions of the state variables.

Model Parameters

H = 0.7906 L mmol−1 ε = 0.15 Tel1 = 10 s
Tel2 = 2 s Tq = 2 s Tu = 1 s

α = 0.8·10−7 β = 2 γ = 0.2
vmol = 0.0224 l mmol−1

Initial Conditions

cel(0) = 10% q(0) = 2 s−1 u(0) = 2.5 s−1

ca(0) = 0.0266 mmol L−1 yO2(0) = 0.2099 ael (0) = 10%

2.2. Mathematical Model of the Biotechnological Process

To simulate the biotechnological process, a mathematical model of an E.coli fed-batch
process similar to the one presented in [25] was used:

dx
dt

= µx −
Fs + FpH

V
x, (14)

ds
dt

= −qsx +
FsS0

V
−
(

Fs + FpH
)
s

V
(15)

dV
dt

= Fs + FpH − Fsmp (16)

µ = µmax
s

Ks + s
Ki

Ki + s
ca

ca + kc
(17)

qs =
µ

Yxs
− m, (18)

Fs =
µsetxV

Yxs(S0 − s)
, (19)

where x—biomass concentration in the cultivation medium, gl−1; µ—biomass specific
growth rate, lh−1; V—cultivation medium volume, l; S0—substrate concentration in
feed, gl−1; Fsmp—sampling rate- Yxs—biomass/substrate yield coefficient, gg−1; ca is DOC
in absolute units, mmol L−1; kc is parameter, mmol L−1. The Luedeking–Piret model was
used to calculate the oxygen uptake rate [26]:

OUR = µYxV + mxV (20)
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Values of the model parameters are given in Table 2.

Table 2. Biotechnological model parameter values and initial values of the state variables.

Model Parameters

Y = 0.8646 gg−1 m = 0.018 gg−1 h−1 Yxs = 0.52 gg−1

µmax = 0.737 1 h−1 Ki = 93.8 gl−1 S0 = 450 gl−1

Ks = 0.02 gl−1 kc = 0.00265 mmol L−1 Fsmp = 0.025 lh−1

Initial Conditions

V(0) = 45 L x(0) = 0.25 gl−1 s(0) = 0.5 gl−1

A set of equations is used to model and simulate the controlled process [8]:

dq
dt

=
1
Tq

(qset − q), (21)

du
dt

=
1

Tu
(uset − u), (22)

dca

dt
= −OURv + αuβqγ

(yO2

H
− ca

)
, (23)

dyO2

dt
=

q
V
(

1
ε
− 1)

(
0.21 − yO2

)
− αuβqγ(

1
ε
− 1)(

yO2

H
− ca)vmol , (24)

dael
dt

=
1

Tel1
(100

caH
0.21

− ael), (25)

dcel
dt

=
1

Tel2
(ael − cel), (26)

where qset is set value of air supply rate, lh−1; uset is set value of stirring speed (control
variable), h−1; yO2 is portion of oxygen in exhaust gas, -; OURV is volumetric oxygen
uptake rate, mmol L−1 h−1, ael is auxiliary variable, %; cel is signal from dissolved oxygen
(DO) electrode, %; H is Henry’s constant, L mmol−1; V is volume of cultural liquid, l;
vmol is volume of mmol of gas, L mmol−1; Tq, Tu, Tel1, Tel2 are time constants of air supply
system, motor-stirrer system, and DOC electrode, respectively, s; ε is gas holdup in the
gas-liquid dispersion. The dynamics of air supply and stirring systems is modelled by
Equations (21) and (22). Equations (23) and (24) represent mass balances on oxygen in
liquid and gaseous phases. Equations (25) and (26) are used to model the second-order
dynamics of DOC electrode. A scheme of the DOC control system is depicted in Figure 1.
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As shown in Figure 1, the DOC adaptive control system uses only controller in-
put/output signals for the gain scheduling algorithms.

The DOC measurements were simulated by adding Gaussian noise:

cel_m(tk) =cel(tk)+σ Randn, (27)

where cel_m is measured value of DOC; σ is standard deviation estimated from real mea-
surements (σ ∼= 0.2%), Randn is a sequence of normalized Gaussian random numbers.

In the gain-scheduling and PI-control algorithms the time discretization step ∆t = 0.18 s
was used throughout the simulation experiments. The simulations were carried out in
Matlab/Simulink environment.

Performance of the DOC adaptive control system was investigated for set-point
tracking and disturbance rejection. The developed system was compared with the standard
control approach with fixed PI controller parameters presented in Table 3.

Table 3. Fixed PI controller parameters for standard control.

Fixed Parameter Values

Kc Ti

DOC control 50%−1 h−1 3.6 × 10−4 h

The performance of the developed control algorithm was evaluated by calculating the
mean absolute error (MAE) and comparing it to the MAE of the conventional system with
fixed controller parameters.

3. Results and Discussion
3.1. DOC Control System Performance
3.1.1. DOC Set-Point Tracking Performance

The bioprocess was simulated by numerically solving the Equations (14)–(26) and by
applying the controller parameter adaptation rules defined by the Equations (12) and (13)
for DOC control. Typical trajectories of the bioprocess variables are presented in Figure 2
for the case when the DOC set-point tracking quality was investigated.

After inoculation, the biomass x (Figure 2a) grows in batch mode (until 1 h) consuming
a small initial amount of substrate s (Figure 2b). Culture broth volume V in the bioreactor
(Figure 2c) changes due to the feeding flow of the substrate Fs (Figure 2d), which is initiated
at the end of the batch phase (~1 h). The biomass specific growth rate depends on the actual
substrate concentration and DOC level (Equation (17), Figure 2e). Substrate oxidation
and subsequent biomass growth result in oxygen consumption, which is reflected by the
oxygen uptake rate OUR (Figure 2f).

During the cultivation process, DOC level is controlled by a PI controller. Both stan-
dard and gain-scheduled PI control systems were investigated and compared for the
DOC control.

To reduce the large number of the presented figures, the plots with trajectories of the
process variables (x, s, V, Fs, OUR) in the investigation of DOC disturbance rejection will
be omitted. Only the plots for the controlled variable (DOC), manipulated variable (N),
disturbance (q), and controller parameters (Kc, Ti) will be presented and discussed.

First, performance of the DOC adaptive control system was investigated for tracking
set-point. In the simulation experiments, time profile of the DOC set-point change, depicted
in Figure 3a was selected for the simulation fo close-to-realistic operating conditions in
fed-batch cultivation process.

Performance of the gain-scheduled controller for step changes of the set-point at 5
and 7.5 process hours is presented in Figure 4. The investigated adaptive control algorithm
yields in lower tracking error and shorter rise time.
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3.1.2. DOC Disturbance Rejection Performance

To evaluate the performance of disturbance rejection, the system was simulated at a
constant set-point of 10%. Air supply rate change was selected to simulate the disturbance.
The change of the air supply rate is depicted in Figure 5.
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The system response and control performance are depicted in Figure 6a. The trajectory
of the manipulated stirring speed N is presented in Figure 6b. Figure 6c,d highlight the
adaptation of the controller tuning parameters during the simulation run.
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Figure 6. Trajectories of DOC (a), controller tuning parameter Ti (b), stirring speed N (c), and
controller tuning parameter Kc (d). Disturbance rejection when using: PI controller with fixed
parameters (red), adaptive PI controller with Gain Scheduling (blue); DOC set-point (black).
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Performance of the gain-scheduled controller for disturbance compensation (the air
supply rate step change from 10,800 lh−1 to 14,400 lh−1 occurred at t = 5.5 h, and from
14,400 to 3600 lh−1 occurred at t = 7 h) is presented in Figure 7. The adaptive control system
yields lower tracking error, as well reduces the overshoot.
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Simulation results show that the gain scheduled PI controller ensures good control
quality of DOC under extreme operating conditions and evidently outperforms the conven-
tional PI controller. The integration time constant Ti and the controller gain Kc changed in a
wide range, therefore reflecting the significantly varying dynamics of the process. Analysis
of the simulation results shows that the adaptive system has reduced the mean absolute
error more than 2 times for the investigated control schemes. The rise time of the transient
processes caused by the set-point change was approx. 2 times shorter for the adaptive
system (see Figure 4a,b). However, both investigated systems yielded similar rise times
in case of disturbance rejection (see Figure 7a,b). The control performance of the investi-
gated systems is summarized in Table 4. The adaptive control algorithm outperforms the
standard system approx. 2 times in terms of mean absolute error.

Table 4. Tuning parameters and MAE values for the investigated DOC control systems.

Control Type Tuning Parameters Mean Absolute Error
Disturbance Rejection Set-Point Tracking

Standard DOC Kc = 50%−1 h−1, Ti = 3.6 × 10−4 h 0.166 0.071
Adaptive DOC KTi = 0.6 × 105, KKc = 1.5 × 105 0.063 0.028

4. Conclusions

In this paper, a simple adaptive control system for the set-point control and disturbance
rejection of dissolved oxygen concentration is proposed, in which gain scheduling of PID
(PI) controller is based on the controller input/output signals only and, therefore, does
not require online measurements of process variables for development of gain scheduling
algorithms. Realization of the proposed system does not depend on the instrumentation
level of the bioreactor and is attractive for practical application.

The controller input/output-based gain scheduling algorithms were developed for
set-point tracking and disturbance rejection during DOC control for bioreactor operating
both in batch and fed-batch mode. Performance of the gain-scheduled PI controller un-
der extreme operating conditions was investigated by computer simulation. The results
demonstrate obvious advantage of the proposed control system compared to conventional
PI control systems.
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In future work, the authors are planning to perform further experimental investigation
by testing the system under real conditions.
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