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Abstract: 50 m3 of legacy liquid radioactive waste at the Saakadze site in Georgia was treated using
a modular type facility with apparatuses encased in three metallic 200 L drums using as purification
method the sorption/ion exchange technology. The main contaminant of water in the underground
tank was the long-lived radionuclide 226Ra. The casing of processing equipment enabled an effective
conditioning of all secondary waste at the end of treatment campaign which resulted in the fully
purified water stored on site for further reuse or discharge, and three 200 L metallic drums with
cemented radioactive waste which are currently safely stored.
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1. Introduction

Nuclear waste management has received considerable attention due to the important
link between the safe management of radioactive waste and public acceptance of nuclear
facilities and peaceful applications of nuclear energy. Radioactive waste management is
typically divided into predisposal and disposal steps, where predisposal comprises all
the steps in the management of radioactive waste from its generation up to disposal. The
predisposal includes processing technologies that are primarily intended to produce a
wasteform that is compatible with the selected or anticipated disposal option and complies
with established waste acceptance criteria [1]. Liquid radioactive waste is highly mobile,
and its storage is associated with hazards from potential leakages and contamination, so
it cannot be considered passively safe. International disposal standards prescribe only
solids as being acceptable forms for disposal facilities [2]. Consequently, liquid radioactive
waste is typically processed to decrease the waste volume, solidifying the treated waste
(typically a sludge) using durable wasteforms such as cements [3]. Treatment of aqueous
waste separates it into two streams: a small volume fraction of concentrate containing
the bulk of radionuclides and a large volume of water which has a sufficiently low level
of contamination to permit discharge to the environment or recycling. Effective liquid
treatment separates as much as of the radioactive contaminants as possible from the
primary waste in the concentrated fraction, which typically requires conditioning prior to
storage and disposal. A flow chart for managing aqueous radioactive waste is given in
Figure 1.

The radioactive waste packages produced after treatment and conditioning contain
the solidified waste and are then stored in a passively safe condition pending a disposal
route becoming available.
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Figure 1. Management roadmap of aqueous radioactive waste following [1] with pathway utilized 
in the current work shown by red arrows. Reproduced with permission of IAEA. 

The radioactive waste packages produced after treatment and conditioning contain 
the solidified waste and are then stored in a passively safe condition pending a disposal
route becoming available. 

In recent decades, Georgia has taken active measures for developing a national sys-
tem for radioactive waste management, including a national strategy for radioactive waste 
management for the period from 2017 to 2031 that was officially adopted in 2016. The 
strategy is focused on the predisposal management of radioactive waste and sets six main 
goals. The first goal of the strategy considers location of all radioactive waste facilities on
one site that is properly selected and licensed. Many investigations were conducted to 
identify such a site within the country. Based on the results and the legacy of former nu-
clear activities [4], including the “Radon” type facility which operated nearby in the past, 
the government of Georgia took the decision to define the s.c. Saakadze site as the pre-
ferred location. The detailed site investigation and assessment started several years ago
with projects supported by Sweden’s Radiation Regulatory Authority (SSM) and the Eu-
ropean Union (EU) as well as by the International Atomic Energy Agency (IAEA). Special 

Figure 1. Management roadmap of aqueous radioactive waste following [1] with pathway utilized
in the current work shown by red arrows. Reproduced with permission of IAEA.

In recent decades, Georgia has taken active measures for developing a national system
for radioactive waste management, including a national strategy for radioactive waste
management for the period from 2017 to 2031 that was officially adopted in 2016. The
strategy is focused on the predisposal management of radioactive waste and sets six main
goals. The first goal of the strategy considers location of all radioactive waste facilities
on one site that is properly selected and licensed. Many investigations were conducted
to identify such a site within the country. Based on the results and the legacy of former
nuclear activities [4], including the “Radon” type facility which operated nearby in the past,
the government of Georgia took the decision to define the s.c. Saakadze site as the preferred
location. The detailed site investigation and assessment started several years ago with
projects supported by Sweden’s Radiation Regulatory Authority (SSM) and the European
Union (EU) as well as by the International Atomic Energy Agency (IAEA). Special attention
was paid within these projects to the legacy liquid radioactive waste underground tanks on
the Saakadze site, which were an historical remnant from the past operations of the national
“Radon” central radioactive waste storage facility. The investigation showed that about
50 m3 of the legacy aqueous waste stored in these tanks has been contaminated by long-



Processes 2021, 9, 1679 3 of 10

lived radionuclide 226Ra. Thus, a significant part of activities dealt with characterization
and processing of legacy liquid radioactive wastes on the Saakadze site, particularly with
assistance from the IAEA.

The aim of this paper is to describe the works completed under IAEA assistance on
the Saakadze site in Georgia to treat and condition the legacy liquid radioactive waste,
which has resulted in an increased safety of on-site storage of conditioned waste, and will
enable its safe disposal on this site.

2. Liquid Radioactive Waste Characterization

Three liquid radioactive waste underground tanks are situated on the Saakadze site
some 30 km from the capital of Georgia, Tbilisi. It is important to emphasize that all
documents describing site conditions and its facilities were completely lost during the
civil war in the country during the 1990s. The first investigation of the site was conducted
jointly by local and SSM specialists who identified the presence of contaminated water
in the first of the three underground tanks. The detailed investigation of the tanks was
conducted within the EU project G.4.01.08, including identification of tank dimensions and
containments [5]. Figure 2 presents a schematic of the orientation of the tanks, their sizes,
design and construction materials.
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Figure 2. Schematic of liquid radioactive waste underground tanks at the Saakadze site, Georgia.

It was estimated that the volume of contaminated water in the first tank is about
41.5 m3. Samples of contaminated water from the tank were analyzed and several ra-
dionuclide contaminants were found, among which the long-lived 226Ra had the highest
concentration (Table 1). Water sampling was from the bottom of tank. Five samples taken
contained 20 mg/L of suspended particles, although their chemical and dispersed com-
position were not analysed. Unfiltered water was analyzed, and Table 1 gives data after
averaging of the results obtained.

In line with Georgian legislation and established clearance level for liquids, which
specifies for 226Ra that the discharge can be done at its concentrations in water below
103 Bq/kg [6], the given contaminated water is assigned as radioactive waste, with 226Ra
as the main contaminant.
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Table 1. Concentration of radionuclides in the water stored in the first underground tank.

Radionuclide Activity, Bq/kg Measurement Error, %
22Na 3.1 43
46Sc 16.5 49

140La 5.3 66
155Eu 16.0 61
214Pb 37.8 1.1
207Bi 1.7 110
214Bi 8.8 1.4
226Ra 1215 5.2

3. Treatment of Waste

Several well-established aqueous waste treatment methods are currently available
with Table 2 summarizing their main features and limitations [3,7–19].

Table 2. Main features and limitations of aqueous waste treatment methods.

Method Features Limitations

Filtration

Removal of suspended solids. Use as
polishing step after chemical treatment.

Use upstream of ion exchanger.
Backwash is possible.

Not suitable for colloids. Need to
replace filter media.

Evaporation

High DF 1 > 103. Well established
technology—many different designs.

High volume reduction factor.
Concentrate can be directly

immobilized or dried to produce a salt
cake. Utilized mostly as batch process.

Condensate may require polishing
depending on the activity.

Not suitable for small volumes of
aqueous waste generation. Process

limitations (scaling, foaming,
corrosion, volatility of certain

radionuclides). High capital and
operating cost with high

energy consumption.

Sorption/Ion
exchange
(organics)

DF high on low salt content (102). High
DF also possible for high salt content by
use of specific resins. Regeneration of

resins possible.

Some colloidal particles and resin
fines may pass straight through to

the treated water. Limited radiation,
thermal and chemical stability of

the resins. Resins cost. May require
some chemical treatment

before conditioning.

Sorption/Ion
exchange

(inorganics)

10 < DF < 104. Chemical, thermal and
radiation stability better than organic

ion exchangers. Relatively easy
immobilization. Mostly used as once

through cycle.

Some colloidal particles and sorbent
fines may pass straight through to

the treated water. Possible high cost
for specific sorbents.

Microfiltration

Removal of fine particulates. Pore sizes
range from 0.05 and 5 µm. Low

pressure operation (100–150 kPa). High
recovery (99%). Low fouling when air

backwash is employed. Mostly used as
the first step in treatment.

Used for suspended fine particles,
but not colloidal matter. Backwash

frequency depends on solids
content of waste stream. Short
lifetime of organic membranes.
Inorganic membranes exhibit

greater mechanical durability than
polymeric membranes. High cost of

inorganic membranes.
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Table 2. Cont.

Method Features Limitations

Ultrafiltration

Removal of colloidal materials and
large dissolved molecules. Pore sizes
range from 0.001–0.01 µm. Pressure

< 1 MPa. DFs in the region of 103 for α
and 102 for β and γ emitters. High

volume reduction factor can be
achieved. Good chemical and radiation

stability for inorganic membranes.

Fouling—need for chemical cleaning
and backflushing. Organic

membranes subject to radiation
damage. Short lifetime of organic

membranes. Inorganic membranes
exhibit greater mechanical durability

than polymeric membranes. High
cost of inorganic membranes.

Nanofiltration

Separation of salts with charge
differences and separation of high

molecular weight organics from high
concentration monovalent salt

solutions. Pore sizes between 0.001 and
0.01 µm. Pressure from 0.3 to 1.4 MPa.
Functions between ultrafiltration and
reverse osmosis, and is often termed

‘loose reverse osmosis’.

Organic membranes subject to
radiation damage. Short lifetime of

organic membranes.

Reverse
osmosis

Removes dissolved ions and small
molecules that contaminate aqueous

solutions. 10 < DF < 102. Well
established for large scale operations.

Compete with other separation
processes (such as evaporation).
Suitable for waste streams with

complex radiochemical compositions.

High pressure system, limited by
osmotic pressure.

Non-back-washable, subject to
fouling.

1 DF stands for the decontamination factor, which is defined as the ratio of the initial specific radioactivity of
waste to the specific radioactivity of purified water.

The preliminary analysis of treatment methods commercially available has identified
the sorption and ion exchange method as the most effective technology to treat the aqueous
waste on site (see the pathway selected in Figure 1). The contaminated water treatment
(purification) was conducted within the IAEA Technical Cooperation national project
GEO9013, involving both local and international experts. Based on the Statement of Work
(SoW) jointly prepared by local and IAEA experts and the results of the tender conducted
by the IAEA, the Federal State Unitary Enterprise “Radon”, Russia, was identified as the
subcontractor to complete the works on site jointly with local experts [20].

Modernized manganese dioxide (MDM) [21] and strong acid cationic resin KU-2-8,
which is an analog of DOWEX HCR-S resins, were selected as basic materials and tentatively
tested to identify the main technological parameters of the purification process. The tests
proved an effective reduction of 226Ra concentration using the sorption-ion exchange
method, with expected operational lifetime of materials used as follows:

• MDM—100–1000 bed (column) volumes;
• KU-2-8—50–200 bed (column) volumes.

The flow rate used was up to 10 bed volumes per hour.
Based on the SoW and test data obtained a modular facility was devised by FSUE

“Radon” similar to [13], which was manufactured so that the technological equipment is
housed inside metallic 200 L drums. The technological scheme of the equipment is shown
in Figure 3.

The initial aqueous radioactive waste was pumped out from the first underground
tank (IT) and fed to the plant by pump P1, at the flow rate of 0.45 m3/h. The flow rate was
determined by a rotameter at the outlet and controlled by a water meter. The excess of
aqueous radioactive waste was dumped back into tank IT via the bypass line, supplied
with a valve V1. Adjustment of the flow rate of aqueous radioactive waste through the
plant was carried out using valve V1.
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Figure 3. Diagram of water purification installation used on site.

At the first stage of treatment, the aqueous radioactive waste was passed through a
bag filter BF1 with pore size of 1 µm.

Then the aqueous radioactive waste was further cleaned of 226Ra in the filter-container
FK-2, containing as sorbing agent the selective sorbent MDM.

The bag filter BF2 with pore size of 1 µm was used to further purify the aqueous
radioactive waste from suspended particles.

The ion exchange filter IF containing the cation-exchange type resin KU-2 in Na-form
was used for purification of aqueous radioactive waste from the 226Ra decay products.

The purified water was collected in the control tank CT. Every 10 hours, representative
samples were taken from CT for gamma spectra analysis in the laboratory, using a high
purity Ge detector.

The water stream purified was accumulated at the second tank (T2) for its potential
use on site, or alternatively for its discharging into the environment following regula-
tory procedures.

During the treatment work, which lasted 12 days, several replacements of the filtering
elements in the filters BF-1 and BF-2 were carried out. During the procedure it was found
that the actual volume of the aqueous radioactive waste in the tank was larger than had
been initially assessed due to the unexpected shape of the bottom of the tank. The actual
volume of the contaminated liquid was 50 m3. After processing of 41.5 m3 of the aqueous
radioactive waste, the cleaning efficiency of the filter FK-2 began to decrease. The hydraulic
resistance of the filter increased up to 0.1 MPa. Therefore, the FK-2 filter was disabled and
the ion exchange resin in the filter was replaced. The purification was continued using the
BF-1 filter and the IF filter until the first tank containing the aqueous radioactive waste was
completely emptied. The bottom sediment in the tank was left in place and thus might
require further processing depending on further use of this tank.

4. Discussion

During the purification process express analyses were conducted by measuring the
radiation levels and radionuclide content in the aqueous radioactive waste passing through
the apparatuses by gamma spectrometry means. The first express analysis of cleaned water
showed an increased level of beta radiation [22]. Spectroscopic measurement conducted by
Falcon-500 at measurement times of 15–30 min identified the increase of radium daughter
product 214Bi, which has a very short half-life of 19.9 min (Figure 4).



Processes 2021, 9, 1679 7 of 10

Processes 2021, 9, x FOR PEER REVIEW 7 of 11 
 

 

4. Discussion 
During the purification process express analyses were conducted by measuring the 

radiation levels and radionuclide content in the aqueous radioactive waste passing 
through the apparatuses by gamma spectrometry means. The first express analysis of 
cleaned water showed an increased level of beta radiation [22]. Spectroscopic measure-
ment conducted by Falcon-500 at measurement times of 15–30 min identified the increase 
of radium daughter product 214Bi, which has a very short half-life of 19.9 min (Figure 4). 

 
Figure 4. A typical sample of gamma spectra of purified water showing the presence of 226Ra decay product 214Bi. 

After keeping the purified water for about 2 to 3 h, the radioactivity levels reduced 
dramatically, as shown in Table 3, which gives data on radionuclide contents in purified 
water, where the measurement was conducted for 8 h. 

Table 3. Radionuclide concentrations in the purified water. 

Radionuclide Activity, Bq/kg Measurement Error, % 
22Na 1.1 43 

40K 15.1 95 
46Sc 12.9 19 

109Cd 98.8 22 
134Cs 1.3 39 
140Ba 3.1 60 
140La 2.5 25 
143Ce 5.7 49 
155Eu 13.9 19 
237Np 7.0 98 
226Ra <23.1 - 1 

1 When determining the concentration of radium, only the maximum level is given which is very 
small and therefore the error is undefined. 

These data show that specific levels of purified water are acceptable for discharge 
and that the water purified can be assigned as clean water acceptable for reuse or dis-
charge. 

Figure 4. A typical sample of gamma spectra of purified water showing the presence of 226Ra decay product 214Bi.

After keeping the purified water for about 2 to 3 h, the radioactivity levels reduced
dramatically, as shown in Table 3, which gives data on radionuclide contents in purified
water, where the measurement was conducted for 8 h.

Table 3. Radionuclide concentrations in the purified water.

Radionuclide Activity, Bq/kg Measurement Error, %
22Na 1.1 43
40K 15.1 95
46Sc 12.9 19

109Cd 98.8 22
134Cs 1.3 39
140Ba 3.1 60
140La 2.5 25
143Ce 5.7 49
155Eu 13.9 19
237Np 7.0 98
226Ra <23.1 - 1

1 When determining the concentration of radium, only the maximum level is given which is very small and
therefore the error is undefined.

These data show that specific levels of purified water are acceptable for discharge and
that the water purified can be assigned as clean water acceptable for reuse or discharge.

5. Conditioning of Secondary Waste

The following secondary radioactive waste was generated during the processing
activities on site:

• spent sorbents;
• spent ion exchange resins;
• spent filter elements;
• pump and piping.

All this waste was immobilized using a purposely prepared cementitious matrix,
which is typical for low level radioactive waste immobilization [23]. A significant advantage
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of the equipment used was that its technological elements (shown above in Figure 4) were
installed inside prefabricated metallic drums. Therefore, the spent sorbents, ion exchangers
and filter elements were not removed from their housings and could be directly cemented
inside the drums, see Figure 5.
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Figure 5. The equipment prepared for immobilization in the cementitious matrix.

The content of ion exchange resins in the cementitious compound was 10% in terms
of dry resin. The water-cement ratio was 0.5. The spent filter elements, pipelines and the
pump were placed in the same drum with bag filters (Figure 5). As a result of aqueous
radioactive waste processing, three metallic 200 L drums containing cemented radioactive
waste were produced (Figure 6).
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The drums with conditioned radioactive waste were transported to the Centralized
Storage Facility (CSF) for safe storage pending final disposal. The overall volume reduction
factor (VRF) achieved through treatment followed by conditioning of waste was thus
VRF = (50/0.6) = 83.3.

6. Conclusions

The IAEA-assisted treatment of 50 m3 of legacy aqueous waste conducted at the
Saakadze site in Georgia was successfully completed within a month as a result of the
important preparatory works, which comprised characterization of waste and identification
of the most suitable treatment technologies. It has, nevertheless, revealed that the actual pa-
rameters differed from those tentatively assessed: e.g., the total volume of waste processed
was 50 m3 instead of the 41.5 m3 assumed. Another unexpected feature was the increased
level of radioactivity immediately after treatment, which was due to concentration of the
very short-lived 226Ra decay product. A positive lesson learned was the organization and
successful operation of the international team led by the IAEA.

The treatment of legacy liquid radioactive waste at the Saakadze site has utilized the
sorption/ion exchange technology implemented by a prefabricated modular type of facility,
which had its parts encased in metallic drums. This form of housing enabled an effective
conditioning of all secondary waste at the end of the treatment campaign. The treatment
process resulted in the fully purified 50 m3 of water being left on site for further reuse or
discharge, and three 200 L metallic drums with cemented radioactive waste currently in
safe storage.

Author Contributions: Conceptualization, M.I.O. and G.N.; methodology, M.I.O.; validation, I.G.
and G.N.; formal analysis, I.G.; investigation, I.G.; resources, G.N.; data curation, G.N.; writing—
original draft preparation, G.N.; writing—review and editing, M.I.O.; supervision, I.G.; project
administration, G.N.; funding acquisition, G.N. All authors have read and agreed to the published
version of the manuscript.
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