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Abstract: Levulinic acid (LA) has been highlighted as one of the most promising platform chemicals,
providing a wide range of possible derivatizations to value-added chemicals as the ethyl levulinate
obtained through an acid catalyzed esterification reaction with ethanol that has found application
in the bio-fuel market. Being a reversible reaction, the main drawback is the production of water
that does not allow full conversion of levulinic acid. The aim of this work was to prove that the
chromatographic reactor technology, in which the solid material of the packed bed acts both as
stationary phase and catalyst, is surely a valid option to overcome such an issue by overcoming
the thermodynamic equilibrium. The experiments were conducted in a fixed-bed chromatographic
reactor, packed with Dowex 50WX-8 as ion exchange resin. Different operational conditions were
varied (e.g., temperature and flow rate), pulsing levulinic acid to the ethanol stream, to investigate
the main effects on the final conversion and separation efficiency of the system. The effects were
described qualitatively, demonstrating that working at sufficiently low flow rates, LA was completely
converted, while at moderate flow rates, only a partial conversion was achieved. The system worked
properly even at room temperature (303 K), where LA was completely converted, an encouraging
result as esterification reactions are normally performed at higher temperatures.

Keywords: levulinic acid; ethyl levulinate; reactive chromatography; Dowex 50WX-8; ion-exchange resin

1. Introduction

Levulinic acid (LA), also known as 4-oxopentanoic acid or γ-ketovaleric acid, is a
highly versatile molecule that can be obtained from lignocellulosic biomass. The great
interest around LA is due to its structure, composed of two high functionality groups
(keto- and carboxylic- group) that furnish a wide range of possible derivatizations to value-
added chemicals [1]. For all of these reasons, LA has been highlighted as one of the most
promising platform chemicals, after screening approximately 300 substances [2]. Among
the large number of utilizable chemicals derived from LA, levulinate esters potentially
have the largest markets, especially from a biofuel perspective. Ethyl levulinate (EL)
is gaining attention since it provides a better blending option with fuel, likewise other
higher alcohols (i.e., butyl levulinate). The advantage of EL is due to the use of ethanol
(EtOH) as the reactant in excess used in the esterification reaction, which is traditionally
obtained from renewable resources with lower total costs, such as methanol and butanol [3].
Other applications of EL include its use as an additive for perfume formulations, as a
plasticizer in biodegradable plastic polymers, and as an additive in de-icer formulations [4].
Homogeneous catalysts, such as sulfuric, chloridric, and phosphoric acid, are historically
employed, but there are some drawbacks about the separation and recovery from the
reaction medium [5–7]. Hence, heterogeneous catalysts are now the favorite [8–10]. Not
long ago, Fernandes et al. [11] published an interesting paper in which the performance of
zeolites, sulphated metal oxides, and a commercial cationic exchange resin, amberlyst-15,
were compared, finding that ion exchange resins are surely good candidates. Very recently,
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Amberlyst-15 and Amberlite IR-120 were proven to be very active heterogeneous catalysts,
showing no signs of deactivation after 100 h of reuse [12,13].

When scaling up the process from a batch to continuous operation, packed bed
was demonstrated to be a reasonable choice [13]. The main drawback of the mentioned
technology in using packed bed systems is the low rate of conversion due to the formation
of water, which keeps the system at the thermodynamical conversion degree.

Different technologies could be used to overcome the mentioned problem, namely
reactive chromatography (RC) and reactive distillation (RD). The main difference between
RC and RD is based on the principle of separation. RC is an adsorptive separation process,
where the components are separated based on their different affinities towards the adsor-
bent, while RD exploits the difference in boiling points of the components of the reaction.
In the esterification reaction of levulinic acid with ethanol, water cannot be removed by RD
as it is characterized by a higher boiling point than ethyl levulinate but lower than levulinic
acid. For this reason, it is not possible to conduct this type of reaction in RD mode.

Reactive chromatography could solve this issue, as it is an operation unit that combines
chemical reaction and chromatographic separation, allowing the intensification of the
esterification process. In the field of process intensification, chromatographic reactors
have gained more and more attention for their advantages related to a conversion increase
through equilibrium shift and the reduced by-product formation. Indeed, the obtained
reaction product is separated through the adsorption on the resin and in accordance with
the adsorptive separation process principle, the difference in affinity between the sorbent
and reaction products is the main reason for efficient separation [14].

Good performance shown by Amberlyst-15 as a catalyst, along with the adsorption
capacity of the resin, suggest that LA esterification with ethanol could be conducted in
a chromatographic reactor in which there is potential for catalysis and separation to be
carried out in a single reactor. As is well known, cation exchange resins find employment
as packing materials for ion exchange chromatography columns, in which the negatively
charged analytes interact with the positive portion of the stationary phase and get separated
depending on how strong the interaction is.

To support this, the studies of Mazzotti [15], Rodrigues [16], Vu et al. [17], and Russo
et al. [18] used ion exchange resins for reactive chromatography experiments, conducting
reactions such as acetic acid esterification and acetals synthesis, ethyl lactate production
and xylene isomerization/separation, or esters hydrolysis.

Since Dowex 50WX-8 showed a good performance in similar systems, and as no
applications of this concept appeared in the literature for the ethyl levulinate synthesis
from LA, this work aimed to fill this gap, aiming to investigate how the different operation
conditions affect the final conversion of the system.

2. Materials and Methods
2.1. Materials

The following reagents were procured from well-known companies and used without
any further purification: levulinic acid (99 wt%) and ethyl levulinate (99 wt%) were
supplied by Sigma Aldrich, ethanol (99 wt%) supplied by Carlo Erba Reagents. Dowex
50WX-8 ion exchange resin (by Acros Organics) was used as a solid acid catalyst. The main
properties of the resin are reported in Table 1 and were taken from the material data sheet
of the catalyst itself.
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Table 1. Physical properties of the used Dowex 50WX-8 catalyst.

Catalyst Particle Size
[µm]

Crosslinking
Degree

[%]
Ionic Form

Total
Exchange
Capacity

[meq/cm3]

Density
[g/cm3]

Water
Retention

Capacity [%]

Max.
Operative

Temperature
[◦C]

Dowex 50WX8 150–300 8 H+ 1.7 0.8 50–56 120

2.2. Methods
2.2.1. Chromatographic Reactor Setup

The setup for the chromatographic reactor is shown in Figure 1. Ethanol is stored in
the tank (1) and pumped into the system by an HPLC pump (2) that allows for flow rate
settings and pressure drop readings. The ethanol flux passes through a Rheodyne injector
valve (3), where an injector combined with a 20 µL loop pulses the other reactant (LA) into
the ethanol stream. The stream is then sent to the chromatographic reactor (4), consisting
of a steel tube of 0.3 m length and 0.0078 m diameter jacketed with a heater regulated by a
PID system (5). An online detector (Reach Device RD4, (6)) reveals the presence of solutes
in the ethanol flux through UV (250 nm and 280 nm), IR, and conductivity detectors. A pin
valve (7) is placed after the detector, for samples withdrawal. The accumulation tank (8)
is provided with a pin valve for decumulation of the liquid stream. The pressure in the
chromatographic reactor system is applied through a reductor (9) linked to a N2 bottle (10).
Packing of the tubular reactor (supplied by Phenomenex) was obtained after drying the
resin and calculating the amount needed, considering the degree of swelling of the catalyst
particle. About 6.5 g of Dowex 50WX8 was necessary to fill the tubular reactor. Ethanol
was then streamed continuously for 6 h with a flow of 1.0 cm3/min into the reactor to let
the resin swell and pack the tube completely.
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Figure 1. Chromatographic reactor setup scheme. (1) Tank; (2) HPLC pump; (3) injector; (4) chromatographic reactor;
(5) PID; (6) online detector; (7) sample withdrawal valve; (8) accumulation tank; (9) reductor; (10) N2 bottle.

The performance of the chromatographic reactor was evaluated with tests in which
levulinic acid was pulsed into a stream of ethanol and data were collected from the online
detector. To determine if the resin successfully separated the components of the system,
tests pulsing EL were conducted and a comparison between the UV (250 nm) spectra was
made. The summary of the experimental conditions is illustrated in Table 2.
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Table 2. Experimental conditions for the chromatographic reactor runs.

Test cLA
[mol/L]

cEL
[mol/L]

T
[K]

Q
[cm3/min]

P
[bar]

∆P
[kg/cm2]

C1 6 - 303 0.8 2 9
C2 6 - 303 0.9 2 10
C3 6 - 303 1.1 2 13
C4 6 - 303 2.5 2 30
C5 6 - 303 5 2 54
C6 - 6 303 0.8 2 9
C7 - 6 303 0.9 2 10
C8 - 6 303 1.1 2 13
C9 - 6 303 2.5 2 30
C10 - 6 303 5 2 54
C11 6 - 313 1.1 2 13
C12 6 - 313 1.7 2 21
C13 6 - 313 1.8 2 23
C14 6 - 313 1.9 2 24
C15 6 - 313 2.5 2 30
C16 - 6 313 1.1 2 13
C17 - 6 313 1.7 2 21
C18 - 6 313 1.8 2 23
C19 - 6 313 1.9 2 24
C20 - 6 313 2.5 2 30
C21 6 - 323 1.8 2 23
C22 6 - 323 2.0 2 26
C23 6 - 323 2.5 2 30
C24 6 - 323 5.0 2 54
C25 - 6 323 1.8 2 23
C26 - 6 323 2.0 2 26
C27 - 6 323 2.5 2 30
C28 - 6 323 5.0 2 54

Each experiment was repeated three times to estimate the error on the experiment
reproducibility. The average value was about 2.5% and the peaks shown in the next section
were obtained as average values, for each test performed.

2.2.2. Take-up Test

When resins like Dowex 50WX8 are put in contact with reactants/reagents, they
are subjected to a process known as take-up. This occurs because when resins adsorb
solvents, especially polar ones like water (H2O) or alcohols, there is a strong osmotic
pressure difference between the liquid inside the pores and the solvent bulk. To decrease
this difference, the resin takes up more solvent to dilute ion concentration into its pores.

Take-up tests were prepared to investigate how our reactive system affected the
catalyst. Furthermore, evaluation of the swelling phenomenon is fundamental when a resin
is to be used as a packing material for a reactor to avoid complete plugging of the system.

Since both the reagents (LA, EtOH) and the products (EL, water) are simultaneously
in contact with the resin during the esterification process, 10 cm3 of binary solutions of
all the chemical species present in the system (LA/EtOH, LA/EL, LA/H2O, EtOH/EL,
EtOH/H2O, EL/H2O) with different molar fractions (0.8, 0.5, 0.2) were prepared and put
in contact with ~1.5 g of dried Dowex 50WX8. The solutions were mixed from time to
time with a rod to improve contact between the chemical species and the resin. The resin
mass was weighed before and after 45 min of every take-up test. Known the density of the
binary mixes, the value of the swelling phenomenon was calculated as:

α [%] =
Vs

resin − Vd
resin

Vd
resin

× 100 (1)
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where α is the swelling percentage and Vs
resin and Vd

resin are the volumes of the swelled and
dry resin, respectively.

3. Results and Discussion
3.1. Dowex 50WX8 Take-up Tests

Table 3 displays the results of all the take-up tests that were completed. The value of α
was then calculated as the average value of all the swelling coefficients determined during
the take-up tests, with this being α = 51.1 ± 5.6%.

Table 3. Swelling percentage of Dowex 50WX8 when put in contact with different molar ratios of the
components of our reactive system.

Molar Fractions [–]
α [%]

LA EtOH EL H2O

1 - - - 51.6
- 1 - - 58.5
- - 1 - 45.7
- - - 1 57.5

0.8 0.2 - - 45.7
0.5 0.5 - - 49.0
0.2 0.8 - - 52.8
0.8 - 0.2 - 45.1
0.5 - 0.5 - 36.1
0.2 - 0.8 - 45.1
0.8 - - 0.2 49.2
0.5 - - 0.5 51.0
0.2 - - 0.8 56.2
- 0.8 0.2 - 52.1
- 0.5 0.5 - 44.2
- 0.2 0.8 - 47.7
- 0.8 - 0.2 54.9
- 0.5 - 0.5 52.8
- 0.2 - 0.8 57.9
- - 0.8 0.2 45.1
- - 0.5 0.5 50.6
- - 0.2 0.8 57.4

The resin volume in our reactive system was estimated to increase up to 1.5 times its
original value.

As revealed, EL showed a lower take-up, probably due to both the relatively bigger
dimensions and hindrance compared to the other molecules, which led to lower access to
the catalyst pores and a lower affinity to the resin structure. The reported data will surely be
of utmost importance when quantitatively modeling the reactive chromatography results.

3.2. Reactive Chromatography Results
Effect of the Stream Flow Rate

The first set of experiments consisted of pulsing LA at 303 K at different flow rates.
The UV spectra results are reported in Figure 2.
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Figure 2. UV spectra of LA 6 M injected in the chromatographic reactor working at 303 K and at
different flow rates.

As shown in the figure, the LA retention time decreased when the flow rate increased.
This is what we expected because at higher flow rates, the time required to flow through
the reactor is lower. In more detail, looking at the curve shape at the intermediate flow rate
(0.9 and 1.1 cm3/min tests), the formation of a second peak can be noted. Instead, the test
at 0.8 cm3/min flow rate shows a single, broad peak detected at a retention time similar to
the second peak shown in the two tests at intermediate flow rates.

An explanation of this behavior can be ascribed to the time of interaction of the
reagents with the resin that makes the reaction happen.

At lower flow rates, 0.8 cm3/min, the entire quantity of LA pulsed into the reactor
had enough time to interact with Dowex 50WX8 and it was totally converted, resulting in a
single EL peak at the detection point.

At intermediate flow rate values, LA was only partially converted, and both the
carboxylic acid and the ester were detected by the UV analyzer with detection times that
were in line with their affinity values.

To confirm this hypothesis, a solution of EL 6 M in ethanol was pulsed into the chro-
matographic reactor at the same operative conditions and the UV spectra were compared
with the corresponding LA spectra.

At high flow rates, like 5.0 and 2.5 cm3/min, the LA did not have the time to interact
with the resin and, thus, the UV analyzer only detected one peak and the chemical species
exited the reactor at the same time. Thus, Dowex 50WX8 performed a good separation of
the product and the reagent, allowing theoretical recovery of the pure product from the
reactor outlet.

The UV spectra in Figure 3 confirm the previous hypothesis: if the fluid flow is slow
enough, LA can be converted to EL completely (0.8 cm3/min), otherwise only a fraction of
it will react with ethanol forming EL.
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To confirm this, through peak deconvolution, it was also possible to approximately
determine LA conversion to EL at intermediate flow rates. LA conversion values were 58%
and 87% for the tests with 1.1 and 0.9 cm3/min flow rate, respectively.

3.3. Effect of the Reactor Temperature

The effect of temperature was evaluated performing tests at 313 K, in particular, data
were collected from pulsing LA at 1.1 and 2.5 cm3/min flow rates. In Figure 4, a comparison
of the experiments at the same flow rates and different temperatures are shown.
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At 2.5 cm3/min flow rate, as expected, the rise in temperature did not make a signifi-
cant difference since LA had no time to interact with the resin. At 1.1 cm3/min flow rate, it
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Since we obtained two opposite outcomes (0 and 100% conversion), further tests were
conducted to pinpoint the flow rate values that would give partial LA conversion at the
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Figure 5 shows the results of test at 313 K and 1.7, 1.8, and 1.9 cm3/min flow rates.
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All three tests displayed the formation of two peaks, one was attributed to LA and the
other, which was somewhat embedded into the first, to EL.

To prove that the conversion was not complete and that there was the presence of
both LA and EL, a solution of EL 6 M was prepared and injected under the same operative
conditions. In Figure 6, the results are shown and the correspondence confirms that the
second peak in the LA injections spectra can be attributed to EL formation.
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Figure 6. UV spectra of LA and EL 6 M at 313.15 K at different flow rates. (a): 1.7 cm3/min. (b): 1.8 cm3/min.
(c): 1.9 cm3/min.

Through peak deconvolution, the approximate LA conversion was determined. The
conversion values were not much different for the tests at 1.7, 1.8, and 1.9 cm3/min flow
rate (65%, 67%, and 68% respectively) and, given the difficulty in peaks fitting due to the
EL peaks being broad, these values are only indicative.

From these data, it was possible to confirm that the separation of EL from LA occurred
at these operative conditions and that the range of conversion values was narrower than
the one obtained with tests at 303 K and 0.9 and 1.1 cm3/min flow rates.

Another set of experiments was carried out raising up the temperature to 323 K to
further evaluate the performance of our chromatographic reactor setup. This time, no
second peak appeared in any of our tests at different flow rates (1.8, 2, 2.5, and 5 cm3/min)
when LA 6 M pulses were sent through the resin-packed tubular reactor (Figure 7). If this
was to be expected for the higher flow rates based on previous collected data, the nature of
the single peaks at the lower flow rates remained to be demonstrated.
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At 323 K, the reaction kinetics and the quantity of catalysts that completely packed
the column allowed for complete conversion of LA to EL with flow rate values that gave
the organic acid enough time to interact with the ion-exchange resin (Figure 9).
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Figure 9. UV spectra of LA and EL 6 M at 323 K at different flow rates. (a) 2.0 cm3/min. (b) 2.5 cm3/min. (c) 5.0 cm3/min.

Water produced by the esterification reaction was mostly kept inside the solid. This
should not have affected LA conversion largely, but too much water adsorbed in the
resin could in fact reduce the quantity of EL obtained at the reactor outlet due to the EL
hydrolysis taking place.

After many tests run with the chromatographic reactor setup, the resin showed that it
was indeed starting to accumulate water. EL pulses started showing two peaks in the UV
analyzer, which would only be explained by the presence of water in the system reacting
with the ester and forming LA.

To remove water from the Dowex 50WX8 resin, a 0.05 cm3/min flow of methanol was
sent through the packed reactor for 24 h. The result of this treatment can be seen in the UV
spectra in Figure 10.

From the UV spectra, it can be highlighted that methanol successfully removed water
from the packed column since EL injections post-treatment did not result in LA formation.

The LA conversions achieved by the chromatographic reactor setup at the different
operative conditions employed are summarized in Table 4.
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Table 4. LA conversions achieved at different operative conditions during the chromatographic
reactor tests with LA 6 M pulses.

Test T [K] Q [cm3/min] XLA [%] *

C1 303 0.8 100
C2 303 0.9 87
C3 303 1.1 58
C4 303 2.5 0
C5 303 5.0 0

C11 313 1.1 100
C12 313 1.7 65
C13 313 1.8 67
C14 313 1.9 68
C15 313 2.5 0
C21 323 1.8 100
C22 323 2.0 100
C23 323 2.5 0
C24 323 5.0 0

* XLA values were determined by comparison with EL 6 M injections and with peak deconvolution.

As revealed, the trends are rather logical, as conversion decreases by increasing the
flowrate, as lower residence times are achieved. The quantification of the data reported
in this paper can give a real impact in the optimization of the chromatographic reactor
operation conditions.

4. Conclusions

The possibility of conducting LA esterification with ethanol for production of EL in a
chromatographic reactor setup was successfully verified using Dowex 50WX8, demonstrat-
ing that, in some cases, it is possible to achieve full LA conversion.

A tubular reactor was packed with Dowex 50WX8 to build a chromatographic reactor
setup. Tests at different temperatures and flow rates were done to evaluate the catalytic
and the separation efficiency of the resin itself.

The chromatographic separation method proved to work for LA esterification, as
with sufficiently low flow rates, the LA pulses were completely converted to EL, while
with moderate flow rates, the partially unconverted LA was well separated from the ester.
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At flow rates higher than 2.5 cm3/min, LA did not have time to interact with the resin
surface. At temperatures near to room temperature (303 K), LA was completely converted
to EL. This is a very encouraging result considering that this is not possible in a batch
system due to the thermodynamic equilibrium. It was also proved that if the resin should
trap too much water, as a by-product of the esterification, it is possible to clean it with a
methanol treatment.

This promising reactive setup could be further investigated with a fluid-dynamic
characterization and the development of a model that could describe the qualitative data
obtained with the chromatographic reactor. Certainly, a higher experimental effort must be
conducted to separately retrieve information about the kinetics of the reaction, a point that
will be surely investigated in our future works.
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Abbreviations

LA Levulinic acid
EL Ethyl levulinate
EtOH Ethanol
H2O Water
List of symbols
T Temperature [K]
t Time [s]
Vd

resin Volume of dried resin [cm3]
Vs

resin Volume of swelled resin [cm3]
α Swelling coefficient [%]
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