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Abstract: Many methods have been developed to allow for consideration of measurement errors
during multivariate data analyses. The incorporation of the error structure into the analytical frame-
work, usually described in terms of the covariance matrix of measurement errors, can provide better
model estimation and prediction. However, little effort has been made to evaluate the effects of
heteroscedastic measurement uncertainties on multivariate analyses when the covariance matrix of
measurement errors changes with the measurement conditions. For this reason, the present work
describes a new numerical procedure for analyses of heteroscedastic systems (heteroscedastic princi-
pal component regression or H-PCR) that takes into consideration the variations of the covariance
matrix of measurement fluctuations. In order to illustrate the proposed approach, near infrared
(NIR) spectra of xylene and toluene mixtures were measured at different temperatures and stirring
velocities and the obtained data were used to build calibration models with different multivariate
techniques, including H-PCR. Modeling of available xylene–toluene NIR data revealed that H-PCR
can be used successfully for calibration purposes and that the principal directions obtained with the
proposed approach can be quite different from the ones calculated through standard PCR, when
heteroscedasticity is disregarded explicitly.

Keywords: heteroscedastic principal components regression (H-PCR); measurement error; multivari-
ate analysis; numerical procedure; near infrared spectroscopy (NIRS)

1. Introduction

Multivariate calibration methods constitute indispensable tools for solving many “real-
world” problems [1]. Nevertheless, although it has long been recognized that measurement
errors are inherent components of experimental measurements, traditional multivariate
calibration methods, such as principal components analysis (PCA), principal components
regression (PCR), partial least squares (PLS) and parallel factor analysis (PARAFAC),
implicitly assume the occurrence of independent and identically distributed measurement
Gaussian errors [2]. Alternative multivariate calibration techniques, including multiple
linear regression (MLR), continuum regression (CR), projection pursuit regression (PPR),
locally weighted regression (LWR) and artificial neural network modeling (ANNs), among
others, implicitly assume similar measurement error conditions [1].

PCA and PCR can possibly be regarded as the most popular and most powerful
chemometric tools for process monitoring and quantitative analyses [3–6]. Initially em-
ployed by statisticians to describe the variance and covariance of random variables, PCA
is more commonly used in chemometrics to describe determinist relationships among
variables, especially in cases where a high degree of collinearity exists or in cases of process
datasets with missing values [7]. According to the PCA technique, the number of variables
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of the problem can be reduced through suitable linear combinations, so that variable com-
binations concentrate the highest possible variance of the available data [8,9]. Then, the
new set of uncorrelated variables, called principal components, spans a space of lower
dimension. Reviews of PCA and some important and traditional applications can be seen
elsewhere [10]. Therefore, the objective of PCA is generally twofold: to determine the best
calibration model with the smallest number of variables [5].

Partial least squares (PLS) is a technique used for construction of predictive models
when large numbers of measurements are available and the variables present strong
collinearity [11]. The main objective of PLS is to extract latent variables from the available
measurements, optimizing the information content for construction of the calibration
model. In order to do that, a multidimensional direction is defined in the input X-space
for maximization of the correlation with response variables in the Y-space. Therefore, PLS
models can be applied when the number of measurement variables is higher than the
observed measurements and when the measurements are multicollinear [11,12].

Unfortunately, the use of MLR, PCA or PLS procedures is oftentimes inadequate
for calibration purposes and estimation of model parameters, as these methods rely on
assumptions that impose limitations on the use of these techniques [13]. For example,
these techniques assume that the analyzed variables are correlated linearly and are subject
to random Gaussian fluctuations. Moreover, these techniques implicitly assume that
measurement errors do not change in the experimental region and that input variables
are not subject to measurement errors. Hong et al. (2018) observed that PCA performance
for high-dimensional heteroscedastic data was worse than for homoscedastic data [14]. In
order to overcome some of these limitations, many distinct numerical procedures have been
proposed in the literature, including techniques based on maximum likelihood criteria,
such as the MLPCR (maximum likelihood principal component regression) procedure [3].

It is important to emphasize that near infrared spectroscopy (NIRS) is a very robust
technique for online monitoring and control of industrial processes, allowing for remote
measurement of many useful process variables [1,15]. In particular, NIR-based monitoring
procedures have been boosted by the continuous improvement of spectroscopic methods
and fiber optics technology, which allow for the in situ and in-line acquisition of process
data [15]. As NIR spectra contain significant amounts of information regarding chemical
composition and phase morphology of mixtures and reacting systems, NIR spectroscopy
finds applications in many different areas. Besides, as NIR-based procedures are fast,
non-destructive, non-invasive, allow for direct in-line measurements and require minimum
sample preparation, NIR technologies became particularly important for control, monitor-
ing and optimization of industrial processes [16]. However, given the usual complex nature
of NIR spectra, the advancement of computational resources, both in terms of hardware
and software, was of fundamental importance for implementation of the calibration models
that make the use of NIR possible in the industrial field [15].

Fluctuations in the experiments due to sample preparation, operation procedures
variations and environment oscillations, among other factors, are quite common. However,
these perturbations are not necessarily independent from each other and, when studying
NIR measurements, they can strongly affect the performances of NIR spectrometers, requir-
ing explicit consideration of the error structure in the proposed modeling approach [15].
Some real perturbations in NIR measurements can be, for example, light source fluctuations,
temperature oscillations and mechanical vibration [17,18]. It is noteworthy that fluctuations
of certain variables can affect the behavior of other variables, as one can easily understand
when temperature and pressure are measured simultaneously in a pressurized vessel—as
temperature increases, pressure is also expected to increase, meaning that temperature and
pressure fluctuations cannot be independent in a closed vessel. Although light absorbance
fluctuations in NIR experiments can be strongly correlated with neighboring wavelengths
(as shown by Monteiro et al., 2017) [18], the importance of measurement error fluctuations
(characterized in terms of the covariance matrix of the spectral responses, as functions of
the measurement conditions and measured experimentally through replication) on NIR
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calibration modeling has been largely overlooked in the literature. Similar phenomena can
also affect many other processes and measuring conditions.

Shah and Narasimhan (2007) [19] developed an interactive algorithm for simultane-
ous identification of the model and the errors, using the maximum likelihood principal
component analysis technique. In simple words, the method proposed the estimation of
the calibration model and of the covariance matrix of measurement errors simultaneously,
using the same dataset. The algorithm was developed for the situation when measurement
errors in the different variables were not the same and correlated to each other. However,
Santos et al. (2005) [3] showed that the simultaneous estimation of model parameters and
measurement errors can eventually lead to serious numerical and statistical interpretation
problems, as hard constraints must be imposed on the estimated covariances in order to
assure the positive definiteness of the covariance matrix of measurement errors.

As a matter of fact, the quality and performance of multivariate calibration models
depend on the effective treatment of errors. Specifically, when spectral data are considered,
variances of measurement fluctuations may be different at distinct wavelengths and may be
correlated to each other. For this reason, a MLPCR method was proposed by Wentzell et al.
(1997) [20] in order to compensate for these effects and provide more accurate multivariate
calibration models. However, the proposed approach requires either complete knowledge
of the covariance matrix of measurement errors or full experimental characterization of the
covariance matrix of measurement uncertainties through replication.

Bhatt et al. (2005) [16] proposed a method for development of multivariate calibration
models from non-replicated measurements when errors in different absorbances are inde-
pendent but can be subject to different unknown variances. The method, named iterative
principal component analysis, also estimates the lower dimensional spectral subspace and
all the corresponding error variances simultaneously. Wentzell et al. (2005) [21] developed a
systematic approach for characterizing the covariance matrix of measurement fluctuations
for particular experimental or instrumental environments. The approach was applied to
different spectral systems (including UV-VIS absorption, NIR reflectance, fluorescence
emission and short-wave NIR absorption) and it was noted that more detailed charac-
terization of the error structures can bring numerous benefits to the analysis, including
the enhanced performance of calibration models. Hong et al. (2020) [22] developed a
probabilistic PCA model that incorporates the heteroscedastic noise data and derives an
expectation maximization algorithm to compute the factor estimate. Homoscedastic PCA
was applied to initialize the algorithm.

It is important to highlight, though, that previous studies have systematically ne-
glected the fact that the full covariance matrix of measurement fluctuations (and not only
the variances, or the elements of the main diagonal of the covariance matrix [14,22]) can
change with the measurement condition (depending on other variables besides the spectral
wavelength, in the case of NIR calibrations). In other words, the analyzed system may
be heteroscedastic and the covariance matrix of measurement responses (or the spectral
output, measured in terms of absorbance, transmittance, reflectance or other suitable
response variable, in the case of NIR calibrations) can depend on the wavelength, but
also on concentrations and temperatures, among other variables. Particularly, it must
be highlighted that the heteroscedastic nature of the measurement fluctuations has been
used to provide information about the kinetic behavior of chemical reaction systems as a
function of the reaction conditions [23,24], affecting the estimation of kinetic parameters.

To the best of our knowledge, procedures that consider the variations of the covariance
matrix of measurement fluctuations along the experimental grid have not been used for
calibration purposes (and therefore for NIR-based model building); consequently, the
effects of changing covariance matrixes of measurement fluctuations on model calibration
and model performance have not been analyzed yet (including NIR calibration problems).
Despite that, it is important to recognize that previous studies have attempted to reduce the
sensitivity of calibration models to unknown measurement perturbations using different
pretreatment techniques [14,25–34], although not based on the detailed statistical charac-
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terization of the measurement fluctuations, as described in terms of variance spectra and
covariance matrixes of measurement fluctuations calculated with replicates under distinct
experimental conditions. In addition, cluster analyses and other grouping procedures have
been used to account for the existence of data subsets that may be subject to distinct statis-
tical behavior [35], which is not equivalent to taking into consideration the characteristic
covariance matrix of measurement fluctuations for each particular experimental point used
for model building and calibration.

Monteiro et al. (2017) [18] presented a statistical study regarding some simple NIR
experiments, characterizing the importance of variances and covariances of measurement
errors for quantitative NIR analyses. Calibration models were built with help of different
multivariate techniques (MLR, PCR and PLS) [20]. The authors showed that the existence
of varying measurement fluctuations and measurement error correlations along the ex-
perimental grid can significantly affect the model calibration step and the final model
performance.

As a matter of fact, the effects of varying measurement fluctuations and measurement
error correlations on model building procedures and model prediction errors have been sys-
tematically neglected in calibration problems, including NIR applications. Little effort has
been made to evaluate the covariances of measurement uncertainties through experiments
in the literature and to introduce such covariances in the modeling step, particularly when
they are subject to changes in the experimental grid. Numerical procedures have been more
frequently proposed to estimate covariance matrixes of measurement errors and to allow
for the simultaneous estimation of covariances of measurement fluctuations and calibration
model parameters when sufficiently large sets of industrial data are available [22,35,36].
However, these procedures are not based on the independent characterization of the covari-
ance matrix of experimental fluctuations as a function of the experimental conditions and
have not been used yet for NIR model calibrations and characterization of measurement
error correlations in NIR experiments.

Particularly, non-conventional calibration procedures have usually proposed the esti-
mation of the covariance matrix of measurement fluctuations and of the model parameters
simultaneously [37], although these strategies do not seem appropriate when the experi-
mental variances and covariances change at each distinct experimental points. Alternative
strategies may consider the systematic experimental investigation of the measurement
errors [2] and the use of maximum likelihood estimation procedures for model building [1],
which was the strategy pursued here. For this reason, in the present work, a heteroscedastic
principal component regression (H-PCR) method was developed to deal with calibration
problems and is compared to other traditional calibration techniques (CLS, PCR and PLS) in
a simple calibration problem, related to use of NIR spectra for monitoring of concentrations
of xylene–toluene mixtures [18]. Modeling of available xylene–toluene NIR data revealed
that H-PCR can be used successfully for calibration purposes and that the principal direc-
tions obtained with the proposed approach can be quite different from the ones calculated
through standard PCR, when heteroscedasticity is disregarded explicitly.

2. Methodology
2.1. Theoretical Framework

The standard multivariate calibration process consists of building a model to correlate
n spectra (the number of experimental points), comprising m distinct wavelengths (the
size of the input vector xm), to n response values (the response variable y) obtained
through references or independent methods (usually concentrations) [20]. The calibration
procedure begins with the construction of the input data matrix, Xmxn, which contains
the collected NIR spectra, and the data vector yn, which contains the output responses.
The calibration model must provide a vector yc

n, containing values calculated with Xmxn
and that is expected to be sufficiently close to vector yn. The most common multivariate
calibration techniques that are used to build NIR calibration models are the classical least
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squares (CLS), multiple linear regression (MLR), partial least squares (PLS) and principal
component regression (PCR), as briefly described below.

The standard CLS technique proposes the representation of the original multivariable
problem as a set of univariate problems for each of the considered analytes, in the form:

y = a + b x1 + e (1)

where y is the vector of model responses (usually concentrations) and x1 is a vector
of inputs (usually the spectral responses at a defined wavelength). a and b are model
parameters, respectively, linear coefficient or axis interception and angular coefficient or
slope, which must be determined through model fitting, using the available experimental
data. e is a vector of residuals, containing the experimental measurement fluctuations and
the possible model inadequacy. If the calibration model is efficient, e should have zero
mean and variance similar to the variance of y measurements, normally assumed to be
constant in the whole experimental grid (homoscedasticity). Therefore, the CLS procedure
requires the definition of the concentrations of all the spectroscopically active species and
of the respective wavelengths that must be used for purposes of model building, which is
not always possible in practical situations [38]. However, it must be acknowledged that
calibration of dilute solutions of non-interacting chemical species may rely on spectral
responses of the pure materials only. The CLS procedure described here can certainly be
used to represent other similar calibration problems.

The MLR technique is the simplest multivariate calibration method, which does
not require the decomposition of the original problem into smaller univariate calibration
problems. The method assumes that the response variable depends on multiple input
variables, in the form:

y = a + b1 x1 + b2 x2 + ...+ bm xm, + e (2)

(y − a) =

 y1 − a
...

yn − a

 =

 x11 · · · x1m
...

. . .
...

xn1 · · · xnm

·
 b1

...
bm

 = XT. α (3)

where a and bi are model parameters (contained in α) that must be determined through
model fitting, using the available experimental data. When the multiple linear regression
procedure is applied, the user must define a priori the set of wavelengths that must be used
for calibration purposes. For this reason, the MLR technique is usually applied when the
most significant fluctuations of the spectra are concentrated in narrow spectral regions [39].
Specifically, the MLR method can be very sensitive to collinearity of spectral responses,
which makes parameter estimation more difficult and model performance poorer [39]. As
assumed in the previous case, if the calibration model is efficient, e should have zero mean
and variance similar to the variance of y measurements, normally assumed to be constant
in the whole experimental grid (homoscedasticity).

Assuming that the model is perfect, that experimental measurements are subject to
homoscedastic normal fluctuations and that input variables are free of error (which is not
supported by independent experimental statistical analyses, as shown by Monteiro et al.,
2017) [18], the model parameters must be estimated in the form [20]:

minF = (ye − yc)T.V−1
y . (ye − yc)=

(
ye − XT.α

)T
.V−1

y .
(

ye − XT.α
)

(4)

α =
(

X.V−1
y .XT

)−1
.
(

X.V−1
y .ye

)
(5)

If the variances are the same throughout the experimental grid and the measurement
correlations are null, then:

α =
(

X.XT
)−1

.(X.ye) (6)
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which is the usual form of the MLR calibration, which can be easily extended to describe
other similar problems. According to Equations (6) and (7), it can be noted that the
MLR technique requires the inversion of matrix X.XT, which explains the sensitivity to
collinearity and measurement correlations. For this reason, PCR and PLS are more efficient
methods to deal with large datasets [40].

The PLS technique assumes that a smaller set of latent variables affect the available
experimental responses, allowing for removal of undesirable collinearity effects and for
optimization of the information content of the model [11]. Initially, the normalization of the
measured variables is usually performed in order to remove the units of the measured data
and make the ranges of measurement variations more uniform. Then, it is acknowledged
that one direction p1 concentrates the correlation between y and X. Therefore, the estimation
problem becomes:

minF =
(

ye − XT.p1.α1

)T
.V−1

y .
(

ye − XT.p1.α1

)
(7)

α1 =
(

pT
1 .X.V−1

y .XT.p1

)−1
.
(

pT
1 .X.V−1

y .ye
)

(8)

Inserting Equation (8) into Equation (7), the fundamental PLS problem can be obtained,
which is the manipulation of vector p1 for minimization of the objective function F, which
can be performed with the help of numerical procedures [11]. The effects of direction p1 on
the calibration problem can then be removed in the form:

X(1) = (I − p1
T.I).X (9)

y(1) = ye − α1.XT.p1 (10)

resulting in residuals X(1) and y(1), which can be used for determination of α2 and p2 in
a similar manner. The procedure can be repeated iteratively in order to maximize the
correlation between X and y [11,40,41]. One must observe that Equations (7)–(10) implicitly
assume the validity of the same hypotheses described earlier, regarding the fact that X is
free of error in the whole experimental range.

The PCR technique can be regarded as a simplification of the PLS technique, obtained
by assuming that pi vectors are the directions that concentrate the largest possible variance
of the available data [10,42,43], usually computed in the form:

X.XT = D.Λ.DT (11)

where Λ is the diagonal matrix that contains the eigenvalues λ1, λ2,..,λm of X.XT and D is
the matrix that contains the eigenvectors v1, v2,....,vm of X.XT [44]. Then, the pi vectors
are equal to the eigenvectors vi, associated with the largest eigenvalues λ1 > λ2 >... >
λM >... > λm, where M defines the size of the proposed model and the number of latent
variables used for calibration purposes. According to the PCR method, the directions
used to construct the model concentrate a fraction (ϕ) of the total experimental variability,
defined in the form:

ϕ =
∑M

i=1 λi

∑m
j=1 λj

(12)

One must observe once more that the PCR technique implicitly assumes the validity
of the same hypotheses described earlier, regarding the fact that X is free of error in the
whole experimental range. More detailed discussions about PCR and PLS techniques can
be found elsewhere [45,46].

Maximum likelihood principal component regression (MLPCR) is a decomposition
method that resembles the conventional PCR, but that takes into account measurement
uncertainty during the decomposition process, placing less emphasis on measurements
with large variances [3,47]. It is important to recognize that MLPCR is not just a variation
of PCR, but a more general numerical procedure for multivariate modeling [47].
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The first step of the MLPCR technique consists of determining the direction of maxi-
mum variability of the independent variables. In this context, Equation (4), which defines
the objective function for multivariate calibration procedures, can be presented in the form:

minF =
M

∑
k=1

n

∑
i=1

(
Xi −

(
XT

i .pk

)
pk

)T
.V−1

Xi
.
(

Xi −
(

XT
i .pk

)
pk

)
(13)

which depends on the covariance matrixes of measurement fluctuations of Xi. Matrix Vxi
should contain the real experimental fluctuations of the spectral measurements in order for
use of Equation (13) to make sense. The problem, though, is that matrix Vxi is normally
singular (and, therefore, not invertible) in real calibration problems, as the wavelength
range is normally large (m is a large number, in the range of hundreds) and the number
of replicates (NR) used for independent characterization of experimental errors is much
smaller than m (NR is almost always smaller than 10). A similar limitation can be observed
in the vast majority of large calibration datasets. Therefore, Equation (13) cannot be used in
the proposed form. Moreover, Vxi can depend on the measurement conditions and cannot
be efficiently estimated from calibration residuals [15].

2.2. The Proposed Heteroscedastic Technique

The model calibration procedure based on the proposed heteroscedastic PCR tech-
nique consists, essentially, of inserting the evaluated covariance matrixes of measurement
fluctuations, characterized at each measurement condition, directly into Equation (13). In
order to perform the minimization task described in Equation (13), a stochastic algorithm
has been devised, associating a set of plausible measurements to each experimental con-
dition, in accordance with specific generated probability values [46]. Random number
generation procedures are used to generate the problem solution candidates, as described
below.

As presented in Equation (13) and described previously, the covariance matrixes of
measurement fluctuations identified experimentally are expected to be singular. There-
fore, it is convenient to assume that the matrixes Vxi can be decomposed in the form
Vxi = Di.Λi.Di

T, where Λi is the diagonal matrix that contains the eigenvalues and Di
is the matrix that contains the eigenvectors of Vxi. Matrixes Vxi, i= 1 ... n, are known,
as calculated with number of replicates NR < m, assuming that independent statistical
characterization of measured data has been performed and that the covariance matrixes of
measurement fluctuations are available, as shown by Monteiro et al. (2017) [18]. Equation
(13), however, requires calculation of Vxi

−1, although matrixes Vxi, i= 1 ... n, are often
noninvertible. Therefore, it is initially necessary to propose suitable pseudo-inverses for
matrixes Vxi, i= 1 ... n, which are calculated here in the form [48]:

Vxi
−1 = Di.Λi

−1.Di
T (14)

where Λi is a diagonal matrix that contains the positive eigenvalues of Vxi in the main
diagonal and Di contains the respective eigenvectors in the columns. Equation (14) then
requires calculation of eigenvalues and eigenvectors of the error covariance matrix when
it is decomposed. Specifically, in the present study matrix, Vxi has been characterized
experimentally using NIR spectra of solutions containing varying amounts of xylene and
toluene at distinct measurement conditions, confirming the small number of nonsingu-
lar eigenvalues of Vxi and, consequently, the small number of variability sources in the
analyzed problem.

When the pseudo-inverse matrixes defined in Equation (14) are inserted into the
objective function equation (Equation (13)), it becomes possible to estimate the directions pk
that concentrate the maximum variability of the available data, as weighed by the measured
covariance matrixes of measurement fluctuations. In order to overcome numerical issues
related to the high dimensionality and non-invertible nature of Vxi during analytical
computations, an iterative stochastic procedure is proposed for calculation of the main
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directions that constitute the columns of matrix P. The proposed step-by-step calculation is
summarized in Equations (15)–(24). First, it is assumed that the initial candidates for the
principal directions can be described in the form:

p(j,t)
k,i = p(j,t)

k,re f + a(t)k,i ∗ sin

2π[
f (t)k,i .j

m
+ b(t)k,i ]

 (15)

where p(j,t)
ki is the jth component of the ith candidate for the principal direction pk,

k = 1 ... M, i = 1 ... NC, at iteration t. M (the number of latent variables) and NC (the
number of candidates, assumed to be equal to 2000, unless stated otherwise) are numerical
parameters that must be provided by the user. pk, re f i is a reference direction (assumed
to be equal to 1 at iteration 1), needed for proper normalization of the calculated values;
j is a counter, ranging from one to m, for the dimension of the space of independent
measurements X. a(t)min < a(t)k,i < a(t)max, f (t)min < f (t)k,i < f (t)max and b(t)min < b(t)k,i < b(t)max are random
numbers that follow the uniform distribution and define, respectively, the amplitude, the
frequency and the lag of a characteristic sinusoidal signal. Equation (15) assumes that the
principal directions can be represented as smooth functions of the wavelength, as in usual
Fourier decompositions [49]. Equation (15) suggests that the principal direction can be
represented by a sum of random signals with different amplitudes and frequencies. Next,
the maximum likelihood objective function presented in Equation (13) can be calculated
for each candidate of principal direction, as presented in Equation (16):

F(t)
k,i =

n

∑
i=1

(
Xi −

k

∑
l=1

[(
XT

i .p(t)
l,i

)
p(t)

l,i

])T

.V−1
Xi

.

(
Xi −

k

∑
l=1

[(
XT

i .p(t)
l,i

)
p(t)

l,i

])
(16)

so that the best set of candidates for principal directions, P(t)
opt, can be selected as the set that

leads to the lowest values of F(t)
k,i at iteration t, i = 1 ... NC, k = 1 ... M, F(t)

k,opt. The procedure
can then be repeated iteratively, by imposing:

p(t+1)
k,re f = p(t)

k,opt (17)

a(t+1)
min =

(
a(t)min + a(t)max

2

)
− µ

(
a(t)max − a(t)min

2

)
(18)

a(t+1)
max =

(
a(t)min + a(t)max

2

)
+ µ

(
a(t)max − a(t)min

2

)
(19)

f (t+1)
min =

(
f (t)min + f (t)max

2

)
− µ

(
f (t)max − f (t)min

2

)
(20)

f (t+1)
max =

(
f (t)min + f (t)max

2

)
+ µ

(
f (t)max − f (t)min

2

)
(21)

b(t+1)
min =

(
b(t)min + b(t)max

2

)
− µ

(
b(t)max − b(t)min

2

)
(22)

b(t+1)
max =

(
b(t)min + b(t)max

2

)
+ µ

(
b(t)max − b(t)min

2

)
(23)
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where µ is a contracting factor that controls the convergence and must be provided by the
user (made equal to 0.9, unless stated otherwise). The procedure must be halted when
numerical convergence is detected:∣∣∣F(t+1)

k,opt − F(t)
k,opt

∣∣∣
F(t)

k,opt

< δ (24)

where δ is a numerical parameter that must be provided by the user in order to guarantee
the accuracy of the final response. For practical purposes, δ was made equal to 1.0 × 10−4

in all simulations, unless stated otherwise. As observed experimentally, the use of larger δ
values can lead to inaccurate and oscillatory responses, while the use of smaller δ values
can cause a significant increase in computational time without any significant improvement
in the obtained numerical results.

Finally, after calculation of the principal directions, the calibration model parameters
can be computed as illustrated in Equations (7)–(10), keeping the principal directions
constant. The calibration modeling can be repeated for an increasing number of latent
variables for determination of the best H-PCR model. The optimum number of latent
variables can be determined with help of cross-validation strategies, as usually performed
in the literature [20].

Alternatively, Equations (15)–(24) can be used to generate the heteroscedastic PLS algo-
rithm. As shown in the next sections, the prediction variances of outputs are heteroscedastic
because of the heteroscedasticity of inputs and estimation of model parameters [46]. Con-
sequently, if Equation (16) is replaced by Equations (7)–(10) to define the objective function
and the principal components, and if Vy in Equations (7) and (8) is assumed to be the
covariance matrix of model outputs, then the PLS technique becomes heteroscedastic and
respects the natural variability of the analyzed system.

2.3. Experimental

The experimental procedure was divided into two parts. In the first part, the statisti-
cal behavior of NIR data was characterized as functions of the measurement conditions,
through manipulation of stirring velocities, temperatures and concentrations. These vari-
ables were manipulated because they are frequently disturbed in real reaction environ-
ments. In the second part, model calibrations were performed using CLS, PCR, H-PCR
and PLS techniques to predict concentrations as functions of measured NIR spectra, as
usually performed at the plant site to monitor the course of chemical reactions. These
techniques were applied in a simple problem, which consisted of analyzing mixtures of
xylene and toluene with help of NIR spectroscopy at different concentrations, temperatures
and stirring velocities, as described in Table 1.

Table 1. Experiments performed for model calibration.

Xylene Concentration [v/v%] Toluene Concentration [v/v%] Temperature [◦C] Stirring Speed [rpm]

0 100

30 250 350 450

60 250 350 450

90 250 350 450

10 90

30 250 350 450

60 250 350 450

90 250 350 450

20 80

30 250 350 450

60 250 350 450

90 250 350 450
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Table 1. Cont.

Xylene Concentration [v/v%] Toluene Concentration [v/v%] Temperature [◦C] Stirring Speed [rpm]

30 70

30 250 350 450

60 250 350 450

90 250 350 450

40 60

30 250 350 450

60 250 350 450

90 250 350 450

50 50

30 250 350 450

60 250 350 450

90 250 350 450

60 40

30 250 350 450

60 250 350 450

90 250 350 450

70 30

30 250 350 450

60 250 350 450

90 250 350 450

80 20

30 250 350 450

60 250 350 450

90 250 350 450

90 10

30 250 350 450

60 250 350 450

90 250 350 450

100 0

30 250 350 450

60 250 350 450

90 250 350 450

Xylene and toluene were used as models because they are completely miscible and
present very similar NIR spectra [18], which makes the calibration process more difficult
and interesting for analyses of numerical performances. Detailed descriptions of the experi-
mental setup and experimental methods have been presented by Monteiro et al. (2017) [18].
Despite that, it is important to say that standard factorial designs were used to build the
experimental grid and that spectral data were collected at random. This was possible in
the present study because the performed experiments were relatively simple. It is also
important to emphasize that NR = 10 replicates were obtained at each distinct experimental
condition and used to perform the statistical analyses, so that n = 990 independent NIR
spectra were used for numerical analyses (11 compositions, 3 temperatures, 3 stirring
speeds, 10 replicates).

NIR spectra were measured in regular intervals of 2 min, using an in situ spec-
trophotometer NIR-6500 (NIRSystems, Inc., Silver Spring, MD, USA), working in the
transflectance mode in the spectral region of 400–2500 nm. The spectra were collected using
a stainless steel transflectance probe with constant pathlength of 34 mm and diameter of
19 mm, connected to the instrument through a fiber optics cable of 3 m. The fiber optics
cable comprised three bundles of fibers. The light bulb contained a filament of tungsten
and the light detector was based on the standard PbS technology. Data acquisition was
performed with NIR Spectral Analysis Software version 3.30, a software provided by the
manufacturer of the NIR spectrometer (Vision(R)). Spectra were recorded as averages
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of 32 readings with precision of 0.1 nm, according to spectrophotometer specification
(NIRSystem Process Analytics Manual version 1.0 NIRSystems Inc., Silver Spring, MD,
USA). Spectral bandwidth was set to 10 ± 1 nm and the dynamic range was equal to
2–3 AU.

Calibration models were built to provide the xylene content of the analyzed organic
solution as functions of obtained NIR spectra. As usual in this field, first and second
derivative spectra were calculated to magnify the differences between toluene and xylene
measurements and to facilitate the calibration process, since this procedure can remove
base line variations, remove measurement noise and discriminate overlapping bands [18].
Derivatives were computed with second-degree interpolating polynomials and five neigh-
boring datapoints, simultaneously providing a smoothing effect.

It is important to observe that dataset splitting techniques are normally used to provide
more robust parameter estimates and model performances. In the case of the present work,
all analyzed calibration procedures allowed for reliable global estimations, concentrating
at least 90% of the variability of the data, indicating that robust model performances were
indeed obtained, as shown in the following sections. This is due to the large number of
replicates in the dataset (NR = 10), which was uncommon in most previous experimental
works. Consequently, random splitting of the datasets leads to smaller but statistically
similar datasets, which is an additional benefit of the proposed analyses. Despite that, we
must emphasize that dataset splitting was indeed used for purposes of model building, as
10% of the dataset was saved for cross-validation and used for selection of the proposed
calibration models and characterization of model performances.

All calculations performed in the present work were carried out in Fortran in a
microcomputer (Intel(R) Core™ i7-7500 CPU 2,7 GHz, 16 Gb of RAM and 1 TB of HD,
64 bits) equipped with a data acquisition board (analog input data acquisition board, model
IPC-DAS, PCI-1002H High Gain 16-Ch, screw-terminal DB-1825), used for data acquisition
and temperature control.

3. Results and Discussion
3.1. Preliminary Geometrical Interpretation of H-PCR

For illustrative purposes and better understanding of the proposed H-PCR scheme,
it is convenient to analyze the behavior of simple calibration problems defined in low-
dimensional input spaces. For this reason, it is assumed first that Equation (16) can be
rewritten for one-dimensional problems in the form:

F(t)
1,l =

n

∑
i=1

(
xi − α

(t)
1,l

2 xi

)2

σ2
i

(25)

that leads to the obvious optimal solution

α
(t)
1,opt = ±1 (26)

which constitutes the trivial solution for the eigenvectors embedded in one-dimensional
spaces, showing the apparent consistency of the proposed approach. Similarly, Equation
(16) can be rewritten for two-dimensional problems in the form:

F(t)
1,l =

n
∑

i=1

([
x1
x2

]
i
−
(

x1,i p(1,t)
1,l + x2,i p(2,t)

1,l

)[ p(1,t)
1,l

p(2,t)
1,l

])T

.

[
σ2

1,i ρi σ1,iσ2,i
ρi σ1,iσ2,i σ2

2,i

]−1

.
([

x1
x2

]
i

−
(

x1,i p(1,t)
1,l + x2,i p(2,t)

1,l

)[ p(1,t)
1,l

p(2,t)
1,l

]) (27)
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Assuming, for illustrative purposes, that two populations of datapoints are available,
with sizes n1 and n2, possibly obtained at two distinct operation conditions 1 and 2, then
Equation (27) can be rewritten in the form:

F(t)
1,l =

n1
∑

i=1

([
x1
x2

]
i
−
(

x1,i p(1,t)
1,l + x2,i p(2,t)

1,l

)[ p(1,t)
1,l

p(2,t)
1,l

])T

.
[

σ2
1,1 ρ1 σ1,1σ1,2

ρ1 σ1,1σ1,2 σ2
1,2

]−1

.
([

x1
x2

]
i

−
(

x1,i p(1,t)
1,l + x2,i p(2,t)

1,l

)[ p(1,t)
1,l

p(2,t)
1,l

]
)

+
n2
∑

i=1

([
x1
x2

]
i
−
(

x1,i p(1,t)
1,l + x2,i p(2,t)

1,l

)[ p(1,t)
1,l

p(2,t)
1,l

])T

.
[

σ2
2,1 ρ2 σ2,1σ2,2

ρ2 σ2,1σ2,2 σ2
2,2

]−1

.
([

x1
x2

]
i

−
(

x1,i p(1,t)
1,l + x2,i p(2,t)

1,l

)[ p(1,t)
1,l

p(2,t)
1,l

])
(28)

In order to highlight the main characteristics of the H-PCR procedure, it was assumed
that sets 1 and 2 contained n1 = n2 = 100 and that the experimental fluctuations could be
described by the following covariance matrices of measurement fluctuations:

V (1)
x =

[
σ2

1,1 ρ1 σ1,1σ1,2
ρ1 σ1,1σ1,2 σ2

1,2

]
=

[
1 0.09

0.09 0.01

]
V (2)

x =

[
σ2

2,1 ρ2 σ2,1σ2,2
ρ2 σ2,1σ2,2 σ2

2,2

]
=

[
1 0.0

0.0 0.81

] (29)

Pseudo-random numbers were then generated, assuming the normal distribution with
null mean value, as shown in Figure 1a. One can clearly see the existence of two distinct
populations of datapoints (presented in different colors) in Figure 1a, with different error
contents and different degrees of collinearity.

Figure 1b shows the most influential principal directions of the full set of available
datapoints, when the standard PCA procedure and the proposed H-PCR scheme were
used. One can clearly see that the H-PCR procedure weighed the information contents
of the distinct data populations and calculated a principal direction that was strongly
influenced by the information provided by the most precise measurements. On the other
hand, the standard PCA analysis disregarded the information contents of the available data
and provided a principal direction that described the overall variability of the available
measurements, assuming implicitly that V (1)

x = V (2)
x = I. Nevertheless, as discussed

previously, many experimental studies have shown that this assumption is usually incorrect
and can lead to serious misinterpretation of the available experimental data [18,23,24].
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3.2. Analysis of NIR Spectra

As reported previously [18], error and correlation analyses of actual NIR spectral data
provided the following results:

• The covariance matrixes of measurement fluctuations depend on the measurement
condition and on the considered spectral region;

• The increase of stirring velocity increases the variability of spectral measurements
because of the unavoidable shaking of mechanical parts and possible formation of air
bubbles (as in real monitoring environments);

• The increase of temperature increases the variability of spectral measurements, possi-
bly because of the lower system viscosity and increased rates of air bubbles formation;

• Spectral measurements in the NIR region are subject to strongly correlated fluctuations,
so that measurement error fluctuations are not independent, which must be considered
during quantitative analyses.
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Therefore, based on the previous paragraphs, the use of H-PCR techniques for model
building and calibration can be necessary, as obtained spectral measurements in the NIR
region were subject to non-uniform and collinear measurement uncertainties that depended
on measurement conditions. Similar characteristics can also be observed in other exper-
imental systems, as already discussed. It is important to emphasize that the qualitative
behaviors of first-derivative and second-derivative spectra of the analyzed spectral data
were very similar to the behavior of the crude spectra, being sensitive to changes of tem-
perature and stirring speeds and presenting variances and covariances that responded
to changes of wavelengths, temperature and stirring speeds. Monteiro et al. (2017) [18]
showed that the use of standard pretreatment techniques did not change the overall behav-
ior of the spectral variability and it could be noted that differences of at least one order of
magnitude could be observed for computed variances in all cases.

3.2.1. Classical Linear Squares (CLS)

A simple linear calibration was performed with the selected data with the help of the
software Statistica 6.0 [50]. The used model was defined as

Cx = a + b A (30)

where Cx is the xylene concentration (vol%), A is the intensity of the absorbance of the first
derivative of measured NIR spectra and a and b are parameters of the calibration model,
respectively linear and angular coefficients. Calibration models were initially built with
different datasets, using all available data for specific wavelength values. Then, data were
grouped in terms of temperature, stirring speed or both for specific wavelength values.
Stirring speed and temperature variations significantly affected the performances of the
calibration models, because of the modification of the statistical behavior of the collected
spectral data. For this reason, most models were also built for constant temperature and
stirring speed conditions. The obtained results showed that the model performances were
usually bad and significantly influenced by the wavelength, temperature and stirring
variations. In order to illustrate this behavior, Figure 2 shows the model performance for
stirring speed of 350 rpm at the wavelength of 2052 nm and Figure 3 shows the model
performance for temperature of 60 ◦C at the wavelength of 2052 nm. Calculations have
been made for different wavelengths and all of them presented similar behaviors at the
distinct operation conditions, showing that improved modeling procedures should be
pursued.
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3.2.2. Analysis of the Vx Matrix

In order to analyze the structure of the covariance matrix of measurement error, Vx,
80 spectral measurements were performed for a solution containing 20 vol% xylene and
80 vol% toluene at 30 ◦C and stirring velocity of 250 rpm. Then, the 79 eigenvectors and
eigenvalues of the Vx matrix were calculated. From this analysis it could be concluded that
not more than four eigenvalues were sufficient to explain 99% of the total variability of the
problem, clearly indicating the small number of sources of variability in the system (when
compared to the number of spectral responses, m) and the numerical problems related
to the inversion of Vx, as described previously and completely neglected in the available
NIR literature. This can be regarded as a particularly important result, because it clearly
indicates that suitable pseudo-inverses should be obtained to represent the inverse of Vx in
maximum likelihood calibration procedures.

The four eigenvectors that concentrated 99% of the problem variability are presented
in Figure 4. This result can be regarded as very important because it clearly indicates
that the usual principal directions, as calculated with standard PCR techniques, may not
constitute the most suitable set of directions for modeling purposes in heteroscedastic
problems, given the effect of varying measurement errors on the final performances of
calibration models. The accumulated variability for each eigenvector included in the
analysis is presented in Figure 5.
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Figure 4. The four eigenvectors of the covariance matrix of NIR spectral measurement fluctuations
evaluated for solutions containing 20 vol% xylene and 80 vol% toluene at 30 ◦C and stirring velocity
of 250 rpm.
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3.3. PLS, PCR and H-PCR Calibrations

The principal directions were calculated using PLS, PCR and H-PCR methods. In the
cases of PLS and H-PCR calibrations, the principal directions were calculated with help
of the stochastic numerical procedure developed in Section 2.2, considering the intrinsic
heteroscedastic nature of experimental variances. It could be noted that the directions
calculated when Vx variations were taken into consideration were very different from
the directions calculated when these variations were neglected. Therefore, information
regarding the variations of Vx can definitely affect the final calibration model performances,
as shown by Monteiro et al. (2017) [18] for the first time and illustrated in Section 3.1. As
observed experimentally, differences increased when increasing amounts of information
were extracted (in other words, differences are more significant for the fifth principal
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direction than for the first principal direction). Figure 6a–e presents the five first principal
directions, as calculated for calibrations performed for illustrative purposes with PLS, PCR
and H-PCR at 90 ◦C and 450 rpm, showing that variations of Vx change the principal
directions and can affect the model calibration, clearly indicating that variations of Vx
should not be disregarded a priori, as usually done and as illustrated in Section 3.1. The
less significant modification of the first principal directions is probably related to the fact
that the first directions tend to reflect more clearly the absolute variations of the variable
coordinates (or variations of average responses), while the other directions tend to reflect
more clearly the measurement variability around the main averages, which are more
sensitive to the Vx values.

The evolutions of the model performances as functions of the number of latent vari-
ables, as calculated for calibrations performed for illustrative purposes with PLS, PCR and
H-PCR at 90 ◦C and 450 rpm, are presented in Figures 7–9. As one can see in Figures 7 and 8,
the calibration objective function values decreased and the model correlation coefficients
increased when the number of latent values increased, as one might already expect. How-
ever, the speeds of variation of both objective function values and model correlations with
the number of latent values depended on the particularly analyzed numerical technique.
When 10% of the original dataset was selected at random and used for cross-validation,
10 latent variables were selected for all the models.
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Figure 8. Correlation coefficients for PLS, PCR and HPCR models at 90 ◦C and 450 rpm.
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Processes 2021, 9, 1686 19 of 23

As one might already expect, obtained correlation coefficients were higher for the
PLS approach (Figure 8). This is not surprising because the PLS approach attempts to
select the latent variables that maximize the correlation among measured and calculated
responses, while the PCR and H-PCR procedures define the latent variables based on
some specific features of the input variable space, as already described. Consequently, the
PLS technique establishes a sort of threshold of maximum correlation performance for
the calibration system based on latent variables. In spite of that, one must observe that
calibration performances obtained with the proposed H-PCR approach were always better
than the ones obtained with the usual PCR approach and close to the performances of the
PLS model when the number of latent variables was higher than three. This clearly shows
that the explicit consideration of heteroscedasticity in the numerical formulation can benefit
the quantitative calibration step. Table 2 and Figure 10 present the prediction variances
of model outputs at the different concentrations used for model calibration at 90 ◦C and
450 rpm, clearly indicating the heteroscedastic behavior of the prediction variances of
model outputs and justifying the use of the heteroscedastic PLS procedure for modeling
purposes.

Table 2. Data for error prediction for different xylene concentrations at 90 ◦C and 450 rpm using
H-PCR method.

Concentration
[wt Fraction]

Prediction Variance
[wt Fraction]2 F Value *

0 0.001424 4.387

0.10 0.001723 5.331

0.20 0.002378 7.329

0.30 0.002293 7.068

0.40 0.007016 21.625

0.50 0.001521 4.688

0.60 0.02823 8.700

0.70 0.002033 6.267

0.80 0.001014 3.127

0.90 0.0000418 1.289

1.00 0.000324 1.000
* Limiting F-value for confidence level of 95% is equal to 4.02. Numbers in bold are statistically different from
prediction variance measured for c = 1 with 95% of confidence.
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It is important to observe that the use of a high number of latent variables should
not be regarded as a disadvantage of the proposed analyses. Firstly, one must observe
that the use of 10 latent variables is not bad for practical purposes, as the model is still
sufficiently compact for fast and reliable use in real problems in this case. Besides, model
performances could be regarded as good in all cases where the number of latent variables
was higher than six. Secondly, one must also observe that the selected PLS model provided
a correlation of 0.995 for 10 latent variables, while the selected PCR model provided a
correlation of 0.975 and the selected H-PCR model provided a correlation of 0.978, which
could be regarded as excellent in all cases.

It is also important to observe that a stochastic procedure was used for computation of
latent variables and directions in the proposed H-PCR approach. For this reason, it must be
noted that convergence of the proposed method was assured, as shown in Figure 11, which
shows the first principal directions obtained with the H-PCR model for different numerical
runs. It can be noted that the calculated directions (and model responses) were essentially
the same in all cases, characterizing the appropriate convergence of the proposed approach.
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4. Conclusions

In the present work, a new heteroscedastic principal component regression (H-PCR)
procedure was presented. By incorporating the variations of the covariance matrix of
measurement fluctuations (Vx) into the analysis, the proposed procedure can provide more
reliable principal directions and model calibrations. Particularly, a stochastic algorithm
was proposed and implemented to allow for H-PCR calculations.

Calibration models were built in a simple experimental problem (mixtures of xylene
and toluene) in order to compare the performances of CLS (classical least squares), PCR,
H-PCR and PLS (partial least squares) techniques. It was initially observed that CLS
calibration models were usually inefficient and unable to deal with the variations of
the analyzed experimental problem. Then, it was shown that the principal directions
calculated when variations of Vx are taken into consideration can be quite different from
the ones calculated when variations of Vx are disregarded, indicating the influence of the
measurement fluctuations on the model calibration step. Finally, it was shown that H-PCR
models can allow for appropriate calibration of NIR data and that identification of the
most compact and reliable calibration model can be performed better with the H-PCR
technique than with the PCR technique. It is also important to observe that the analysis of
the Vx, as obtained experimentally, indicated that few eigenvalues can concentrate most of
the system variability, confirming that Vx can be nearly singular, demanding the use of
pseudo-inverse procedures for proper implementation of H-PCR techniques.
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Nomenclature

Symbol Description
y Vector model responses
xi Available data (or inputs)
n Total number of data
σij Standard deviation at experimental condition i
σ2 Variance
µ Contracting factor to convergence control
ρ Correlation factor
Fobj Objective function
λ Eigenvalues
Λ Diagonal matrix with eigenvalues
D Matrix with eigenvectors
ϕi Variability fraction along the ith direction
Vxi Matrix of variance
p Principal direction
amin, amax Amplitude interval
bmin, bmax Lag interval
fmin, fmax Frequency interval
δ Tolerance
σr Reduction factor
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