Extraction and Analysis of Chemical Compositions of Natural Products and Plants
Abstract
:1. Introduction
2. Extraction
2.1. Traditional Extraction Methods
2.1.1. Maceration
2.1.2. Percolation
2.1.3. Decoction
2.1.4. Reflux Extraction
2.1.5. Soxhlet Extraction
2.1.6. Steam Distillation
2.2. Modern Extraction Methods
2.2.1. Ultrasound-Assisted Extraction
2.2.2. Microwave-Assisted Extraction
2.2.3. Supercritical Fluid Extraction
2.2.4. Pressurized Liquid Extraction
2.2.5. Enzyme-Assisted Extraction
2.2.6. Ionic Liquid Extraction
3. Separation
3.1. Adsorption Chromatography
3.1.1. Polyamide Column Chromatography
3.1.2. Macroporous Resins
3.1.3. Silica Gel
3.1.4. Aluminum Oxide
3.2. Distribution Chromatography
3.3. Ion Exchange Chromatography
3.4. Molecular Exclusion Chromatography
3.5. Other Chromatograms
3.5.1. Membrane Filtration
3.5.2. Molecular Distillation
3.5.3. Supercritical Fluid Chromatography
3.5.4. Preparative Gas Chromatography
3.5.5. Preparative Liquid Chromatography
4. Structural Identification
4.1. Ultraviolet-Visible (UV-Vis) Spectroscopy
4.2. Infrared Spectroscopy (IR)
4.3. Nuclear Magnetic Resonance Spectroscopy (NMR)
4.4. Mass Spectrometry (MS)
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.Y.; Ouyang, Z.J.; Du, H.J.; Wang, M.J.; Wang, J.J.; Sun, H.Y.; Kong, L.D.; Xu, Q.; Ma, H.Y.; Sun, Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm. Sin. B 2022, 12, 4011–4039. [Google Scholar] [CrossRef]
- Wang, H.B.; He, Y.; Jian, M.L.; Fu, X.G.; Cheng, Y.H.; He, Y.J.; Fang, J.; Li, L.; Zhang, D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022, 27, 7480. [Google Scholar] [CrossRef]
- Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Song, J.K.; Kong, L.L.; Yuan, T.Y.; Li, W.; Zhang, W.; Hou, B.Y.; Lu, Y.; Du, G.H. The strategies and techniques of drug discovery from natural products. Pharmacol. Ther. 2020, 216, 107686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Velarde-Salcedo, A.J.; De León-Rodríguez, A.; Calva-Cruz, O.J.; Balderas-Hernández, V.E.; Torres, S.D.; Barba-de la Rosa, A.P. Extraction of bioactive compounds from waste by maceration and supercritical fluids extraction: The recovery of high added-value compounds. Int. J. Food Sci. Technol. 2023, 17, 100–111. [Google Scholar] [CrossRef]
- Milic, S.M.; Kostic, M.D.; Milic, P.S.; Vucic, V.M.; Arsic, A.C.; Veljkovic, V.B.; Stamenkovic, O.S. Extraction of Oil from Rosehip Seed: Kinetics, Thermodynamics, and Optimization. Chem. Eng. Technol. 2020, 43, 2373–2381. [Google Scholar] [CrossRef]
- Zainal, W.N.H.W.; Azian, N.A.A.M.; Albar, S.S.; Rusli, A.S. Effects of extraction method, solvent and time on the bioactive compounds and antioxidant activity of Tetrigona apicalis Malaysian propolis. J. Apic. Res. 2022, 61, 264–270. [Google Scholar] [CrossRef]
- Chaudhry, F.; Ahmad, M.L.; Hayat, Z.; Ranjha, M.M.A.N.; Chaudhry, K.; Elboughdiri, N.; Asmari, M.; Uddin, J. Extraction and Evaluation of the Antimicrobial Activity of Polyphenols from Banana Peels Employing Different Extraction Techniques. Separations 2022, 9, 165. [Google Scholar] [CrossRef]
- Cujic, N.; Savikin, K.; Jankovic, T.; Pljevljakusic, D.; Zdunic, G.; Ibric, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef]
- Jovanovic, A.A.; Dordevic, V.B.; Zdunic, G.M.; Pljevljakusic, D.S.; Savikin, K.P.; Godevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Di Michele, A.; Pagano, C.; Allegrini, A.; Blasi, F.; Cossignani, L.; Raimo, E.D.; Faieta, M.; Oliva, E.; Pittia, P.; Primavilla, S.; et al. Hazelnut Shells as Source of Active Ingredients: Extracts Preparation and Characterization. Molecules 2021, 26, 6607. [Google Scholar] [CrossRef] [PubMed]
- Achat, S.; Tomao, V.; Madani, K.; Chibane, M.; Elmaataoui, M.; Dangles, O.; Chemat, F. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason. Sonochem. 2012, 19, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Chanivet, M.; Duran-Guerrero, E.; Rodriguez-Dodero, M.D.C.; Barroso, C.G.; Castro, R. Application of accelerating energies to the maceration of sherry vinegar with citrus fruits. J. Sci. Food Agric. 2021, 101, 2235–2246. [Google Scholar] [CrossRef]
- Wang, W.Y.; Qu, H.B.; Gong, X.C. Research progress on percolation extraction process of traditional Chinese medicines. China Zhongguo Zhong Yao Za Zhi 2020, 45, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Ding, F.; Qu, H.B.; Gong, X.C. Mechanism modeling and application of Salvia miltiorrhiza percolation process. Sci. Rep. 2023, 13, 8311. [Google Scholar] [CrossRef]
- Avram, M.; Stoica, A.; Dobre, T.; Stroescu, M. Extraction of Vegetable Oils from Ground Seeds by Percolation Techniques. Univ. Politeh. Buchar. 2014, 76, 13–22. [Google Scholar]
- Shejawale, D.D.; Murugesh, C.S.; Rastogi, N.K.; Subramanian, R. Effect of feed particle size and solvent flow rate on soybean oil extraction in a percolation type extractor. J. Food Sci. Technol. 2022, 59, 4723–4730. [Google Scholar] [CrossRef]
- Kassing, M.; Jenelten, U.; Schenk, J.; Hänsch, R.; Strube, J. Combination of Rigorous and Statistical Modeling for Process Development of Plant-Based Extractions Based on Mass Balances and Biological Aspects. Chem. Eng. Technol. 2012, 35, 109–132. [Google Scholar] [CrossRef]
- Wilson, J.; Simpson, T.; Spelman, K. Total cannabidiol (CBD) concentrations and yields from traditional extraction methods: Percolation vs. maceration. Front. Pharmacol. 2022, 13, 4438. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, N.; Riaz, M.; Al-Tarouti, M.; Aloufi, F.; AlDarwish, A.; Alalaq, B.; Alhanfoush, B.; Khan, Z. Optimization of extraction and quantification technique for phenolics content of garlic (Allium sativum): An application for comparative phytochemical evaluation based on cultivar origin. Biomed. Chromatogr. 2020, 34, e4942. [Google Scholar] [CrossRef]
- Sevindik, O.; Kelebek, H.; Rombola, A.D.; Selli, S. Grape seed oil volatiles and odour activity values: A comparison with Turkish and Italian cultivars and extraction methods. J. Food Sci. Technol. 2022, 59, 1968–1981. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Tang, T.; Li, P.F.; Li, X.X.; Wu, Y.; Feng, D.D.; Hu, M.R.; Dai, F.; Zheng, F.; Zhang, W.; et al. Systematic analysis of tRNA-derived small RNAs reveals therapeutic targets of Xuefu Zhuyu decoction in the cortexes of experimental traumatic brain injury. Phytomedicine 2022, 102, 154168. [Google Scholar] [CrossRef]
- Silva, A.M.; Pinto, D.; Fernandes, I.; Goncalves Albuquerque, T.; Costa, H.S.; Freitas, V.; Rodrigues, F.; Oliveira, M. Infusions and decoctions of dehydrated fruits of Actinidia arguta and Actinidia deliciosa: Bioactivity, radical scavenging activity and effects on cells viability. Food Chem. 2019, 289, 625–634. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2015, 170, 378–385. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I.C. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chem. 2015, 167, 131–137. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chem. 2014, 158, 73–80. [Google Scholar] [CrossRef]
- Reynoso-Camacho, R.; Rodriguez-Villanueva, L.D.; Sotelo-Gonzalez, A.M.; Ramos-Gomez, M.; Perez-Ramirez, I.F. Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and non-extractable polyphenols. Food Chem. 2021, 350, 129239. [Google Scholar] [CrossRef] [PubMed]
- Zan, B.; Li, Y.Y.; Sun, X.S.; Wang, T.M.; Shi, R.; Ma, Y.M. Volatile components in Yinchenzhufu decoction and their pharmacokinetics after oral administration in rats. RSC Adv. 2022, 12, 3287–3299. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cui, X.; Zhang, Z.; Chen, L.; Zhang, Y.; Wang, C.; Yang, X.; Qu, Y.; Xiong, Y. Optimisation of Ethanol-Reflux Extraction of Saponins from Steamed Panax notoginseng by Response Surface Methodology and Evaluation of Hematopoiesis Effect. Molecules 2018, 23, 1206. [Google Scholar] [CrossRef]
- Moldovan, M.L.; Iurian, S.; Puscas, C.; Silaghi-Dumitrescu, R.; Hanganu, D.; Bogdan, C.; Vlase, L.; Oniga, I.; Benedec, D. A Design of Experiments Strategy to Enhance the Recovery of Polyphenolic Compounds from Vitis vinifera By-Products through Heat Reflux Extraction. Biomolecules 2019, 9, 529. [Google Scholar] [CrossRef]
- Ma, Y.; Meng, A.; Liu, P.; Chen, Y.; Yuan, A.; Dai, Y.; Ye, K.; Yang, Y.; Wang, Y.; Li, Z. Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules 2022, 27, 362. [Google Scholar] [CrossRef]
- Shang, Y.F.; Chen, S.X.; Miao, J.H.; Zhang, Y.G.; Cai, H.Z.; Bu, X.Y.; Xie, Y.; Ma, Y.L.; Wang, C.X.; Xu, J.L.; et al. Autoclaving hyphenated with reflux extraction for gaining bioactive components from Chaenomeles fruits. Sep. Sci. Technol. 2021, 56, 1225–1230. [Google Scholar] [CrossRef]
- Wei, M.C.; Xiao, J.; Yang, Y.C. Extraction of alpha-humulene-enriched oil from clove using ultrasound-assisted supercritical carbon dioxide extraction and studies of its fictitious solubility. Food Chem. 2016, 210, 172–181. [Google Scholar] [CrossRef]
- Yang, Y.C.; Wei, M.C. Development and characterization of a green procedure for apigenin extraction from Scutellaria barbata D. Don. Food Chem. 2018, 252, 381–389. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zeng, G.M.; Pan, Y.Z.; Qi, N. Difference research of pectins extracted from tobacco waste by heat reflux extraction and microwave-assisted extraction. Biocatal. Agric. Biotechnol. 2018, 15, 359–363. [Google Scholar] [CrossRef]
- Jiang, M.H.; Yang, L.; Zhu, L.; Piao, J.H.; Jiang, J.G. Comparative GC/MS analysis of essential oils extracted by 3 methods from the bud of Citrus aurantium L. var. amara Engl. J. Food Sci. 2011, 76, C1219–C1225. [Google Scholar] [CrossRef] [PubMed]
- Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.S. Advances in Lipid Extraction Methods-A Review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, G.L.; Ghazani, S.M.; Corazza, M.L.; Marangoni, A.G.; Ribani, R.H. Assessment of subcritical propane, supercritical CO2 and Soxhlet extraction of oil from sapucaia (Lecythis pisonis) nuts. J. Supercrit. Fluids 2018, 133, 122–132. [Google Scholar] [CrossRef]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. J. Appl. Res. Med. Aroma 2018, 11, 12–17. [Google Scholar] [CrossRef]
- Haro-Gonzalez, J.N.; Castillo-Herrera, G.A.; Martinez-Velazquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Saad, A.M.; Salem, H.M.; Ashry, N.M.; Abo Ghanima, M.M.; Shukry, M.; Swelum, A.A.; Taha, A.E.; El-Tahan, A.M.; et al. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: A comprehensive review. Poult. Sci. 2022, 101, 101584. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Barba, F.J.; Dominguez, R.; Sant'Ana, A.S.; Khaneghah, A.M.; Gavahian, M.; Gomez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Kaya, D.A.; Ghica, M.V.; Danila, E.; Ozturk, S.; Turkmen, M.; Albu Kaya, M.G.; Dinu-Pirvu, C.E. Selection of Optimal Operating Conditions for Extraction of Myrtus Communis L. Essential Oil by the Steam Distillation Method. Molecules 2020, 25, 2399. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Horgan, T.; Astatkie, T.; Schlegel, V. Distillation time modifies essential oil yield, composition, and antioxidant capacity of fennel (Foeniculum vulgare Mill). J. Oleo Sci. 2013, 62, 665–672. [Google Scholar] [CrossRef]
- Tadić, V.; Božović, M.; Sapienza, F.; Astolfi, R.; Mladenović, M.; Zaka, M.C.; Del Bove, F.; Borzacchi, F.; Fraschetti, C.; Rossi, C.; et al. Chemical Composition and Anti-Candida Activity of Mentha suaveolens Ehrh. Essential Oils Obtained by Different Distillation Processes. Molecules 2023, 28, 6934. [Google Scholar] [CrossRef]
- Peng, Y.; Bishop, K.S.; Quek, S.Y. Compositional Analysis and Aroma Evaluation of Feijoa Essential Oils from New Zealand Grown Cultivars. Molecules 2019, 24, 2053. [Google Scholar] [CrossRef]
- Cravotto, G.; Cintas, P. Power ultrasound in organic systhesis: Moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev. 2006, 35, 180–196. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Wen, C.T.; Zhang, J.X.; Zhang, H.H.; Dzah, C.S.; Zandile, M.; Duan, Y.Q.; Ma, H.L.; Luo, X.P. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Xiong, X.; Huang, G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. Ultrason. Sonochem. 2023, 95, 106416. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Wang, S.; Zhou, A.; Hu, Q.; Huang, G. Ultrasound-assisted enzyme extraction and properties of Shatian pomelo peel polysaccharide. Ultrason. Sonochem. 2023, 98, 106507. [Google Scholar] [CrossRef] [PubMed]
- Nurkhasanah, A.; Fardad, T.; Carrera, C.; Setyaningsih, W.; Palma, M. Ultrasound-Assisted Anthocyanins Extraction from Pigmented Corn: Optimization Using Response Surface Methodology. Methods Protoc. 2023, 6, 69. [Google Scholar] [CrossRef]
- Eskilsson, C.S.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Hussain, A.; Sameen, A.; Sahar, A.; Khan, S.; Siddique, R.; Aadil, R.M.; Xu, B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. Ultrason. Sonochem. 2021, 78, 105686. [Google Scholar] [CrossRef]
- Hu, W.C.; Zhao, Y.N.; Yang, Y.; Zhang, H.F.; Ding, C.B.; Hu, C.; Zhou, L.J.; Zhang, Z.W.; Yuan, S.; Chen, Y.E.; et al. Microwave-assisted extraction, physicochemical characterization and bioactivity of polysaccharides from Camptotheca acuminata fruits. Int. J. Biol. Macromol. 2019, 133, 127–136. [Google Scholar] [CrossRef]
- Ding, X.Q.; Li, L.; Wang, Y.Z.; Chen, J.; Huang, Y.H.; Xu, K.J. Design of guanidinium ionic liquid based microwave-assisted extraction for the efficient extraction of Praeruptorin A from Radix peucedani. J. Sep. Sci. 2014, 37, 3539–3547. [Google Scholar] [CrossRef]
- Fernandez-Pastor, I.; Fernandez-Hernandez, A.; Perez-Criado, S.; Rivas, F.; Martinez, A.; Garcia-Granados, A.; Parra, A. Microwave-assisted extraction versus Soxhlet extraction to determine triterpene acids in olive skins. J. Sep. Sci. 2017, 40, 1209–1217. [Google Scholar] [CrossRef]
- Liu, B.; Fu, J.; Zhu, Y.; Chen, P. Optimization of Microwave-assisted Extraction of Essential Oil from Lavender Using Response Surface Methodology. J. Oleo Sci. 2018, 67, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- Rozzi, N.L.; Singh, R.K. Supercritical Fluids and the Food Industry. Compr. Rev. Food Sci. Food Saf. 2002, 1, 33–44. [Google Scholar] [CrossRef]
- Diaz-Reinoso, B.; Moure, A.; Dominguez, H.; Parajo, J.C. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem. 2006, 54, 2441–2469. [Google Scholar] [CrossRef] [PubMed]
- Padrela, L.; Rodrigues, M.A.; Duarte, A.; Dias, A.M.A.; Braga, M.E.M.; de Sousa, H.C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals—A comprehensive review. Adv. Drug Deliv. Rev. 2018, 131, 22–78. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, V.; Moghal, M.M.; Ladniya, V.; Fatema, S. Supercritical Fluid Extraction: Applications to Biological System. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 371–378. [Google Scholar]
- Tabernero, A.; Cardea, S. Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110940. [Google Scholar] [CrossRef] [PubMed]
- Wrona, O.; Rafinska, K.; Mozenski, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef]
- Donelian, A.; Carlson, L.H.C.; Lopes, T.J.; Machado, R.A.F. Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation. J. Supercrit. Fluids 2009, 48, 15–20. [Google Scholar] [CrossRef]
- Zhang, H.X.; Huang, T.; Liao, X.N.; Zhou, Y.H.; Chen, S.X.; Chen, J.; Xiong, W.M. Extraction of Camphor Tree Essential Oil by Steam Distillation and Supercritical CO2 Extraction. Molecules 2022, 27, 5385. [Google Scholar] [CrossRef] [PubMed]
- Zermane, A.; Larkeche, O.; Meniai, A.H.; Crampon, C.; Badens, E. Optimization of essential oil supercritical extraction from Algerian Myrtus communis L. leaves using response surface methodology. J. Supercrit. Fluids 2014, 85, 89–94. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Giergielewicz-Mozajska, H.; Dabrowski, L.; Namiesnik, J. Accelerated Solvent Extraction (ASE) in the analysis of environmental solid—Some aspects of theory and practice. Crit. Rev. Anal. Chem. 2001, 31, 149–165. [Google Scholar] [CrossRef]
- Carabias-Martinez, R.; Rodriguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernandez-Mendez, J. Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. A 2005, 1089, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Conte, R.; Gullich, L.M.D.; Bilibio, D.; Zanella, O.; Bender, J.P.; Carniel, N.; Priamo, W.L. Pressurized liquid extraction and chemical characterization of safflower oil: A comparison between methods. Food Chem. 2016, 213, 425–430. [Google Scholar] [CrossRef]
- Cam, M.; Hisil, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Cea Paze, I.; Lozano-Sanchez, J.; Borras-Linares, I.; Nunez, H.; Robert, P.; Segura-Carretero, A. Obtaining an Extract Rich in Phenolic Compounds from Olive Pomace by Pressurized Liquid Extraction. Molecules 2019, 24, 3108. [Google Scholar] [CrossRef]
- Jacques, R.A.; Dariva, C.; de Oliveira, J.V.; Caramao, E.B. Pressurized liquid extraction of mate tea leaves. Anal. Chim. Acta 2008, 625, 70–76. [Google Scholar] [CrossRef]
- Dobroslavic, E.; Garofulic, I.E.; Separovic, J.; Zoric, Z.; Pedisic, S.; Dragovic-Uzelac, V. Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef]
- Supasatyankul, B.; Saisriyoot, M.; Klinkesorn, U.; Rattanaporn, K.; Sae-Tan, S. Extraction of Phenolic and Flavonoid Compounds from Mung Bean (Vigna radiata L.) Seed Coat by Pressurized Liquid Extraction. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef]
- Cheong, M.W.; Tan, A.A.; Liu, S.Q.; Curran, P.; Yu, B. Pressurised liquid extraction of volatile compounds in coffee bean. Talanta 2013, 115, 300–307. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Giahi, E.; Jahadi, M.; Khosravi-Darani, K. Enzyme-assisted extraction of glycyrrhizic acid from licorice roots using heat reflux and ultrasound methods. Biocatal. Agric. Biotechnol. 2021, 33, 101953. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; Marina, M.L.; Plaza, M. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem. 2021, 339, 128086. [Google Scholar] [CrossRef]
- Das, S.; Nadar, S.S.; Rathod, V.K. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int. J. Biol. Macromol. 2021, 191, 899–917. [Google Scholar] [CrossRef]
- Sowbhagya, H.B.; Chitra, V.N. Enzyme-Assisted Extraction of Flavorings and Colorants from Plant Materials. Crit. Rev. Food Sci. 2010, 50, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.; Sultana, B.; Akram, S.; Anwar, F.; Adnan, A.; Rizvi, S.S.H. Enzyme-assisted supercritical fluid extraction: An alternative and green technology for non-extractable polyphenols. Anal. Bioanal. Chem. 2017, 409, 3645–3655. [Google Scholar] [CrossRef]
- Khruengsai, S.; Promhom, N.; Sripahco, T.; Siriwat, P.; Pripdeevech, P. Optimization of enzyme-assisted microwave extraction of Zanthoxylum limonella essential oil using response surface methodology. Sci. Rep. 2023, 13, 12872. [Google Scholar] [CrossRef]
- Endres, F. Ionic liquids: Solvents for the electrodeposition of metals and semiconductors. Chemphyschem 2002, 3, 145–154. [Google Scholar] [CrossRef]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Kondrat, S.; Feng, G.; Bresme, F.; Urbakh, M.; Kornyshev, A.A. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem. Rev. 2023, 123, 6668–6715. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Baker, G.A.; Zhao, H. Ether- and alcohol-functionalized task-specific ionic liquids: Attractive properties and applications. Chem. Soc. Rev. 2012, 41, 4030–4066. [Google Scholar] [CrossRef] [PubMed]
- Rout, A.; Karmakar, S.; Venkatesan, K.A.; Srinivasan, T.G.; Rao, P.R.V. Room temperature ionic liquid diluent for the mutual separation of europium(III) from americium(III). Sep. Purif. Technol. 2011, 81, 109–115. [Google Scholar] [CrossRef]
- Gu, H.Y.; Chen, F.L.; Zhang, Q.; Zang, J. Application of ionic liquids in vacuum microwave-assisted extraction followed by macroporous resin isolation of three flavonoids rutin, hyperoside and hesperidin from Sorbus tianschanica leaves. J. Chromatogr. B 2016, 1014, 45–55. [Google Scholar] [CrossRef]
- Liang, H.; Wang, W.C.; Xu, J.L.; Zhang, Q.; Shen, Z.L.; Zeng, Z.; Li, Q.Y. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. Food Bioprod. Process. 2017, 104, 57–65. [Google Scholar] [CrossRef]
- Tan, Z.J.; Yi, Y.J.; Wang, H.Y.; Zhou, W.L.; Wang, C.Y. Extraction, Preconcentration and Isolation of Flavonoids from Apocynum venetum L. Leaves Using Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System. Molecules 2016, 21, 262. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, J.S.; Su, X.G.; Meng, Q.W.; Dou, J.P. Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System. Molecules 2019, 24, 778. [Google Scholar] [CrossRef]
- Wang, W.C.; Li, Q.Y.; Liu, Y.H.; Chen, B.B. Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface. Ultrason. Sonochem. 2015, 24, 13–18. [Google Scholar] [CrossRef]
- Ma, C.H.; Liu, T.T.; Yang, L.; Zu, Y.G.; Chen, X.; Zhang, L.; Zhang, Y.; Zhao, C. Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits. J. Chromatogr. A 2011, 1218, 8573–8580. [Google Scholar] [CrossRef]
- Huang, J.; He, J.M.; Mu, Q. Relayed chromatography—Countercurrent chromatography in series with liquid chromatography for the separation of natural products. J. Chromatogr. A 2022, 1676, 463205. [Google Scholar] [CrossRef] [PubMed]
- Broeckhoven, K.; Desmet, G. Theory of separation performance and peak width in gradient elution liquid chromatography: A tutorial. Anal. Chim. Acta 2022, 1218, 339962. [Google Scholar] [CrossRef] [PubMed]
- McChesney, J.D.; Rodenburg, D.L. Preparative chromatography and natural products discovery. Curr. Opin. Biotechnol. 2014, 25, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Liu, M.Y.; Chen, Z.X.; Mao, R.K.; Xiao, Q.H.; Gao, H.; Wei, M.J. Separation and purification of epigallocatechin-3-gallate (EGCG) from green tea using combined macroporous resin and polyamide column chromatography. J. Chromatogr. B 2015, 1002, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hayat, K.; Zhang, X.M.; Tong, J.M.; Xia, S.Q. Separation and Purification of Flavonoid from Ginkgo Extract by Polyamide Resin. Sep. Sci. Technol. 2010, 45, 2413–2419. [Google Scholar] [CrossRef]
- Gao, M.; Wang, X.; Gu, M.; Su, Z.; Wang, Y.; Janson, J.C. Separation of polyphenols using porous polyamide resin and assessment of mechanism of retention. J. Sep. Sci. 2011, 34, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, W.Y.; Chen, L.Y.; Ni, L.; Zou, X.X.; Ye, M.; Zhang, Z.Y.; Zou, S.Q. Flavonoid and chromone-rich extract from Euscaphis Konishii Hayata leaf attenuated alcoholic liver injury in mice. J. Ethnopharmacol. 2022, 295, 115455. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, B.; Ye, M.; Chen, J.; Liu, Y.; Wang, C. An Effective Chromatography Process for Simultaneous Purification and Separation of Total Lignans and Flavonoids from Valeriana amurensis. Molecules 2022, 27, 8598. [Google Scholar] [CrossRef]
- Marzouk, M.S. An acylated flavonol glycoside and hydrolysable tannins from Callistemon lanceolatus flowers and leaves. Phytochem. Anal. 2008, 19, 541–549. [Google Scholar] [CrossRef]
- Li, R.; Xia, Z.; Tian, Y.; Guan, M.; Zheng, Y.; Bin, L.; Dong, J.; Jiang, Q.; Du, L.; Li, M. Purification of total flavonoids from Ginkgo biloba flowers with resin column chromatography and evaluation of antioxidant activities in vitro. Prep. Biochem. Biotechnol. 2023, 53, 308–316. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Wei, J.H.; Qi, L.W.; Cheng, J.M.; Peng, G.P. A green and efficient protocol for large-scale production of glycyrrhizic acid from licorice roots by combination of polyamide and macroporous resin adsorbent chromatography. J. Sep. Sci. 2013, 36, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Hou, G.G.; Li, Y.Y.; Zhao, F.; Cong, W.; Wang, C.H. Preparative separation of phloridzin from apple leaves using macroporous resins followed by preparative high-performance liquid chromatography. J. Sep. Sci. 2018, 41, 3918–3924. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Yan, M.M.; Liu, W.; Chen, C.Y.; Zhao, B.S.; Zu, Y.G.; Fu, Y.J.; Luo, M.; Wink, M. Preparative enrichment and separation of astragalosides from Radix Astragali extracts using macroporous resins. J. Sep. Sci. 2010, 33, 2278–2286. [Google Scholar] [CrossRef]
- Belwal, T.; Li, L.; Yanqun, X.; Cravotto, G.; Luo, Z. Ultrasonic-assisted modifications of macroporous resin to improve anthocyanin purification from a Pyrus communis var. Starkrimson extract. Ultrason. Sonochem. 2020, 62, 104853. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Feng, J.L.; Li, Z.; Zang, X.Y.; Yang, X.W. Separation and Enrichment of Alkaloids from Coptidis Rhizoma and Euodiae Fructus by Macroporous Resin and Evaluation of the Effect on Bile Reflux Gastritis Rats. Molecules 2022, 27, 724. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.Y.; Zhu, G.H.; Li, L. Separation and enrichment of major quinolizidine type alkaloids from Sophora alopecuroides using macroporous resins. J. Chromatogr. B 2014, 945, 17–22. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Liu, L.; Xu, Y.Q.; Wang, L.B.; Teng, X.; Li, X.G.; Dai, J. Characterization and biological activities of a novel polysaccharide isolated from raspberry (Rubus idaeus L.) fruits. Carbohydr. Polym. 2015, 132, 180–186. [Google Scholar] [CrossRef]
- Ye, J.H.; Jin, J.; Liang, H.L.; Lu, J.L.; Du, Y.Y.; Zheng, X.Q.; Liang, Y.R. Using tea stalk lignocellulose as an adsorbent for separating decaffeinated tea catechins. Bioresour. Technol. 2009, 100, 622–628. [Google Scholar] [CrossRef]
- Dong, H.Q.; Ning, Z.X.; Yu, L.J.; Li, L.; Lin, L.C.; Huang, J.B. Preparative separation and identification of the flavonoid phlorhizin from the crude extract of Lithocarpus Polystachyus Rehd. Molecules 2007, 12, 552–562. [Google Scholar] [CrossRef]
- Kuang, P.; Song, D.; Yuan, Q.; Yi, R.; Lv, X.; Liang, H. Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography. Food Chem. 2013, 136, 342–347. [Google Scholar] [CrossRef]
- Sun, L.J.; Guo, Y.R.; Fu, C.C.; Li, J.J.; Li, Z. Simultaneous separation and purification of total polyphenols, chlorogenic acid and phlorizin from thinned young apples. Food Chem. 2016, 202, 518–519. [Google Scholar] [CrossRef]
- Ruan, J.; Qu, L.; Zhao, W.; Gao, C.; Huang, P.; Zheng, D.; Han, L.; Yu, H.; Zhang, Z.; Zhang, Y.; et al. Identification and Structural Analysis of Spirostanol Saponin from Yucca schidigera by Integrating Silica Gel Column Chromatography and Liquid Chromatography/Mass Spectrometry Analysis. Molecules 2020, 25, 3848. [Google Scholar] [CrossRef]
- Perera, W.H.; Ramsaroop, T.; Carvalho, R.; Rodenburg, D.L.; McChesney, J.D. A silica gel orthogonal high-performance liquid chromatography method for the analyses of steviol glycosides: Novel tetra-glucopyranosyl steviol. Nat. Prod. Res. 2019, 33, 1876–1884. [Google Scholar] [CrossRef]
- Kang, J.; Che, Y.; Yan, N.; Cao, D. Evaluation system construction and factor impact analysis of silica-gel adsorption to extract phytosterol glycosides from soybean lecithin powder. J. Sci. Food Agric. 2019, 99, 4287–4295. [Google Scholar] [CrossRef]
- Zhou, X.L.; Luo, Q.; Huang, S.X.; Wang, P.C.; Xu, Q.; Huang, X.; Liang, C.Q.; Chen, X. New tetralone derivatives from the leaves of Cyclocarya paliurus. J. Asian Nat. Prod. Res. 2019, 21, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Feng, X.; Alula, Y.; Yao, S. Bionic multi-tentacled ionic liquid-modified silica gel for adsorption and separation of polyphenols from green tea (Camellia sinensis) leaves. Food Chem. 2017, 230, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Lee, Y.G.; Kim, H.G.; Yoon, D.; Jeong, J.T.; Lee, D.Y.; Baek, N.I. New dibenzocyclooctadiene lignan from Schisandra chinensis (Turcz.) Baill. fruits. Appl. Biol. Chem. 2021, 64, 46. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, R.; Sui, J.; Liu, Y. Simultaneous Preparation of Salidroside and p-Tyrosol from Rhodiola crenulata by DIAION HP-20 Macroporous Resin Chromatography Combined with Silica Gel Chromatography. Molecules 2018, 23, 1602. [Google Scholar] [CrossRef]
- Cao, X.L.; Xu, J.; Bai, G.; Zhang, H.; Liu, Y.; Xiang, J.F.; Tang, Y.L. Isolation of anti-tumor compounds from the stem bark of Zanthoxylum ailanthoides Sieb. & Zucc. by silica gel column and counter-current chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 929, 6–10. [Google Scholar] [CrossRef]
- Liang, Z.K.; Xie, Z.S.; Lam, S.C.; Xu, X.J. Optimization of the fractional precipitation of paclitaxel from a Taxus chinensis cell culture using response surface methodology and its isolation by consecutive high-speed countercurrent chromatography. J. Sep. Sci. 2014, 37, 2322–2330. [Google Scholar] [CrossRef] [PubMed]
- Subagio, A.; Morita, N.; Sawada, S. Carotenoids and their fatty-acid esters in banana peel. J. Nutr. Sci. Vitaminol. 1996, 42, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.; Palomino Cabello, C.; Saraji, M.; Manuel Estela, J.; Cerda, V.; Turnes Palomino, G.; Maya, F. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks. J. Sep. Sci. 2018, 41, 2012–2019. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.X.; Li, L.Z.; Yang, F.; Tan, W.Q.; Zhao, G.M.; Zou, H.B.; Xian, M.; Zhang, Y.W. Separation of ionic liquid [Mmim][DMP] and glucose from enzymatic hydrolysis mixture of cellulose using alumina column chromatography. Appl. Microbiol. Biot. 2011, 91, 399–405. [Google Scholar] [CrossRef]
- Ito, Y.; Bowman, R.L. Countercurrent chromatography: Liquid-liquid partition chromatography without solid support. Science 1970, 167, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.M.; Liu, Y. High speed counter current chromatography: Overview of solvent-system and elution-mode. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 629–636. [Google Scholar] [CrossRef]
- Song, K.; Lee, K.J.; Kim, Y.S. Development of an efficient fractionation method for the preparative separation of sesquiterpenoids from Tussilago farfara by counter-current chromatography. J. Chromatogr. A 2017, 1489, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Marston, A.; Hostettmann, K. Developments in the application of counter-current chromatography to plant analysis. J. Chromatogr. A 2006, 1112, 181–194. [Google Scholar] [CrossRef]
- Liu, D.; Zou, X.; Gao, M.; Gu, M.; Xiao, H. Hydrophilic organic/salt-containing aqueous two-phase solvent system for counter-current chromatography: A novel technique for separation of polar compounds. J. Chromatogr. A 2014, 1356, 157–162. [Google Scholar] [CrossRef]
- Song, G.; Du, Q. Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system. J. Chromatogr. A 2010, 1217, 5930–5934. [Google Scholar] [CrossRef]
- Ito, Y.; Ma, Y. pH-zone-refining countercurrent chromatography. J. Chromatogr. A 1996, 753, 1–36. [Google Scholar] [CrossRef]
- Zhi, W.; Deng, Q. Purification of salvianolic acid B from the crude extract of Salvia miltiorrhiza with hydrophilic organic/salt-containing aqueous two-phase system by counter-current chromatography. J. Chromatogr. A 2006, 1116, 149–152. [Google Scholar] [CrossRef]
- Zhao, J.; Li, P.; Zheng, Z.; Pi, Z.; Xu, L.; Duan, L.; Ao, W.; Sun, X.; Liu, Z.; Liu, J. pH-Zone-refining counter-current chromatography for two new lipo-alkaloids separated from refined alkaline extraction of Kusnezoff monkshood root. J. Sep. Sci. 2020, 43, 2447–2458. [Google Scholar] [CrossRef]
- Zhu, H.; Geng, Y.; Ding, S.; Li, E.; Li, L.; Wang, X.; Yu, J. Separation and purification of alkaloids and phenolic acids from Phellodendron chinense by pH-zone refining and online-storage inner-recycling counter-current chromatography. J. Sep. Sci. 2023, 46, e2300497. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Du, Y.; Kuang, J.; Sun, S.; Ma, J.; Jiang, R. PH-zone-refining counter-current chromatography with a hydrophilic organic/salt-containing two-phase solvent system for preparative separation of polar alkaloids from natural products. J. Chromatogr. A 2018, 1553, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, N.; Zhang, M.; Ito, Y.; Zhang, H.; Wang, Y.; Guo, X.; Hu, P. Development of a method to extract and purify target compounds from medicinal plants in a single step: Online hyphenation of expanded bed adsorption chromatography and countercurrent chromatography. Anal. Chem. 2014, 86, 3373–3379. [Google Scholar] [CrossRef] [PubMed]
- Koley, S.; Chu, K.L.; Gill, S.S.; Allen, D.K. An efficient LC-MS method for isomer separation and detection of sugars, phosphorylated sugars, and organic acids. J. Exp. Bot. 2022, 73, 2938–2952. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, H.; Wang, H.X.; Ng, T.B. Isolation and Characterization of a Ubiquitin-Like Ribonuclease from the Cultured Deep Root Mushroom, Oudemansiella radicata (Higher Basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.Z.; Zhang, W.W.; Wang, H.X.; Ziya, N.; Luo, Y.; Jia, P.S.; Zhang, G.Q.; Ng, T. Purification and properties of a laccase from the Agaricus sinodeliciosus. Biotechnol. Appl. Biochem. 2021, 68, 297–306. [Google Scholar] [CrossRef]
- Thongsook, T.; Barrett, D.M. Purification and partial characterization of broccoli (Brassica oleracea Var. Italica) peroxidases. J. Agric. Food Chem. 2005, 53, 3206–3214. [Google Scholar] [CrossRef]
- Guo, Y.X.; Wang, H.X.; Ng, T.B. Isolation of trichogin, an antifungal protein from fresh fruiting bodies of the edible mushroom. Peptides 2005, 26, 575–580. [Google Scholar] [CrossRef]
- Sichert, A.; Le Gall, S.; Klau, L.J.; Laillet, B.; Rogniaux, H.; Aachmann, F.L.; Hehemann, J.H. Ion-exchange purification and structural characterization of five sulfated fucoidans from brown algae. Glycobiology 2021, 31, 352–357. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Ma, Y.L.; Li, L.R.; Yang, X.L. Purification, characterization, and functional properties of a novel glycoprotein from tartary buckwheat (Fagopyrum tartaricum) seed. Food Chem. 2020, 309, 125671. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Wang, H.X.; Ng, T.B. Purification and characterization of a lectin with antiproliferative activity toward cancer cells from the dried fruit bodies of Lactarius flavidulus. Carbohydr. Res. 2011, 346, 2576–2581. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Wang, Z.L.; Dai, J.G.; Chen, L.; Huang, Y.F. Preparation and quality assessment of high-purity ginseng total saponins by ion exchange resin combined with macroporous adsorption resin separation. Chin. J. Nat. Med. 2014, 12, 382–392. [Google Scholar] [CrossRef]
- O'Fagain, C.; Cummins, P.M.; O'Connor, B.F. Gel-filtration chromatography. Methods Mol. Biol. 2011, 681, 25–33. [Google Scholar] [CrossRef]
- Uliyanchenko, E. Size-exclusion chromatography-from high-performance to ultra-performance. Anal. Bioanal. Chem. 2014, 406, 6087–6094. [Google Scholar] [CrossRef]
- Winzor, D.J. Analytical exclusion chromatography. J. Biochem. Biophys. Methods 2003, 56, 15–52. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Schulze, W.X. Global Identification of Protein Complexes within the Membrane Proteome of Roots Using a SEC-MS Approach. J. Proteome Res. 2019, 18, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.Q.; Zhang, Y.; Yang, J.H.; Sun, P.L. Structural elucidation of a novel heteropolysaccharide from the fruiting bodies of Pleurotus eryngii. Carbohyd. Polym. 2013, 92, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Nonier, M.F.; Vivas, N.; Gaulejac de Vivas, N.; Fouquet, E. Development of direct size-exclusion chromatography separation for the determination of molar mass of native procyanidins in the phenolate form. J. Chromatogr. A 2005, 1089, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, A.; Shoji, T.; Shibusawa, Y. Separation of proanthocyanidins by degree of polymerization by means of size-exclusion chromatography and related techniques. J. Biochem. Biophys. Methods 2003, 56, 311–322. [Google Scholar] [CrossRef]
- Zhang, H.; Row, K.H. Extraction and Separation of Polysaccharides from Laminaria japonica by Size-Exclusion Chromatography. J. Chromatogr. Sci. 2015, 53, 498–502. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, X.Y.; Luo, W.; Lin, Y.; Lv, C.N.; Lu, J.C. Isolation and structural elucidation of a low-molecular-weight polysaccharide from the roots of Panax ginseng C. A. Meyer. Nat. Prod. Res. 2022, 36, 493–500. [Google Scholar] [CrossRef]
- Li, J.; Chase, H.A. Applications of membrane techniques for purification of natural products. Biotechnol. Lett. 2010, 32, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci. 2009, 145, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ilame, S.A.; Satyavir, V.S. Application of membrane separation in fruit and vegetable juice processing: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 964–987. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Y.; Bai, R.B. Separation of Biologically Active Compounds by Membrane Operations. Curr. Pharm. Des. 2017, 23, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Pradhan, R.C.; Mishra, S.; Rout, P.K. Quantification and Concentration of Anthocyanidin from Indian Blackberry (Jamun) by Combination of Ultra- and Nano-filtrations. Food Bioprocess Technol. 2018, 11, 2194–2203. [Google Scholar] [CrossRef]
- Martin, J.; Diaz-Montana, E.J.; Asuero, A.G. Recovery of Anthocyanins Using Membrane Technologies: A Review. Crit. Rev. Anal. Chem. 2018, 48, 143–175. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Z.; Jiang, T.; He, J.H.; Barba, F.J.; Cravotto, G.; Koubaa, M. Ultrasound-Assisted Extraction, Centrifugation and Ultrafiltration: Multistage Process for Polyphenol Recovery from Purple Sweet Potatoes. Molecules 2016, 21, 1584. [Google Scholar] [CrossRef]
- Tapia-Quir, P.; Montenegro-Landivar, M.F.; Reig, M.; Vecino, X.; Saurina, J.; Granados, M.; Cortina, J.L. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing. J. Environ. Manag. 2022, 307, 114555. [Google Scholar] [CrossRef]
- Muñoz, P.; Pérez, K.; Cassano, A.; Ruby-Figueroa, R. Recovery of Anthocyanins and Monosaccharides from Grape Marc Extract by Nanofiltration Membranes. Molecules 2021, 26, 2003. [Google Scholar] [CrossRef]
- Zhu, Z.Z.; Luo, X.; Yin, F.F.; Li, S.Y.; He, J.R. Clarification of Jerusalem Artichoke Extract Using Ultra-filtration: Effect of Membrane Pore Size and Operation Conditions. Food Bioprocess Technol. 2018, 11, 864–873. [Google Scholar] [CrossRef]
- Balyan, U.; Verma, S.P.; Sarkar, B. Phenolic compounds from Syzygium cumini (L.) Skeels leaves: Extraction and membrane purification. J. Appl. Res. Med. Aroma 2019, 12, 43–58. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Guo, H.W.; Zhang, D.K.; Zhang, X.F.; Wu, Z.F.; Li, H.T.; Xian, Y.; Yue, P.F.; Yang, M. Effect of molecular distillation on the anti-inflammatory activity and neurotoxicity of Asarum essential oil. Front. Pharmacol. 2023, 14, 1196137. [Google Scholar] [CrossRef] [PubMed]
- Ito, V.M.; Martins, P.F.; Batistella, C.B.; Filho, R.M.; Maciel, M.R.W. Natural compounds obtained through centrifugal molecular distillation. Appl. Biochem. Biochem. 2006, 131, 716–726. [Google Scholar] [CrossRef]
- Lv, G.P.; Hu, D.J.; Zhou, Y.Q.; Zhang, Q.W.; Zhao, J.; Li, S.P. Preparation and Application of Standardized Typical Volatile Components Fraction from Turmeric (Curcuma longa L.) by Supercritical Fluid Extraction and Step Molecular Distillation. Molecules 2018, 23, 1831. [Google Scholar] [CrossRef]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Alessandro, F.; Macedonio, F.; Drioli, E. New Materials and Phenomena in Membrane Distillation. Chemistry 2023, 5, 65–84. [Google Scholar] [CrossRef]
- Deng, W.H.; Liu, K.; Cao, S.; Sun, J.Y.; Zhong, B.L.; Chun, J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules 2020, 25, 217. [Google Scholar] [CrossRef]
- Ruben, O.; Valeria, N.; Ruben, G.N. Antioxidant activity of fractions from oregano essential oils obtained by molecular distillation. Food Chem. 2014, 156, 212–219. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Hu, X.F.; Wang, Y.; Gan, Z.L.; Jiang, S.; Liu, P.; Dai, Y.Q.; Ni, Y.Y. Enrichment of cuminaldehyde and p-mentha-1,4-dien-7-al in cumin (Cuminum cyminum L.) oil by molecular distillation. Sep. Purif. Technol. 2012, 98, 136–144. [Google Scholar] [CrossRef]
- Liang, G.; Qiao, X.; Bi, Y.; Zou, B.; Zheng, Z. Studies on purification of allicin by molecular distillation. J. Sci. Food Agric. 2012, 92, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
- Tarafder, A. Metamorphosis of supercritical fluid chromatography to SFC: An Overview. TrAC Trends Anal. Chem. 2016, 81, 3–10. [Google Scholar] [CrossRef]
- Fu, Q.; Dong, W.; Ge, D.; Ke, Y.; Jin, Y. Supercritical fluid chromatography based on reversed-phase/ ion chromatography mixed-mode stationary phase for separation of spirooxindole alkaloids. J. Chromatogr. A 2023, 1705, 464163. [Google Scholar] [CrossRef]
- Lesellier, E.; West, C. Supercritical fluid chromatography for the analysis of natural dyes: From carotenoids to flavonoids. J. Sep. Sci. 2022, 45, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Luo, J.; Xu, Y.; Sun, X.; Yang, S.; Yang, M. Ultra-high performance supercritical fluid chromatography method for separation and quantitation of saikosaponins in herbal medicine. J. Pharm. Biomed. Anal. 2021, 199, 114039. [Google Scholar] [CrossRef]
- Radzali, S.A.; Markom, M.; Saleh, N.M. Co-Solvent Selection for Supercritical Fluid Extraction (SFE) of Phenolic Compounds from Labisia pumila. Molecules 2020, 25, 5859. [Google Scholar] [CrossRef]
- Tao, Y.; Zheng, Z.T.; Yu, Y.; Xu, J.; Liu, X.G.; Wu, X.H.; Dong, F.S.; Zheng, Y.Q. Supercritical fluid chromatography-tandem mass spectrometry-assisted methodology for rapid enantiomeric analysis of fenbuconazole and its chiral metabolites in fruits, vegetables, cereals, and soil. Food Chem. 2018, 241, 32–39. [Google Scholar] [CrossRef]
- Folprechtova, D.; Kozlov, O.; Armstrong, D.W.; Schmid, M.G.; Kalikova, K.; Tesarova, E. Enantioselective potential of teicoplanin- and vancomycin-based superficially porous particles-packed columns for supercritical fluid chromatography. J. Chromatogr. A 2020, 1612, 460687. [Google Scholar] [CrossRef]
- Fujito, Y.; Izumi, Y.; Nakatani, K.; Takahashi, M.; Hayakawa, Y.; Takayama, M.; Bamba, T. Understanding the mechanism of CO2-Assisted electrospray ionization for parameter optimization in supercritical fluid chromatography mass spectrometry. Anal. Chim. Acta 2023, 1246, 340863. [Google Scholar] [CrossRef]
- Barbini, S.; Jaxel, J.; Karlström, K.; Rosenau, T.; Potthast, A. Multistage fractionation of pine bark by liquid and supercritical carbon dioxide. Bioresour. Technol. 2021, 341, 125862. [Google Scholar] [CrossRef]
- Zuo, H.L.; Yang, F.Q.; Huang, W.H.; Xia, Z.N. Preparative gas chromatography and its applications. J. Chromatogr. Sci. 2013, 51, 704–715. [Google Scholar] [CrossRef]
- Li, Y.; Dong, G.; Bai, X.; Aimila, A.; Bai, X.; Maiwulanjiang, M.; Aisa, H.A. Separation and qualitative study of Ruta graveolens L. essential oil components by prep-GC, GC-QTOF-MS and NMR. Nat. Prod. Res. 2021, 35, 4202–4205. [Google Scholar] [CrossRef]
- Sciarrone, D.; Panto, S.; Rotondo, A.; Tedone, L.; Tranchida, P.Q.; Dugo, P.; Mondello, L. Rapid collection and identification of a novel component from Clausena lansium Skeels leaves by means of three-dimensional preparative gas chromatography and nuclear magnetic resonance/infrared/mass spectrometric analysis. Anal. Chim. Acta 2013, 785, 119–125. [Google Scholar] [CrossRef]
- Aimila, A.; Ma, X.; Sodik, N.; Mamat, X.; Aisa, H.A.; Maiwulanjiang, M. Separation and Qualitative Study of Mentha asiatica Boriss. Essential Oil Components by prep-GC, GC-QTOF-MS, NMR and Prediction of Bioactive Compounds. Chem. Biodivers. 2023, 20, e202200566. [Google Scholar] [CrossRef]
- Wang, H.; Chen, K.; Xue, R.; Turghun, C.; Han, B. Identification of the chemical constituents in Cullen corylifolium ethanolic extract by LC-MS/MS and GC-MS. Nat. Prod. Res. 2023, 37, 1392–1396. [Google Scholar] [CrossRef] [PubMed]
- Welke, J.E.; Hernandes, K.C.; Nicolli, K.P.; Barbara, J.A.; Biasoto, A.C.T.; Zini, C.A. Role of gas chromatography and olfactometry to understand the wine aroma: Achievements denoted by multidimensional analysis. J. Sep. Sci. 2021, 44, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Egea, M.B.; Bertolo, M.R.V.; Oliveira Filho, J.G.; Lemes, A.C. A Narrative Review of the Current Knowledge on Fruit Active Aroma Using Gas Chromatography-Olfactometry (GC-O) Analysis. Molecules 2021, 26, 5181. [Google Scholar] [CrossRef] [PubMed]
- Gorynski, K.; Gorynska, P.; Górska, A.; Harezlak, T.; Jaroch, A.; Jaroch, K.; Lendor, S.; Skobowiat, C.; Bojko, B. SPME as a promising tool in translational medicine and drug discovery: From bench to bedside. J. Pharm. Biomed. 2016, 130, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.S.; Lei, Z.; Bedair, M.; Sumner, L.W. An Optimized SPME-GC-MS Method for Volatile Metabolite Profiling of Different Alfalfa (Medicago sativa L.) Tissues. Molecules 2021, 26, 6473. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Xiao, Y.; Guo, Z.; Yu, D.; Jin, Y.; Liang, X. Purification of compounds from Lignum Dalbergia Odorifera using two-dimensional preparative chromatography with Click oligo (ethylene glycol) and C18 column. J. Sep. Sci. 2011, 34, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Latif, Z.; Sarker, S.D. Isolation of natural products by preparative high performance liquid chromatography (prep-HPLC). Methods Mol. Biol. 2012, 864, 255–274. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Liu, Y.; Feng, J.; Guo, Z.; Wang, C.; Zhong, Z.; Peng, X.; Dang, J.; Tao, Y.; Liang, X. Efficient purification of high-purity compounds from the stem of Lonicera japonica Thunb using two-dimensional preparative chromatography. J. Sep. Sci. 2013, 36, 2414–2420. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zeng, L.; Pham, C.; Xu, R.D. Preparative two-dimensional liquid chromatography/mass spectrometry for the purification of complex pharmaceutical samples. J. Chromatogr. A 2014, 1324, 86–95. [Google Scholar] [CrossRef]
- Wen, L.; Lin, Y.; Lv, R.; Yan, H.; Yu, J.; Zhao, H.; Wang, X.; Wang, D. An Efficient Method for the Preparative Isolation and Purification of Flavonoids from Leaves of Crataegus pinnatifida by HSCCC and Pre-HPLC. Molecules 2017, 22, 767. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.K.; Chen, F.F.; Zhang, L.L.; Yan, X.; Chen, L.; Fang, M.J.; Wu, Z. Two-dimensional preparative liquid chromatography system for preparative separation of minor amount components from complicated natural products. Anal. Chim. Acta 2014, 820, 176–186. [Google Scholar] [CrossRef]
- Zou, D.; Chen, T.; Chen, C.; Li, H.; Liu, Y.; Li, Y. An Efficient Protocol for Preparation of Gallic Acid from Terminalia bellirica (Gaertn.) Roxb by Combination of Macroporous Resin and Preparative High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2016, 54, 1220–1224. [Google Scholar] [CrossRef]
- Emin Duru, M.; Eroglu, B.; Tel-Cayan, G.; Tas-Kucukaydin, M.; Kucukaydin, S.; Cayan, F.; Ceylan, O. HPLC-DAD Analysis and Versatile Bioactivities of Turkish Sunflower Honeys Using Chemometric Approaches. Chem. Biodivers. 2023, 20, e202300486. [Google Scholar] [CrossRef]
- Bao, W.G.D.Q.Q.G.; Wang, Q.H.; Hao, J.S. Structural Elucidation of a Coumarin with New Skeleton from Artemisia ordosica. Rec. Nat. Prod. 2019, 13, 413–417. [Google Scholar] [CrossRef]
- Zhang, X.N.; Bai, M.; Cheng, Z.Y.; Yu, Z.G.; Huang, X.X. Cytotoxic lignans from the barks of Juglans mandshurica. J. Asian Nat. Prod. Res. 2018, 20, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Klijn, M.E.; Hubbuch, J. Application of ultraviolet, visible, and infrared light imaging in protein-based biopharmaceutical formulation characterization and development studies. Eur. J. Pharm. Biopharm. 2021, 165, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, J.Q.; Li, T.; Liu, H.G.; Wang, Y.Z. Application of UV-Vis and Infrared Spectroscopy on Wild Edible Bolete Mushrooms Discrimination and Evaluation: A Review. Crit. Rev. Anal. Chem. 2023, 53, 852–868. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Fayyaz, A.; Mushtaq, S.; Asghar, H.; Alrebdi, T.A.; Cabrera, H.; Ali, R.; Akbar, J. Optical and thermal characterization of pure CuO and Zn/CuO using laser-induced breakdown spectroscopy (LIBS), x-ray fluorescence (XRF), and ultraviolet-visible (UV-Vis) spectroscopy techniques. Laser Phys. Lett. 2023, 20, 086001. [Google Scholar] [CrossRef]
- Vogt, C.; Wondergem, C.S.; Weckhuysen, B.M. Ultraviolet-Visible (UV-Vis) Spectroscopy. In Springer Handbook of Advanced Catalyst Characterization; Wachs, I.E., Bañares, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 237–264. [Google Scholar]
- Joshi, D.D. UV–Vis. Spectroscopy: Herbal Drugs and Fingerprints. In Herbal Drugs and Fingerprints: Evidence based Herbal Drugs; Springer: Delhi, India, 2012; pp. 101–120. [Google Scholar]
- Saha, S.; Singh, J.; Paul, A.; Sarkar, R.; Khan, Z.; Banerjee, K. Anthocyanin Profiling Using UV-Vis Spectroscopy and Liquid Chromatography Mass Spectrometry. J. AOAC Int. 2020, 103, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Ultraviolet Spectra of Flavones and Flavonols. In The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 1970; pp. 41–164. [Google Scholar]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Ultraviolet Spectra of Isoflavones, Flavanones and Dihydroflavonols. In The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 1970; pp. 165–226. [Google Scholar]
- Putzig, C.L.; Leugers, M.A.; McKelvy, M.L.; Mitchell, G.E.; Nyquist, R.A.; Papenfuss, R.R.; Yurga, L. Infrared spectroscopy. Anal. Chem. 1994, 66, 26r–66r. [Google Scholar] [CrossRef]
- Luypaert, J.; Massart, D.L.; Heyden, Y.V. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 2007, 72, 865–883. [Google Scholar] [CrossRef]
- Varga, M.; Berkesi, O.; Darula, Z.; May, N.V.; Palágyi, A. Structural characterization of allomelanin from black oat. Phytochemistry 2016, 130, 313–320. [Google Scholar] [CrossRef]
- Sreejith, P.S.; Asha, V.V. Glycopentalone, a novel compound from Glycosmis pentaphylla (Retz.) Correa with potent anti-hepatocellular carcinoma activity. J. Ethnopharmacol. 2015, 172, 38–43. [Google Scholar] [CrossRef]
- Dong, R.J.; Yuan, J.Z.; Wu, S.L.; Huang, J.; Xu, X.T.; Wu, Z.H.; Gao, H.Y. Anti-inflammation furanoditerpenoids from Caesalpinia minax Hance. Phytochemistry 2015, 117, 325–331. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Pan, L.C.; Han, D.; Sun, H.Q.; Chen, L.J. Structural properties and antioxidant activities of polysaccharide from fruit bodies of Pholiota nameko. Nat. Prod. Res. 2019, 33, 1563–1569. [Google Scholar] [CrossRef]
- Yang, J.Y.; Du, J.C.; Yu, F.; Li, R.T.; Zhong, J.D. Two new compounds from the aerial parts of Elsholtzia densa. Phytochem. Lett. 2022, 52, 104–108. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.P.; Yang, M.; Liu, Y.L.; Li, Z.C.; Li, R.Y.; Li, X.R.; Li, N.; Xu, Q.M.; Khan, I.A.; et al. Physalins and withanolides from the fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino and the inhibitory activities against human tumor cells. Phytochem. Lett. 2014, 10, 95–100. [Google Scholar] [CrossRef]
- Rhodes, C.J. Magnetic resonance spectroscopy. Sci. Prog. 2017, 100, 241–292. [Google Scholar] [CrossRef]
- Bhavaraju, S.; Taylor, D.; Niemitz, M.; Lankin, D.C.; Bzhelyansky, A.; Giancaspro, G.I.; Liu, Y.; Pauli, G.F. NMR-Based Quantum Mechanical Analysis Builds Trust and Orthogonality in Structural Analysis: The Case of a Bisdesmosidic Triglycoside as Withania somnifera Aerial Parts Marker. J. Nat. Prod. 2021, 84, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.; Kervarec, N.; Cérantola, S. HRMAS NMR Analysis of Algae and Identification of Molecules of Interest via Conventional 1D and 2D NMR: Sample Preparation and Optimization of Experimental Conditions. Nat. Prod. Mar. Algae Methods Protoc. 2015, 1308, 191–205. [Google Scholar] [CrossRef]
- Pellecchia, M.; Bertini, I.; Cowburn, D.; Dalvit, C.; Giralt, E.; Jahnke, W.; James, T.L.; Homans, S.W.; Kessler, H.; Luchinat, C.; et al. Perspectives on NMR in drug discovery: A technique comes of age. Nat. Rev. Drug Discov. 2008, 7, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.M.; Ferreira, G.D.; Campos, M.M.; Teixeira, A.M.; Costa, F.D.; das Chagas, F.O.; Colonna, M. NMR as a tool for compound identification in mixtures. Phytochem. Anal. 2023, 34, 385–392. [Google Scholar] [CrossRef]
- Immelmann, R.; Gawenda, N.; Ramirez, V.; Pauly, M. Identification of a xyloglucan beta-xylopyranosyltransferase from Vaccinium corymbosum. Plant Direct 2023, 7, e514. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Zhang, Y.; Cai, C.K.; Li, Q.; Ni, J. Two new triterpenoid saponins from the leaves of Aralia elata. J. Asian Nat. Prod. Res. 2013, 15, 849–854. [Google Scholar] [CrossRef]
- Ning, Z.X.; Zhang, X.X.; Li, W.; Liu, X.Y.; Wei, X.Y.; Gao, H.Y. An efficient method for identifying natural common homoisoflavonoid by 1H-NMR. J. Asian Nat. Prod. Res. 2023, 25, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Vrabec, R.; Maríková, J.; Locárek, M.; Korábecny, J.; Hulcová, D.; Hostálková, A.; Kunes, J.; Chlebek, J.; Kucera, T.; Hrabinová, M.; et al. Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer's disease. Phytochemistry 2022, 194, 113017. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Yang, C.; Wang, W.X.; Wang, J.T. Isolation and identification of novel phenolic and lignan glycosides from Swertia davidii Franch. J. Asian Nat. Prod. Res. 2023, 25, 992–998. [Google Scholar] [CrossRef]
- Mittas, D.; Spitaler, U.; Bertagnoll, M.; Oettl, S.; Gille, E.; Schwaiger, S.; Stuppner, H. Identification and structural elucidation of bioactive compounds from Scirpoides holoschoenus. Phytochemistry 2022, 200, 113241. [Google Scholar] [CrossRef] [PubMed]
- Gabr, N.M.; Ghaly, N.S.; Mina, S.A. Structural characterization of three cytotoxic steroidal saponins from the leaves of Agave desmetiana hort. Phytochemistry 2022, 195, 113057. [Google Scholar] [CrossRef] [PubMed]
- Jarrold, M.F. Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology. Chem. Rev. 2022, 122, 7415–7441. [Google Scholar] [CrossRef]
- Honour, J.W. Gas chromatography-mass spectrometry. Methods Mol. Biol. 2006, 324, 53–74. [Google Scholar] [CrossRef]
- Bjarnholt, N.; Li, B.; D'Alvise, J.; Janfelt, C. Mass spectrometry imaging of plant metabolites–Principles and possibilities. Nat. Prod. Rep. 2014, 31, 818–837. [Google Scholar] [CrossRef]
- Imasaka, T.; Imasaka, T. Femtosecond ionization mass spectrometry for chromatographic detection. J. Chromatogr. A 2021, 1642, 462023. [Google Scholar] [CrossRef]
- Brakling, S.; Kroll, K.; Stoermer, C.; Rohner, U.; Gonin, M.; Benter, T.; Kersten, H.; Klee, S. Parallel Operation of Electron Ionization and Chemical Ionization for GC-MS Using a Single TOF Mass Analyzer. Anal. Chem. 2022, 94, 6057–6064. [Google Scholar] [CrossRef]
- Tyler, A.N.; Romo, L.K.; Frey, M.H.; Musselman, B.D.; Tamura, J.; Cody, R.B. Improved detection limits for fast atom bombardment mass spectrometry: A study of time-dependent desorption using a model pulsed bombardment ionization method. J. Am. Soc. Mass Spectrom. 1992, 3, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y. Applications of Matrix-Assisted Laser Desorption Ionization In-Source Decay Mass Spectrometry. Adv. Exp. Med. Biol. 2019, 1140, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.X.; Plath, L.D.; Halim, M.A.; Friedrich, S.; Bier, M.E. Anatomy of Protein Electrospray Ionization Mass Spectra by Superconducting Tunnel Junction Mass and Energy Spectrometry. Anal. Chem. 2022, 94, 5284–5292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, S.; Stenoien, D.L.; Paša-Tolić, L. High-throughput proteomics. Annu. Rev. Anal. Chem. 2014, 7, 427–454. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Noll, R.J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R. The Orbitrap: A new mass spectrometer. J. Mass Spectrom. 2005, 40, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Hu, M.; Yang, L.; Li, M.; Shi, Z.; Cheng, W.; Zhang, Y.; Chen, F.; Wang, S.; Zhang, Q. Chemical Constituent Analysis of Ranunculus sceleratus L. Using Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole-Orbitrap High-Resolution Mass Spectrometry. Molecules 2022, 27, 3299. [Google Scholar] [CrossRef]
- Zhou, M.; Huo, J.; Wang, C.; Wang, W. UPLC/Q-TOF MS Screening and Identification of Antibacterial Compounds in Forsythia suspensa (Thunb.) Vahl Leaves. Front. Pharmacol. 2021, 12, 704260. [Google Scholar] [CrossRef]
- Rush, M.D.; Rue, E.A.; Wong, A.; Kowalski, P.; Glinski, J.A.; van Breemen, R.B. Rapid Determination of Procyanidins Using MALDI-ToF/ToF Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 11355–11361. [Google Scholar] [CrossRef]
- Zhang, C.; Bieleszova, K.; Zukauskaite, A.; Hladik, P.; Gruz, J.; Novak, O.; Dolezal, K. In situ separation and visualization of isomeric auxin derivatives in Arabidopsis by ion mobility mass spectrometry imaging. Anal. Bioanal. Chem. 2023. [Google Scholar] [CrossRef]
- Man, G.; Xu, L.; Wang, Y.; Liao, X.; Xu, Z. Profiling Phenolic Composition in Pomegranate Peel from Nine Selected Cultivars Using UHPLC-QTOF-MS and UPLC-QQQ-MS. Front. Nutr. 2021, 8, 807447. [Google Scholar] [CrossRef]
- Abdallah, M.S.; Mustafa, M.; Nallappan, M.A.P.; Choi, S.; Paik, J.H.; Rusea, G. Determination of Phenolics and Flavonoids of Some Useful Medicinal Plants and Bioassay-Guided Fractionation Substances of Sclerocarya birrea (A. Rich) Hochst Stem (Bark) Extract and Their Efficacy Against Salmonella typhi. Front. Chem. 2021, 9, 670530. [Google Scholar] [CrossRef] [PubMed]
- Vallarino, J.G.; Osorio, S. Simultaneous Determination of Plant Hormones by GC-TOF-MS. Methods Mol. Biol. 2016, 1363, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hwang, S.; Seo, M.; Shin, K.B.; Kim, K.H.; Park, G.W.; Kim, J.Y.; Yoo, J.S.; No, K.T. BMDMS-NP: A comprehensive ESI-MS/MS spectral library of natural compounds. Phytochemistry 2020, 177, 112427. [Google Scholar] [CrossRef] [PubMed]
Method | Characteristic | Solvent | Temperature |
---|---|---|---|
Maceration | easy to operate, time-consuming, low yield [14] | Water, organic solvents | room temperature, warm conditions |
Percolation | high solvent utilization, complete leaching of active ingredients, direct collection of leachates [16,17] | ethanol, white wine | room temperature |
Decoction | easy to operate, short extraction time, high production efficiency [27,28] | water | heat |
Reflux extraction | high extraction rate, high solvent consumption [31,32] | volatile organic solvents | heat |
Soxhlet extraction | reduces the solvent usage, high extraction efficiency [39] | volatile organic solvents | heat |
steam distillation | simple equipment, simple operation steps [44,45,46] | water | heat |
Ultrasound-assisted extraction | saves extraction time, improves extraction efficiency, reduces the use of solvents [54] | water, organic solvents, ionic liquid | room temperature, warm conditions |
Microwave-assisted extraction | saves extraction time, improves extraction efficiency, reduces the use of solvents [57,58,59] | water, organic solvents, ionic liquid | heat |
Supercritical fluid extraction | short extraction time, environmentally friendly, high extraction efficiency [66,67,68,69,70] | supercritical CO2 | room temperature |
Pressurized liquid extraction | reduces the solvent usage, rapidity, high recovery good reproducibility [75,76] | water, organic solvents, | heat |
Enzyme-assisted extraction | simple equipment, poor selectivity [87] | water | room temperature |
Ionic liquid extraction | good solubility properties, wide operable temperature [91,92,93,94] | Ionic liquid | −40~300 °C |
Method | Mechanism | Application |
---|---|---|
polyamide column chromatography | adsorption | flavonoids [108,109,110] |
macroporous resins | adsorption | flavonoids, saponins, and alkaloids [112,113,114,115,116,117] |
silica gel | adsorption | acidic and neutral substances [122,123,124] |
aluminum oxide | adsorption | depend on pH [130,131,132] |
distribution chromatography | distribution | saponins, alkaloids, acidic compounds, and polysaccharides [139,140,141,142,143,144,145] |
ion exchange chromatography | ion exchange | plant macromolecular proteins, and polysaccharides [146,147,148,149] |
molecular exclusion chromatography | sizes of molecules | plant polysaccharides [162] |
membrane filtration | sizes of molecules | tannins, starches, resins, and proteins [165,166] |
molecular distillation | mean free path | volatile compounds [176,177,178,179,180,181] |
supercritical fluid chromatography | adsorption | alkaloids, saponins and phenolic acids [185,186,187,188] |
preparative gas chromatography | adsorption | volatile compounds [193,194,195] |
preparative liquid chromatography | adsorption | flavonoids, polysaccharides and phenolic acids [206,207,208] |
Position of Absorption Bands | Intensity of Absorption | Structure |
---|---|---|
220~800 nm | 0 | Aliphatic hydrocarbon Alicyclic hydrocarbon |
210~250 nm | ≥104 | Conjugated diolefine |
260~300 nm | ≥104 | 3 to 5 conjugated double bonds |
250~300 nm | 10~100 | Hydroxyl group |
250~300 nm | 103 | Benzene ring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhao, J.; Dai, X.; Li, X. Extraction and Analysis of Chemical Compositions of Natural Products and Plants. Separations 2023, 10, 598. https://doi.org/10.3390/separations10120598
Zhang M, Zhao J, Dai X, Li X. Extraction and Analysis of Chemical Compositions of Natural Products and Plants. Separations. 2023; 10(12):598. https://doi.org/10.3390/separations10120598
Chicago/Turabian StyleZhang, Mengjie, Jinhua Zhao, Xiaofeng Dai, and Xiumei Li. 2023. "Extraction and Analysis of Chemical Compositions of Natural Products and Plants" Separations 10, no. 12: 598. https://doi.org/10.3390/separations10120598
APA StyleZhang, M., Zhao, J., Dai, X., & Li, X. (2023). Extraction and Analysis of Chemical Compositions of Natural Products and Plants. Separations, 10(12), 598. https://doi.org/10.3390/separations10120598