
Citation: Ahmed, B.S.; Hamasalih,

L.O.; Aziz, K.H.H.; Salih, Y.M.;

Mustafa, F.S.; Omer, K.M. Efficient

Oxidative Desulfurization of

High-Sulfur Diesel via Peroxide

Oxidation Using Citric, Pimelic, and

α-Ketoglutaric Acids. Separations

2023, 10, 206. https://doi.org/

10.3390/separations10030206

Academic Editor: Kangmin Chon

Received: 8 February 2023

Revised: 5 March 2023

Accepted: 9 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

separations

Article

Efficient Oxidative Desulfurization of High-Sulfur Diesel via
Peroxide Oxidation Using Citric, Pimelic, and
α-Ketoglutaric Acids
Barham Sharif Ahmed 1, Luqman Omar Hamasalih 1, Kosar Hikmat Hama Aziz 1,2,* , Yousif M. Salih 1,
Fryad S. Mustafa 1 and Khalid Mohammad Omer 1

1 Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street,
Sulaimaniyah 46001, Iraq; barham.sharif@univsul.edu.iq (B.S.A.)

2 Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development,
Sulaimaniyah 46001, Iraq

* Correspondence: kosar.hamaaziz@univsul.edu.iq

Abstract: The widespread use of diesel fuel for transportation, industry, and electricity generation
causes several environmental issues via an increase in the amount of sulfur compound emissions.
Commercial diesel fuel must be free of sulfur-containing compounds since they can cause several en-
vironmental problems. Considering the currently available processes to eliminate sulfur compounds,
oxidative desulfurization (ODS) is one of the effective means for this purpose. This work presented
a simple, low cost, and efficient ODS system of high-sulfur diesel fuels using peroxide oxidation
with the aid of citric, pimelic, and α-ketoglutaric acids. The aim of the study was to investigate
the potential of these acids as hydrogen peroxide (H2O2) activators for ODS and to optimize the
reaction conditions for maximum sulfur removal. The results showed that citric, pimelic, and α-
ketoglutaric acids were effective catalysts for the desulfurization of high-sulfur diesel with an initial
sulfur content of 2568 mg L−1, achieving a sulfur removal efficiency of up to 95%. The optimized
reaction conditions were found to be 0.6 g of carboxylic acid dosage and 10 mL of H2O2 at 95 ◦C.
The desulfurization efficiency of the real diesel sample (2568 mg L−1) was shown to be 27, 34, and
84.57%, using citric acid, α-ketoglutaric acid, and pimelic acid after 1h, respectively. The effectiveness
of the oxidation process was characterized by gas chromatographic pulsed flame photometric detec-
tor (GC-PFPD) and Fourier-transform infrared spectroscopy (FTIR) techniques. The experimental
results demonstrated that the developed system exhibited high efficiency for desulfurization of real
high-sulfur diesel fuels that could be a good alternative for commercial application with a promising
desulfurization efficiency.
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1. Introduction

Environmental pollution is a major global challenge, with significant impacts on pub-
lic health, ecosystems, and the economy. Pollutants released into the environment from
various sources, such as transportation, industrial activities, and manufacturing plants, can
have long-term effects on the environment and human health [1,2]. Diesel fuel is a widely
used source of energy for transportation, industrial activities, and electricity generation.
However, the combustion of diesel fuel also generates a significant amount of air pollutants,
such as particulate matter, nitrogen oxides, and sulfur oxides [3,4]. The most prevalent
pollutants in fossil fuels, such as gasoline and diesel, are naturally occurring organic com-
pounds that contain sulfur. Sulfur oxides can cause acid rain, rain, soil pollution, and
they damage the ecosystem, which can harm aquatic environments and damage buildings
and infrastructure [5]. The increasing production and combustion of diesel fuels to cover
fundamental requirements in various processes such as power generation, motorized road
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vehicles, transportation, and industries resulted in a major source of air pollution, mainly
through the emission of a large amount of high sulfur-containing gases [6,7]. Organo-sulfur
compounds including methyl mercaptan, phenyl mercaptan, cyclohexylthiol, dimethyl
sulfide, thiophenes, benzothiophene, and their derivatives, as well as inorganic sulfur
compounds such as hydrogen sulfide, are abundant in crude oil [8,9]. In gasoline process-
ing technologies, the presence of sulfur compounds also causes catalyst poisoning and
corrode refinery equipment. The eradication of sulfur compounds has become necessary
to obtain green fuel oil with a low sulfur content. The use of low-sulfur diesel fuel can
significantly reduce air pollution from diesel fuel use and improve air quality, particularly
in urban areas [10]. However, the implementation of such regulations and the adoption
of cleaner technologies and fuels may require significant investments and changes in the
way industries and consumers use and produce energy. Therefore, it is important to find
a new and efficient desulfurization approach to reduce the amount of sulfur content in
petroleum products from the standpoints of pollution, economy, and quality [11]. The
development of efficient desulfurization processes has become increasingly important as
society seeks to reduce the environmental impact of fossil fuel use, and to comply with
increasingly stringent emissions regulations. By reducing the sulfur content in diesel fuels,
these processes have the potential to significantly mitigate the environmental and health
impacts of fossil fuel use, while maintaining the functionality of diesel fuels in a variety
of applications. Numerous desulfurization processes were developed and implemented
in the refining industry. These processes utilized a variety of techniques to reduce the
sulfur content in diesel fuels, including hydrodesulfurization [12], oxidative desulfuriza-
tion [13], selective adsorptive desulfurization [14], bio-desulfurization [15], and coupled
oxidation solvent extraction desulfurization [16]. Hydrodesulfurization involves the use
of hydrogen gas and a catalyst to break down sulfur-containing compounds, produc-
ing hydrogen sulfide as a byproduct. Oxidative desulfurization relies on the oxidation
of sulfur-containing compounds using oxidizing agents, such as hydrogen peroxide or
ozone. Adsorptive desulfurization utilizes adsorbent materials, such as activated carbon or
metal oxides, to selectively capture sulfur compounds from the fuel. Bio-desulfurization
employs microorganisms that can break down sulfur-containing compounds in diesel
fuels. Hydrodesulfurization, a commonly used method in traditional refining processes,
demonstrated its effectiveness in reducing the levels of thiols, mercaptans, sulfides, and
disulfide-containing impurities. However, it was found to be less efficient in eliminat-
ing persistent heterocyclic organosulfur compounds, such as thiophene, benzothiophene,
dibenzothiophene, and their sterically hindered derivatives [17]. Furthermore, the high
cost and energy consumption associated with the utilization of large amounts of hydrogen
under conditions of high temperature and pressure constitute a significant requirement [18].
As an efficient method for deep desulfurization process of diesel fuels, the oxidative desul-
furization (ODS) process appears to be the most promising and efficient technology and
attracted significant attention in removing organosulfur compounds from diesel fuels,
as it operates under mild conditions and does not require the use of hydrogen [19]. At
present, a variety of desulfurization processes based on adsorption and oxidation showed
a good performance for the desulfurization of diesel fuels. Adsorptive desulfurization
processes based on activated carbons [20], silica gel-supported TiO2 [21], nanoporous acti-
vated carbons [22], the application of bimetallic nanoparticles onto activated carbon [23]
were investigated. The utilization of carbon-supported heteropoly acids as catalysts in
the oxidative desulfurization of model diesel fuel [24], the heterogeneous catalytic oxi-
dation process, which is facilitated by ultrasound [25], and deep eutectic solvents [26]
were also investigated to eliminate sulfur compounds from diesel fuels. The oxidative
desulfurization process initially involves the oxidation of bivalent sulfur compounds to
the hexavalent sulfone, whereby two oxygen atoms are added to the sulfur atom without
disrupting any carbon-sulfur bonds. The resultant oxidized sulfone compounds can then
be effectively separated from the fuel using solvent extraction, with appropriate solvents
such as acetonitrile being used for this purpose [13]. Many interesting researches were
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carried out in recent years that used catalytic desulfurization as a potent strategy for miti-
gating environmental issues [27,28]. Several metal complexes were used in the oxidative
desulfurization process as homogeneous and heterogeneous catalysts. Diana et al. em-
ployed both peroxotungstate PW4 and a composite, consisting of PW4 immobilized in a
trimethylammonium-functionalized SBA-15 (PW4@TMA-SBA-15), as catalysts for desul-
furization of model and actual diesel fuels. The utilization of these catalysts resulted in a
noteworthy 89% desulfurization efficiency of the actual diesel, which initially possessed a
total sulfur content of 2300 mg/L [29]. The 1-octyl-3-methylimidazolium tetrachlorofer-
rates ([Omim]FeCl4) was utilized as a catalyst, as well as an extractive solvent alone or
impregnated on a silica gel in the oxidative desulfurization of both model and real diesel
fuels. In conjunction with hydrogen peroxide as an oxidant, these methods were employed
to achieve successful desulfurization [30,31]. The extractive–oxidative desulfurization
approach based on a combination of ultrasound/UV irradiation/H2O2/TiO2 followed
by water extraction was developed for the treatment of simulated fuel [32]. The mono
lacunary phosphomolybdate supported on g-C3N4 nanocatalyst was prepared and used
for oxidative desulfurization of a model and real diesel fuel under various reaction condi-
tions [33]. Polyoxometalate modified alumina catalysts [34] and three-dimensional ordered
mesoporous W-doped KIT-6 [35] in the presence of a H2O2 oxidant were also prepared and
studied in the ODS processes. As a nanomaterial, a graphene-like boron nitride modified
with carbon dots was synthesized and applied in catalytic ODS of dibenzothiophene in
diesel fuel with a 93.5% efficiency [36].

The reported systems were efficient and promising technologies for oxidative desulfu-
rization of real and model diesel fuels. However, these catalysts have complex preparation,
high cost, and their raw materials are not easily available, which limits their applica-
tion. In comparison to traditional metal-containing catalytic ODS methods, metal-free
catalytic ODS techniques are thought to be more effective and promising methods in
terms of safety, cost, and environmental considerations [28,37,38]. Metal-free catalysts
are preferred for commercial applications because they avoid the use of expensive and
sometimes dangerous metals [39]. Bronsted acids such as simple carboxylic acids promote
the ODS process in the presence of H2O2 by forming active peroxyacids. In this work,
the novel, efficient, and simple oxidative/extraction desulfurization system of high-sulfur
diesel using H2O2/carboxylic acid was designed and studied. The developed system was
based on H2O2 activation via three carboxylic acids, namely citric acid, pimelic acid, and
α-ketoglutaric acid following simple extraction with acetonitrile. The effect of operational
conditions on the desulfurization efficiency was examined and optimized. Based on the
results of gas chromatography, it was proven that the oxidation of the sulfur compounds
produced extractable sulfones. This research offers a new perspective on the possible ap-
plication of a cost-effective and straightforward H2O2/carboxylic acid system for efficient
removal of refractory sulfur compounds from real high-sulfur diesel fuels via an oxidative
desulfurization technique.

2. Material and Methods

The present research utilized liquid H2O2 (30% GR Merck, Darmstadt, Germany),
acetonitrile (99% Biochem, Beijing, China), citric acid (99% Merck, Darmstadt, Germany),
pimelic acid (99% Merck, Darmstadt, Germany), and α-ketoglutaric acid (99% Merck,
Darmstadt, Germany) in an oxidative/extraction desulfurization system to treat real high-
sulfur diesel oil, which had an initial sulfur content of 2568 mg/L. Table 1 provides
characteristics and structure of the carboxylic acids used in this work.

All the chemicals and solvents used in this study were of high purity and were used
as received. The characteristics of the real diesel oil before and after the ODS process were
analyzed based on the American Society for Testing and Materials (ASTM)’s methods, and
the results are presented in Table 2.
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Table 1. Chemical and physical information on citric acid, pimelic acid, and α-ketoglutaric acid.

Characteristics Citric Acid Pimelic Acid α-Ketoglutaric Acid

Chemical formula C6H8O7 C7H12O4 C5H6O5
Molar mass 192.12 g/mol 160.17 g/mol 146.11 g/mol

Chemical structure

Separations 2023, 10, x FOR PEER REVIEW 5 of 13 
 

 

Table 1. Chemical and physical information on citric acid, pimelic acid, and α-ketoglutaric acid. 

Characteristics Citric Acid Pimelic Acid α-Ketoglutaric Acid 

Chemical 

formula 
C6H8O7 C7H12O4 C5H6O5 

Molar mass 192.12 g/mol 160.17 g/mol 146.11 g/mol 

Chemical 

structure 

 
 

 

All the chemicals and solvents used in this study were of high purity and were used 

as received. The characteristics of the real diesel oil before and after the ODS process were 

analyzed based on the American Society for Testing and Materials (ASTM)’s methods, 

and the results are presented in Table 2. 

Table 2. presents an assessment of the diesel oil fractions before and after the treatment process. 

Test Test Methods Before Treatment After Treatment 

Specific gravity@ 15.6 °C ASTM D 1298 0.807 0.802 

API gravity ASTM 43.8 44.9 

Flashpoint °C ASTM D 93 70 71 

Pour point °C ASTM D 97 −21 −24 

Vis.@50 °C /Cst ASTM D 445 1.91 2 

%Sulfur content ED-XRF 0.2568 --- 

Distillation ASTM ----- ---- 

Initial B.P °C ------- 188 190 

Vol. at %10 ------- 208 214 

Vol. at %50 ------- 238 240 

Vol. at %70 ------- 260 262 

Vol. at %90 ------- 298 300 

The oxidative desulfurization experiments were carried out in a batch process, as 

illustrated in Figure 1. The initial concentration of the total sulfur content in the diesel 

fuels used in this study was 2568 mg/L. The high-sulfur diesel sample was procured from 

a petrol station in Sulaymaniyah, Iraq. The ODS reaction was performed in a temperature-

controlled magnetic hot plate coupled with a 250-mL round-bottom flask. For each 

experimental trial, 50 mL of real diesel oil was introduced into the reactor, and 

continuously stirred at a constant mixing speed of 1100 rpm, while being heated to the 

desired reaction temperature of 95 °C, using the magnetic stirrer hot plate. In a typical 

procedure, the hot plate was set to a fixed temperature of 95 °C. Subsequently, 10 mL of 

hydrogen peroxide and 0.6 g of the desired carboxylic acid (citric acid, pimelic acid, or α-

ketoglutaric acid) were added to the closed flask containing 50 mL of real diesel fuel. This 

protocol enabled the systematic evaluation of the performance of different carboxylic 

acids in the ODS process. The reaction was carried out under intense stirring at a speed of 

1100 rpm, maintaining a temperature of 95 °C. The resulting reaction mixture was 

subsequently cooled to room temperature, and then a 1:1 volume ratio of acetonitrile was 

added to extract the oxidation products. The formed immiscible mixture was separated 

by means of a separation funnel having a capacity of 250 mL. The lower liquid phase, 

which represents the gas oil phase, was analyzed for its elemental sulfur content via 

energy dispersive X-ray fluorescence spectrometer in accordance with D-4294, and its 

sulfur-containing organic compounds were determined via gas chromatographic pulsed 

flame photometric detector (GC-PFPD). This analytical approach allowed for the 

identification and quantification of the sulfur-containing compounds present in the gas 

oil phase following oxidation. 

Separations 2023, 10, x FOR PEER REVIEW 4 of 12 
 

 

Table 1. Chemical and physical information on citric acid, pimelic acid, and α-ketoglutaric acid. 

Characteristics Citric Acid Pimelic Acid α-Ketoglutaric Acid 
Chemical formula C6H8O7 C7H12O4 C5H6O5 
Molar mass 192.12 g/mol 160.17 g/mol 146.11 g/mol 

Chemical structure 

 
 

All the chemicals and solvents used in this study were of high purity and were used 
as received. The characteristics of the real diesel oil before and after the ODS process were 
analyzed based on the American Society for Testing and Materials (ASTM)’s methods, 
and the results are presented in Table 2. 

Table 2. presents an assessment of the diesel oil fractions before and after the treatment process. 

Test Test Methods Before Treatment After Treatment 
Specific gravity@15.6 °C ASTM D 1298 0.807 0.802 
API gravity ASTM 43.8 44.9 
Flashpoint °C ASTM D 93 70 71 
Pour point °C ASTM D 97 −21 −24 
Vis.@50 °C/Cst ASTM D 445 1.91 2 
%Sulfur content ED-XRF 0.2568 --- 
Distillation ASTM ----- ---- 
Initial B.P °C ------- 188 190 
Vol. at %10 ------- 208 214 
Vol. at %50 ------- 238 240 
Vol. at %70 ------- 260 262 
Vol. at %90 ------- 298 300 

The oxidative desulfurization experiments were carried out in a batch process, as il-
lustrated in Figure 1. The initial concentration of the total sulfur content in the diesel fuels 
used in this study was 2568 mg/L. The high-sulfur diesel sample was procured from a 
petrol station in Sulaymaniyah, Iraq. The ODS reaction was performed in a temperature-
controlled magnetic hot plate coupled with a 250-mL round-bottom flask. For each exper-
imental trial, 50 mL of real diesel oil was introduced into the reactor, and continuously 
stirred at a constant mixing speed of 1100 rpm, while being heated to the desired reaction 
temperature of 95 °C, using the magnetic stirrer hot plate. In a typical procedure, the hot 
plate was set to a fixed temperature of 95 °C. Subsequently, 10 mL of hydrogen peroxide 
and 0.6 g of the desired carboxylic acid (citric acid, pimelic acid, or α-ketoglutaric acid) 
were added to the closed flask containing 50 mL of real diesel fuel. This protocol enabled 
the systematic evaluation of the performance of different carboxylic acids in the ODS pro-
cess. The reaction was carried out under intense stirring at a speed of 1100 rpm, maintain-
ing a temperature of 95 °C. The resulting reaction mixture was subsequently cooled to 
room temperature, and then a 1:1 volume ratio of acetonitrile was added to extract the 
oxidation products. The formed immiscible mixture was separated by means of a separa-
tion funnel having a capacity of 250 mL. The lower liquid phase, which represents the gas 
oil phase, was analyzed for its elemental sulfur content via energy dispersive X-ray fluo-
rescence spectrometer in accordance with D-4294, and its sulfur-containing organic com-
pounds were determined via gas chromatographic pulsed flame photometric detector 
(GC-PFPD). This analytical approach allowed for the identification and quantification of 
the sulfur-containing compounds present in the gas oil phase following oxidation. 

Separations 2023, 10, x FOR PEER REVIEW 5 of 13 
 

 

Table 1. Chemical and physical information on citric acid, pimelic acid, and α-ketoglutaric acid. 

Characteristics Citric Acid Pimelic Acid α-Ketoglutaric Acid 

Chemical 

formula 
C6H8O7 C7H12O4 C5H6O5 

Molar mass 192.12 g/mol 160.17 g/mol 146.11 g/mol 

Chemical 

structure 

 
 

 

All the chemicals and solvents used in this study were of high purity and were used 

as received. The characteristics of the real diesel oil before and after the ODS process were 

analyzed based on the American Society for Testing and Materials (ASTM)’s methods, 

and the results are presented in Table 2. 

Table 2. presents an assessment of the diesel oil fractions before and after the treatment process. 

Test Test Methods Before Treatment After Treatment 

Specific gravity@ 15.6 °C ASTM D 1298 0.807 0.802 

API gravity ASTM 43.8 44.9 

Flashpoint °C ASTM D 93 70 71 

Pour point °C ASTM D 97 −21 −24 

Vis.@50 °C /Cst ASTM D 445 1.91 2 

%Sulfur content ED-XRF 0.2568 --- 

Distillation ASTM ----- ---- 

Initial B.P °C ------- 188 190 

Vol. at %10 ------- 208 214 

Vol. at %50 ------- 238 240 

Vol. at %70 ------- 260 262 

Vol. at %90 ------- 298 300 

The oxidative desulfurization experiments were carried out in a batch process, as 

illustrated in Figure 1. The initial concentration of the total sulfur content in the diesel 

fuels used in this study was 2568 mg/L. The high-sulfur diesel sample was procured from 

a petrol station in Sulaymaniyah, Iraq. The ODS reaction was performed in a temperature-

controlled magnetic hot plate coupled with a 250-mL round-bottom flask. For each 

experimental trial, 50 mL of real diesel oil was introduced into the reactor, and 

continuously stirred at a constant mixing speed of 1100 rpm, while being heated to the 

desired reaction temperature of 95 °C, using the magnetic stirrer hot plate. In a typical 

procedure, the hot plate was set to a fixed temperature of 95 °C. Subsequently, 10 mL of 

hydrogen peroxide and 0.6 g of the desired carboxylic acid (citric acid, pimelic acid, or α-

ketoglutaric acid) were added to the closed flask containing 50 mL of real diesel fuel. This 

protocol enabled the systematic evaluation of the performance of different carboxylic 

acids in the ODS process. The reaction was carried out under intense stirring at a speed of 

1100 rpm, maintaining a temperature of 95 °C. The resulting reaction mixture was 

subsequently cooled to room temperature, and then a 1:1 volume ratio of acetonitrile was 

added to extract the oxidation products. The formed immiscible mixture was separated 

by means of a separation funnel having a capacity of 250 mL. The lower liquid phase, 

which represents the gas oil phase, was analyzed for its elemental sulfur content via 

energy dispersive X-ray fluorescence spectrometer in accordance with D-4294, and its 

sulfur-containing organic compounds were determined via gas chromatographic pulsed 

flame photometric detector (GC-PFPD). This analytical approach allowed for the 

identification and quantification of the sulfur-containing compounds present in the gas 

oil phase following oxidation. 

Table 2. Presents an assessment of the diesel oil fractions before and after the treatment process.

Test Test Methods Before Treatment After Treatment

Specific gravity@15.6 ◦C ASTM D 1298 0.807 0.802
API gravity ASTM 43.8 44.9
Flashpoint ◦C ASTM D 93 70 71
Pour point ◦C ASTM D 97 −21 −24
Vis.@50 ◦C/Cst ASTM D 445 1.91 2
%Sulfur content ED-XRF 0.2568 —

Distillation ASTM —– —-

Initial B.P ◦C ——- 188 190
Vol. at %10 ——- 208 214
Vol. at %50 ——- 238 240
Vol. at %70 ——- 260 262
Vol. at %90 ——- 298 300

The oxidative desulfurization experiments were carried out in a batch process, as
illustrated in Figure 1. The initial concentration of the total sulfur content in the diesel fuels
used in this study was 2568 mg/L. The high-sulfur diesel sample was procured from a petrol
station in Sulaymaniyah, Iraq. The ODS reaction was performed in a temperature-controlled
magnetic hot plate coupled with a 250-mL round-bottom flask. For each experimental
trial, 50 mL of real diesel oil was introduced into the reactor, and continuously stirred at a
constant mixing speed of 1100 rpm, while being heated to the desired reaction temperature
of 95 ◦C, using the magnetic stirrer hot plate. In a typical procedure, the hot plate was set
to a fixed temperature of 95 ◦C. Subsequently, 10 mL of hydrogen peroxide and 0.6 g of
the desired carboxylic acid (citric acid, pimelic acid, or α-ketoglutaric acid) were added to
the closed flask containing 50 mL of real diesel fuel. This protocol enabled the systematic
evaluation of the performance of different carboxylic acids in the ODS process. The
reaction was carried out under intense stirring at a speed of 1100 rpm, maintaining a
temperature of 95 ◦C. The resulting reaction mixture was subsequently cooled to room
temperature, and then a 1:1 volume ratio of acetonitrile was added to extract the oxidation
products. The formed immiscible mixture was separated by means of a separation funnel
having a capacity of 250 mL. The lower liquid phase, which represents the gas oil phase,
was analyzed for its elemental sulfur content via energy dispersive X-ray fluorescence
spectrometer in accordance with D-4294, and its sulfur-containing organic compounds
were determined via gas chromatographic pulsed flame photometric detector (GC-PFPD).
This analytical approach allowed for the identification and quantification of the sulfur-
containing compounds present in the gas oil phase following oxidation.

In accordance with ASTM D4294, the total sulfur content in diesel samples was
quantified using the Sulfur-in-Oil Analyzer (NEX QC, Austin, TX 78717, USA), an Energy-
Dispersive X-Ray Fluorescence (ED-XRF) spectrometer (Analytik Ltd., Cambridge, CB24
4AA, United Kingdom). The infrared (IR) spectra were obtained from KBr pellets over
the range of 400–4000 cm−1 using a Perkin-Elmer FT/IR spectrometer (Perkin-Elmer,
Waltham, MA, USA). The conversion of sulfur compounds to sulfones was validated via
gas chromatography (GC) using a CP-3800 instrument from Varian (Palo Alto, CA, USA),
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equipped with a DB-17 column (30 m in length, 0.25 mm internal diameter, and 0.25 µm
film thickness) containing a stationary phase of 50% phenyl and 50% methyl silicone. This
specific column (Varian equivalent: CP-Sil 24 CB, CP7821) was designed for the separation
of sulfur compounds. The GC was programmed to increase from 50 to 280 ◦C at a heating
rate of 10 ◦C/minute, with a 2 min hold at 50 ◦C and a final 20 min hold at 280 ◦C.
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3. Results and Discussion
3.1. Application of Oxidative Desulfurization System for Real Diesel Oil

Diesel fuel is a common fuel used in transportation, particularly in power generation,
large trucks, and buses. It is produced as a medium distillate stream in refineries and has
a boiling point range of 160–380 ◦C. The most prominent compounds present in diesel
fuels are benzothiophene and dibenzothiophene derivatives [11,40]. In the literature,
carboxylic acids and homogeneous metallic systems, including polyoxometalates, were the
dominant types of homogeneous catalysts that were reported. In ODS processes, simple
carboxylic acids, specifically formic and acetic acids, are widely recognized as the most
employed catalysts. During a typical ODS operation, refractory organic sulfur compounds
such as dibenzothiophene and its derivatives undergo selective and efficient oxidation,
resulting in the formation of their corresponding sulfoxides or sulfones, which can then
be subsequently eliminated through solvent extraction (as illustrated in Figure 2). The
oxidative desulfurization of a genuine diesel sample with a high sulfur content (2568 mg/L)
was performed under carefully optimized experimental conditions, and the results of this
study are presented in Figure 3. In this process, the desulfurization was accomplished
through the formation of peracids (RCOOOH), which were generated as a result of the
reaction between H2O2 and carboxylic acids, followed by the production of sulfones via
the peracids’ reaction with the target sulfur-containing compounds in the diesel sample
(as illustrated in Figure 2) [41]. Simple carboxylic acids such as formic and acetic acids
were considered the most used catalysts in ODS processes. In typical ODS processes,
refractory organic sulfur compounds, such as dibenzothiophene and its derivatives, can
be selectively and efficiently oxidized to their corresponding sulfone or sulfoxides, which
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could be removed subsequently in the process of solvent extraction (Figure 2). The ODS of
a real high-sulfur diesel sample (2568 mg/L) was performed under optimized experimental
conditions and the results are shown in (Figure 3). In this process, the desulfurization was
carried out through peracids (RCOOOH) formation as a result of the reaction between
H2O2 and carboxylic acid, followed by sulfone production via peracids reaction with target
sulfur-containing compounds in the diesel sample (Figure 2). H2O2 gained widespread
application as an oxidizing agent in various fields due to its stability, availability, and
environmentally friendly nature. The effectiveness of this compound in various oxidative
reactions is attributed to its distinctive characteristics, including its high oxidation potential
and low toxicity, which render it a widely used chemical.
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Figure 3. Oxidative desulfurization of untreated real diesel (2568 mg L−1): carboxylic acids dosage = 0.6 g;
H2O2 (30% w/w) = 15 mL.

From the results (Figure 3), it can be observed that the desulfurization efficiency under
pimelic acid was better than citric acid and α-ketoglutaric acid. After one hour of treatment,
the desulfurization rate reached more than 84% using pimelic acid. For α-ketoglutaric
and citric acids, the percentage of desulfurization efficiency was 34 and 27% after the
same treatment times, respectively. This superiority of pimelic acid can be attributed to its
possession of a greater number of hydrophobic carbons that enhance its solubility in diesel
fuel. The increased solubility of pimelic acid enabled it to interact more effectively with
the sulfur-containing compounds in diesel fuel, leading to a higher level of desulfurization
efficiency. These findings provide valuable insights into the molecular factors that influence
the performance of activators in the H2O2-based oxidative desulfurization process, thereby
facilitating the development and optimization of ODS systems for industrial applications.
Different materials that were utilized as H2O2 activators in ODS procedures for samples
of high-sulfur diesel oil included isobutyraldehyde [42], dicarboxylic acids, and Brønsted
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acidic ionic liquid supported on silica gel and formic acid [13,41]. The outcomes obtained in
this study exhibited similar results to those of prior research and indicated the outstanding
effectiveness of the analyzed carboxylic acids as a potential replacement for the present
H2O2 activator employed in the process of oxidizing desulfurization for diesel fuels with
high sulfur content.

3.2. Effect of Temperature, Hydrogen Peroxide, and Catalyst Doses

An assessment was conducted to investigate the effect of diverse quantities of hydro-
gen peroxide and chosen carboxylic acid on the percentage of desulfurization. This was
achieved by introducing varying dosages of hydrogen peroxide and specific carboxylic
acid into the system, while preserving the other experimental parameters constant. H2O2
concentration is a key parameter for the oxidative desulfurization process. Therefore, the
impact of H2O2 concentration on the percentage of desulfurization was first investigated,
and the results are shown in Figure 4. As the volume of 30% H2O2 was increased from 5 mL
to 10 mL, a marked improvement in the efficacy of desulfurization was observed, rising
from 58 to 88% when utilizing α-ketoglutaric acid as a catalyst. In contrast, there were
no notable variations in the rate of desulfurization with the utilization of other carboxylic
acids as catalysts. Based on these results, a quantity of 10 mL of H2O2 was selected to be an
optimum oxidant volume for the developed system.
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Figure 4. Optimization of (30% w/w) H2O2 addition for the oxidative desulfurization of diesel oil
with a total sulfur content of 2568 mg L−1; Carboxylic acids dosage = 0.6 g at 95 ◦C after 6 h treatment.

A series of experiments was performed to determine the optimal dosages of carboxylic
acids in the desulfurization process. To this end, a fixed amount of hydrogen peroxide
(10 mL) was used while the dosages of carboxylic acids were varied. The results indicated
that the highest efficiency of desulfurization was achieved when 0.6 g of each acid was
used. Further increase in the number of acids led to a decrease in the solubility of the
catalyst, as depicted in Figure 5. The efficiency of the oxidative desulfurization process is
heavily influenced by the reaction temperature and contact time. A study was conducted
to investigate the desulfurization efficiency at different oxidation temperatures and the
results are presented in Figure 6. It was observed that the maximum desulfurization
efficiency for the three selected carboxylic acids occurred at a temperature of 95 ◦C. As
the reaction temperature increased, the probability of collision between the organosulfur
compounds in the diesel sample and the active oxidant increased, resulting in improved
desulfurization. Therefore, increasing the temperature has a positive impact on the overall
desulfurization efficiency.
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Figure 5. Optimization of carboxylic acids dosage for the oxidative desulfurization of real diesel
(2568 mg L−1) with 10 mL 30% H2O2 at 95 ◦C after 6 h treatment.
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Figure 6. The influence of reaction temperature on oxidative desulfurization processes. Conditions:
initial sulfur content of real diesel = 2568 mg L−1, contact time = 6 h; carboxylic acids dosage = 0.6 g;
H2O2 (30% w/w) = 10 mL.

Infrared spectroscopy (IR) is a powerful technique that yields information about the
functional features of various petroleum constituents. The structure of the gas oil before
oxidation was detected by IR and the results are presented in Figure 7A. The aliphatic C-H
stretched at the range of 2955 and 2854 cm−1 for asymmetric and symmetric stretching
of CH3 groups, whereas CH2 methylene groups have bands at 2924 cm−1, the symmetric
bending vibration of the methyl group appears at 1377 cm−1, while methylene bending
appears at 1463 cm−1 [43]. Figure 7B shows the IR spectrum of gas oil after oxidation;
in these spectra, the sulfone band was observed at 1158 cm−1 for symmetric stretching
and at 1305 cm−1 for asymmetric stretching [44]. These results indicated that the organic
sulfur-containing compounds were converted to the corresponding sulfone. Furthermore,
it was observed that the sulfone compounds were effectively eliminated through the
implementation of solvent extraction utilizing acetonitrile, as illustrated in Figure 7C.

Gas chromatography was implemented in order to validate the conversion of recalci-
trant sulfur compounds into extractable sulfones. The identification of certain sulfur com-
pounds was facilitated by performing a comparative analysis between the chromatogram
of the real diesel sample and those of standard organic compounds that contained sulfur,
which are typically present in diesel samples. The obtained gas chromatographic pulsed
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flame photometric detector (GC-PFPD) chromatograms of unoxidized and oxidized diesel
oil are presented in Figure 8, after undergoing acetonitrile extraction. It is noteworthy
that the GC peaks of sulfur compounds in the oxidized diesel oil were observed to shift
in a heavier direction in comparison to those of the unoxidized sample. The obtained
chromatograms demonstrated the conversion of organosulfur compounds into more polar
molecules. This important finding indicates that most residual sulfur compounds present in
the oxidized diesel oil were converted into sulfones through the process of oxidation. As a
result of this transformation, the total sulfur content of the sample was reduced, suggesting
the effectiveness of the oxidation process in eliminating sulfur compounds from diesel oil.
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4. Conclusions

In summary, an efficient oxidative desulfurization system that utilized citric acid,
pimelic acid, and α-ketoglutaric acid as H2O2 activator was developed and designed for
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effective extraction and oxidative desulfurization of real high-sulfur diesel fuels. The
results of the experimental analysis confirmed the successful application of the developed
ODS system for the removal of sulfur-containing compounds from the real high-sulfur
diesel fuels with reasonable efficiency. Pimelic acid was identified as the most effective
activator for H2O2 in the process of desulfurizing diesel fuel. This superiority can be
attributed to the greater number of hydrophobic carbons present in pimelic acid, which
confer upon it a heightened ability to dissolve in diesel fuel. The increased solubility of
pimelic acid in diesel fuel enhances its interaction with the sulfur-containing compounds
within the fuel, resulting in a greater degree of desulfurization efficiency. Further research
may investigate alternative hydrophobic activators to further enhance the performance
of the H2O2-based ODS process. The optimal operational conditions were determined
as 0.6 g carboxylic acid dose, 10 mL H2O2 at 95 ◦C. The designed oxidative-extraction
coupling system demonstrated excellent desulfurization activity for real high-sulfur diesel
and showed an attractive potential for industrial application. This study utilized solid-
state catalysts that were both easily available and cost-effective. The findings presented
in this research would provide a novel insight into the potential application of a simple
and low-cost H2O2/carboxylic acid system as a promising option for deep desulfurization
of real high-sulfur diesel fuels using an oxidative desulfurization process. Utilizing a
solid-state activator can significantly reduce the weight of the oxidant dose, reactor volume,
storage needs, and transportation/shipping requirements. To estimate a true picture of the
treatment cost, further investigation by using a pilot plant can be carried out where the
actual energy requirement and the chemical usage can be properly calculated.
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