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Abstract: Combretaceae plants are used traditionally by many cultures, especially in Sudanese
patients for the treatment of diverse ailments such as anti-inflammatory, antimicrobial, antitumor,
and antioxidant disorders. Of these plants, the genus Combretum are traditional medicinal plants.
Thus, they are formed from the non-polar or polar extracts of many isolated phytochemicals. Of these
necessities, the use of Combretum extracts for their medicinal properties can be found in the earliest of
myths and traditions used to document the plants’ ability to treat diseases. Combretum glutinosum
Perr. Ex Dc. is a common shrub native to the African continent, especially Sudan. Currently,
there are no published data regarding its cytotoxic activity. Additionally, there are few chemical
and biological reports of C. glutinosum. Therefore, the current study aimed to isolate the chemical
bioactive compounds (1–6) from the ethyl acetate (EtOAc) extract of C. glutinosum. A new flavonoid
compound, namely, glutosinumoside (4), was afforded, and five known compounds were obtained:
three oleanane-glycosides (1–3) and two phenolic acids (5,6). The structures of the six compounds
were determined by spectroscopic analysis, including one- and two-dimensional (1D and 2D) NMR,
mass spectrometry, and chromatographic analysis. Moreover, an in vitro cytotoxic evaluation of the
successive extracts and the bioactive EtOAc fractions of C. glutinosum against MCF7 (breast), HT29
(colon), HepG2 (liver), and MRC5 (normal lung) cell lines was performed. The isolated compounds
showed comparable cytotoxic activities with the crude EtOH extract and doxorubicin against the
tested cell lines. Compounds (1) and (6) exhibited the highest cytotoxicity against MCF7 (1.37 ± 0.21
and 1.48 ± 0.34 µg/mL, respectively) and HepG2 (3.30 ± 0.02 and 2.10 ± 0.22 µg/mL, respectively)
in the MTT assay. In addition, compounds (1) and (3) demonstrated a significant upregulation of
cancer’s two important hallmarks (caspase 3 and bax genes) by inducing apoptosis and perturbing
the MCF7 cell cycle.
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1. Introduction

Plants of the family Combretaceae are used significantly for therapeutic applications
because they contain a distinct and wide range of secondary metabolites. The family
consists of approximately twenty genera with six hundred species. The genus Combretum is
considered one of the largest genera, having 370 species, and is distributed in Africa and
Brazil (tropical and subtropical areas) [1]. Traditionally, in African and Asian countries,
the Combretum species are extensively used for herbal remedies for the treatment of differ-
ent ailments, including abortifacient, antibacterial, anticancer, antifungal, antimicrobial,
antischistosomal, antitussive, antiviral, and molluscicidal activities [2,3].

Phytochemicals of everal species of the genus Combretum have been reported, includ-
ing alkaloids, triterpenes, flavonoids, lignans, phenanthrenes, saponins, and stilbenoids.
Considerable attention has been given to the screening of the plants’ extracts for present
and possible relationships with their reported biological activities, such as anticancer,
antihyperglycemic, anti-inflammatory, antimalarial, and antioxidant activities [1].

Combretum glutinosum Perr. ex DC. is one of approximately 140 species belonging to
the largest genus within the Combretaceae family, “Combretum” [3]. It is a small tree or bushy
shrub distributed in tropical Africa and is popularly named “Habil” [1,4]. A systematic
phytochemical screening of the C. glutinosum leaves revealed the presence of alkaloids [5],
benzene dicarboxylic acids [6], flavonoids [4,7], phytosterols such as β-sitosterol and β-
sitosterol-glycoside [8], polyphenols [4,5], stilbenes, tannins [4], and triterpenoids such as
lupeol, oleanolic acid, betulinic acid, β-amyrin, and 3 β-acetoxydammar-21(22)-ene [8,9].
Among these, oleanane glycosides have a unique structure, and their wild distribution in
the genus demonstrated relationships between chemical structure and cytotoxic activity [10].
In previous in vitro biological investigations, C. glutinosum’s antibacterial, antifungal, anti-
malarial, antischistosomal, and molluscicidal activities were significantly demonstrated
due to the presence of several bioactive components, such as polyphenols (gallic and ellagic
acids) [4,5], flavonoid glycosides (such as quercitrin and rutin) [4,5,11], and tannins such as
combreglutinin, 2,3-(S)-hexahydroxydiphenoyl-D-glucose, punicalagin, and punicalin [4].
Likewise, β-amyrin, isolated from the stem bark of C. glutinosum, was used as an Ayurvedic
formula for the treatment of flu and cold symptoms [9]. The phenolic compound 2,4-di-
tert-butylphenol (DTBP) was used as a raw drug for the manufacture of antioxidants [9].
In most African savannahs, the leaves or stembark of the C. glutinosum are used to treat
microbial infections, anemia, anorexia, diarrhea, fever, malaria, liver failure, respiratory
disorders such as bronchitis and cough, as antitussives, and for wound healing [11,12].

One of the major public health diseases is cancer, which causes global death. There
are 277 different types of cancer. Breast and prostate cancer are considered the major
distributed types in women and men, respectively, in addition to colon, rectum, lung,
urinary, and bladder cancer, and cancer of the uterine corpus in one of the sexes [13,14].

To the best of the authors’ knowledge, there is no study that focused on the anticancer
properties of C. glutinosum leaves. This study aimed to isolate, elucidate compounds, and
perform an in vitro cytotoxic evaluation of C. glutinosum. The chemical investigation was
assessed using different chromatographic techniques, and the in vitro cytotoxic activity
against MCF7 (breast), HT29 (colon), and HepG2 (liver) cell lines and its selectivity were
assessed using MRC5 (normal lung) cell lines in an MTT assay.

2. Materials and Methods
2.1. Plant Material and Extraction

C. glutinosum (leaves) were obtained from their natural habit in Aldbibate Town
(12◦29′55.2′′ N 29◦47′48.8′′ E), South Kordofan state, Sudan, in March 2018. The plant
material was identified by a taxonomist, Dr. Yahya Sulman Mohamed, in the herbarium
of Medicinal and Aromatic Plant Research Institute (MAPRI), National Research Center
(NCR), Khartoum, Sudan. A voucher specimen (No. MAPRI/2018/03) was deposited
in the MAPRI herbarium. The leaves were dried in the shade and ground manually at
room temperature. The powdered leaves of C. glutinosum (1923 g) were extracted at room
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temperature, as described by [15], using 96% ethanol until complete exhaustion of the plant
material. The EtOH yield (212.9 g) was partitioned between dichloromethane (DCM) and
H2O (1:1, v/v). The resulting DCM-soluble fraction (120 g) was subsequently partitioned
between MeOH-H2O, 8:2, and n-hexane, according to the NCI protocol, to provide the
corresponding EtOH (212.9 g), n-hexane (7.9 g), 80% MeOH (8 g), DCM (120 g), and
remaining aqueous (8 g) extracts. The aqueous-soluble fraction (25.3 g) was partitioned
with ethyl acetate to produce EtOAc extract (1.8 g) (Flowchart S1).

2.2. General Chemistry

An NMR (1D and 2D, Bruker UltraShield Plus 500 MHz) spectrometer was utilized
at the College of Pharmacy, Prince Sattam bin Abdulaziz University, KSA(Bruker, Fällan-
den, Switzerland, using deuterated CDCl3, pyridine, and CD3OD at room temperature
(Cambridge Isotope Laboratories, Andover, MA, USA). HR-ESI-MS data were acquired
by direct injection with electrospray ionization in negative or positive ion modes on an
UPLC RS Ultimate 3000—Q Exactive (Thermo Fisher Scientific, Waltham, MA, USA) hybrid
quadrupole-Orbitrap mass spectrometer combined with high-performance quadrupole pre-
cursor selection with high resolution and accurate mass Orbitrap™ detection. Open column
chromatography was performed using Sephadex LH-20 (Amersham Biosciences, Uppsala,
Sweden) and silica gel 60/230–400 mesh (EM Science). The thin layer chromatography
(TLC) analysis was performed on Keisel gel 60 F254 plates (Merck, Darmstadt, Germany).
The reagents and solvents were purchased from Sigma-Aldrich, Loba Chemie Pvt. Ltd.
(St. Louis, MO, USA), and SD Fine Chem. Ltd. (Mumbai, India).

2.3. Isolation and Purification of Compounds from the Ethyl Acetate Fraction

The EtOAc fraction (1.8 g) was chromatographed on a Sephadex LH-20 CC and eluted
with CHCl3 (100%), a mixture of CHCl3-MeOH (1% increments of methanol in CHCl3 until
10%) to achieve 8 fractions (A-H). The fractions were monitored by TLC on Si gel GF245
plates using a spraying reagent, 10% vanillin-sulphuric acid, for visualization. Fraction B
(631 mg) was further separated by CC on a silica gel and eluted with a mixture of CHCl3-
MeOH (1% to 10%) to furnish 10 subfractions (B.1-B.10). Subfraction B.5 (60.9 mg) was
subjected to Si gel CC with isocratic elution (n-Hex-EtOAc, 22%) to afford sub-subfraction
(SB.5-2, 34.6 mg). The latter (34.6 mg) was purified on a Sephadex LH-20 CC and eluted
with a mixture of CHCl3-MeOH (0% to 3%) to obtain compound (1) (8 mg). The subfraction
B.8 (41 mg) purified by using a Sephadex LH-20 CC, eluted with CHCl3-MeOH (0% to 7%)
to afford compounds (4) (3 mg) and (2) (3.8 mg), while (3) (10 mg) was recrystallized from
subfraction B.9 (CHCl3-MeOH 92:8, 34 mg). After subfraction B.4 (13.4 mg) was repeatedly
chromatographed on Si gel CC, using a step gradient elution with n-Hex-EtOAc (5% to
25%), compounds (5) (3 mg) and (6) (3.1 mg) were obtained (Flowchart S2).

2.4. In Vitro Cytotoxicity Assay
2.4.1. Cell Lines

The cytotoxic activity was evaluated against MCF7 (breast), HT29 (colon), and HepG2
(liver) cell lines. In addition to MRC5 (a normal fibroblast), all were obtained from the
ATCC, USA. The three cancer cells were sub-cultured in RPMI-1640 media (10% FBS), while
MRC5 was maintained in Eagle’s minimum essential medium (EMEM, 10% FBS), all at
37 ◦C and 5% CO2 for a maximum of 5–10 passages [16,17].

2.4.2. MTT Assay

Five extracts, six compounds (1–6, Figure 1), and doxorubicin were subjected to an
MTT cytotoxicity assay, according to a previous report [18]. Each cell line was separately
cultured in a 96-well plate (3 × 103/well) and incubated with either the extract at final
concentrations of 0–100 µg/mL or each of the compounds at a final concentration of
0–50 µM at 37 ◦C overnight (DMSO 0.1%; n = 3, three independent experiments). After
three days of incubation, the cytotoxicity of each extract or compound was evaluated by



Separations 2023, 10, 209 4 of 15

MTT (0.5 mg/mL added/well for 3 h) assay. Next, the supernatant was removed, the
DMSO was added, and the absorbance values were measured using a multi-plate reader
(BIORAD, PR 4100, Hercules, CA, USA). The selectivity index (S.I.) of the EtOH extract, each
of the six compounds, and doxorubicin was calculated according to a previously described
method [19] by dividing the IC50 of the corresponding extract/compound against MRC-5
cells/ IC50 of the same component against either MCF7, HT29, or HepG2 cells.
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2.4.3. Quantitative Real-Time PCR

The quantification of apoptosis-related (caspase 3, bax, or surviving) or cell cycle-
related (PCNA and CCND1) gene expression was performed in MCF7 cells using a real-time
PCR (Applied Biosystems 7500 Fast Real-Time PCR System, Waltham, MA, USA) for two
compounds (1,3), according to their resulting yield, though the yield of compound (1) was
not high enough for the RT-PCR analysis. Briefly, MCF cells (1 × 106) were cultivated in 6-
well plates. Treatments: vehicle control (0.1% DMSO), doxorubicin (0.1 µM), compound (1)
(0.1 µM), and compound (3) (2 µM) for 24 h. The manufacturer’s instructions were used to
isolate the total RNA using an isolation kit and the SYBR Green Master mix (Thermo Fisher
Scientific, Waltham, MA, USA). The synthesis of the complementary DNA (cDNA) using
the isolated RNA (RevertAid First Strand cDNA Synthesis Kit, Thermo Fisher Scientific,
Waltham, MA, USA) was performed. The mixture of cDNA, 2X SYBR Green I Mastermix,
PCR-grade water, and forward and reversed human primers of the selective genes were
used for the RT-PCR (Table 1) [18].
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Table 1. Sequence of primers used in the RT-PCR.

Gene Sequence

Caspase 3 F: ACATGGAAGCGAATCAATGGACTC
R: AAGGACTCAAATTCTGTTGCCACC

Bax F: GCCCTTTTGCTTCAGGGTTT
R: TCCAATGTCCAGCCCATGAT

Survivin F: TTGCTCCTGCACCCCAGAGC
R: AGGCTCAGCGTAAGGCAGCC

PCNA F: CACCAAGGAGGGTGTCAAGT
R: GATCTTGGGGTGCCAGATAA

CCND1 F: GGATGCTGGAGGTCTGCGA
R: AGAGGCCACGAACATGCAAG

GAPDH F: AGGTCGGTGTGAACGGATTTG
R: TGTAGACCATGTAGTTGAGGTCA

2.4.4. Statistics

An ANOVA (one-way analysis of variance) and Tukey’s post-hoc were employed to
determine statistical differences using Graphpad Prism software (version 9).

3. Results and Discussion
3.1. Identification of the Isolated Compounds

The phytochemical investigation of the C. glutinosum leaves showed the isolation
of six compounds. The spectral data of the isolated compounds are recorded in Table 2,
Table 3 and Tables S1–S4 and Figures S1–S43 using 1D-, 2D-NMR, and HR-ESI-MS data.
The isolated compounds included three oleanane glycosides (1–3), one flavonol-glycoside
(4), and two known phenolic compounds (5,6). It is worth noting that this is the first
report on the isolation and identification of compound (4) from nature, although the four
other compounds were isolated for the first time from the genus [viz. (1–3), and (6)], and
compound (5) was previously identified from C. glutinosum by HPLC [20].

3.1.1. Identification of Compound (1)

From the HR-ESI-MS data in the negative mode, the pseudo-molecular formula of
compound (1) was determined to be C43H70O15, m/z = 843.4384 [M + HCOOH, 31%,
calcd. 843.4697. The molecular formula of (1) was dedicated as C42H67O13, m/z = 795.4777
[M–H+, 10%, calcd. 795.4531], and the most abundant peaks were found at m/z = 727.3915
[M–H+– 4OH−, 100%, calcd. 727.4421] and 304.2999 [M– C22H36O12

2•, 100%, calcd. 304.2402]
in positive mode (Table S1, Figures S11 and S12), identified as yellow amorphous. The
1H-APT, DEPT-NMR, and HSQC spectral data of compound (1) (Table 2, Figures S1–S7)
were consistent with the basic skeleton of oleanane triterpenes with the presence of the
hydroxyl groups of the A-ring and sugar moieties attached to the 28-carboxylic group. The
1H-NMR spectrum of (1) displayed seven tertiary methyl groups (each s) at δH: 1.35, 1.24
(2-CH3), 0.98, 0.92, and 0.91(2-CH3), and a broad olefinic proton doublet for H-12 at δH:
5.31 (d, J = 8.3 Hz); and two broad singlets for H-3 and H-18 at δH: 3.25 (1H, s) and 3.03
(1H, s), respectively. The two characteristic downfield protons of two methine groups at
δH: 4.34 (br.s) and 3.24 (br.s) and the two anomeric signals at δH: 5.31 (d, J = 8.3 Hz) which
were correlated in the HSQC spectrum (Figures S6 and S7) with the carbon signals at δC
69.3, 82.9, and 96.4, respectively, suggest that this compound has characteristic two hydroxy
groups of a glycosidic-triterpenoid type. The 13C-NMR data showed thirty-three carbon
signals categorized as seven methyls, ten methylenes, five methines, and seven quaternary
carbon atoms. In addition, the data from the C-2, C-3, and C-28 were downfield at δC 69.3,
82.9, and 179.1, respectively, indicating that the aglycone of (1) is maslinic [21,22]. The
COSY spectrum data (Figure S8) established the triterpene skeleton as an oleanane type
(maslinic acid), and the sugars are two moieties of D-glucose (Glc) [23,24]. The HMBC
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spectrum data (Figures S9 and S10) establish the attachment of the sugar moieties with
the triterpene skeleton at the C-28 position [25]. In the HMBC spectrum of (1), long-range
couplings were observed between H-1′ of the Glc moiety (δH 5.31) and C-28 of an oleanolic
acid moiety at δC 179.1 and between H-5′ (δH 3.31) of Glc and C-1” of the terminal Glc
moiety at δC 96.4. The anomeric configuration of the Glc moieties was established to be
β-based on the relatively large 3JH-6′-H-1” values (8.3 Hz). Thus, (1) was assigned as 28-O-[β-
D-glucopyranosyl]-(1”→6′)-[β-D-glucopyranosyl]-maslinic acid (Figures 1 and 2) [21–25].
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Table 2. NMR Spectroscopic data for the compounds (1) in deuterated methanol.

Position Type
HSQC COSY HMBC (H→C) Maslinic acid a/b

* δH (J in Hz) ** δC (1H-1H) J2 J3 J4 δH (J in Hz) a/b δC
a/b

Aglycone

1 CH2 1.74, 1.46, m 41.6 C2 C25 0.91, 2.00 46.3

2 CH 4.34, br.s 69.3 C1 3.70, m 68.9

3 CH 3.24, br.s 82.9 3.01, d (9.5) 83.2

4 C 36.4 39.4

5 CH 1.25, m 49.8 C6, C10 0.85, bd (11.7) 55.4

6 CH2 0.98, br.s, 1.74, m 29.8 C7 1.40, ddd, 1.55, m 18.4

7 CH2 1.25, 1.73, m 33.7 C6 C6, C8 1.32, dt, 1.46, ddd 32.8

8 C 40.5 39.3

9 CH 1.81, m 50.1 C11 1.62, m 47.7

10 C 39.1 38.0

11 CH2 1.23, 1.96, m 25.1 C9, C12 C13 1.90, 1.95, ddd 23.5

12 CH 5.31, d (8.3) 125.4 C11 5.30, t (3.65) 121.7

13 C 144.2 C11 144.4

14 C 43.6 41.7

15 CH2 0.98, br.s, 1.69, m 29.8 C16 C14 1.09, dt, 1.71, ddd 27.8

16 CH2 2.29, 1.67, m 28.9 C15 1.62, m, 2.00, dt 23.3

17 C 47.6 46.2

18 CH 3.03, br.s 45.4 2.83, dd 41.5

19 CH2 1.84, 0.85, m 50.3 1.63, m, 1.67, ddd 46.0
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Table 2. Cont.

Position Type
HSQC COSY HMBC (H→C) Maslinic acid a/b

* δH (J in Hz) ** δC (1H-1H) J2 J3 J4 δH (J in Hz) a/b δC
a/b

20 C 39.1 30.5

21 CH2 1.26, 1.70, m 33.7 C22 C22 1.22, m, 1.35, ddd 33.8

22 CH2 1.75, 0.98, m 29.9 C21 1.59, m, 1.78, td 32.7

23 CH3 0.91, s 29.1 C4 C3, C24 1.03, s 28.9

24 CH3 0.92, s 25.6 C4 C3, C23 0.83, s 17.1

25 CH3 1.35, s 19.3 C9, C10 0.99, s 16.4

26 CH3 0.98, s 19.1 C8 C9, C14 0.82, s 17.2

27 CH3 1.24, s 25.4 C14 C8, C13 1.14, s 25.7

28 C 179.1 179.0

29 CH3 0.91, s 29.1 C19,C30 0.91, s 32.8

30 CH3 1.24, s 25.4 C20 C29 C22 0.93, s 23.3

β-D-Glucose c–e/f

1′ CH 5.31, d (8.3) 96.4 C2′ C28
6.31, d (8.0) 96.0

5.37, d (8.1) 95.7

2′ CH 3.29, br.s 74.4 C1′ C1′,C3′
4.23 74.2

3.33, m 73.9

3′ CH 3.36, d (8.8) 78.7 C4′ C5′
4.30 79.1

3.35, d (8.5) 78.2

4′ CH 3.32, br.s 71.6 C1”
4.34 71.3

3.39, m 71.1

5′ CH 3.31, br.s 79.1 C6′ C4′ C1”
4.04 79.5

3.42, m 78.5

6′ CH2
3.54, d (11.1);
3.41, d (11.1) 66.4 C5′ C4′ 4.97 dd (1.9; 11.5)

4.70 dd (5.5; 11.5) 67.1

1′′ CH 5.31, d (8.3) 96.4 C2”
6.31, d (8.0) 96.0

5.37, d (8.1) 95.7

2′′ CH 3.29, br.s 74.4 C1” C1” C5”
4.23 74.2

3.33, m 73.9

3′′ CH 3.27, br.s 78.7 C4” C2” C1”
4.30 79.1

3.35, d (8.5) 78.2

4′′ CH 3.71, br.s 70.1 C3”,C5”
4.34 71.3

3.39, m 71.1

5′′ CH 3.26, br.s 78.7 C4” C1”
4.04 79.5

3.42, m 78.5

6′′ CH2
3.78, d (11.8);
3.65, d (11.7) 62.8 C5”

4.43, 4.48, d (11.8) 62.4

3.80; 3.71 m 62.5

* Measured at 500 MHz, ** Measured at 125 MHz, a/b [21,22], c–e [23–25], f [26]. Assignments were based on the
HMBC, HSQC, COSY, and DEPT experiments.



Separations 2023, 10, 209 8 of 15

3.1.2. Identification of Compound (2)

The molecular formula of Compound (2) [yellow amorphous] was determined to be
C42H68O13, m/z 780.4891 ([M]−, calculated 780.4660). It had a pseudo-molecular peak,
C43H70O15 at m/z 826.4355 [M+ HCOOH, 1%, calculated 826.4715], the most abundant
peak at m/z 353.0881 [M–H+ –C21H32O7

2 –2CH3
−, 100%, calculated 353.1964], and showed

a characteristic fragment at m/z 701.3679 [M–2H+ –4CH3 –OH−, 80%, calculated 701.3537]
and 421.1637 [M–H+ –2sugars, 10%, calculated 421.3470] based on HR-ESI-MS data (Figure
S20) in the negative mode. Compound (2) bore a close similarity to (1) in the 13C-NMR and
1H-NMR spectral data (Figures S13 and S14) of the aglycone and the oleanane skeleton [27]
except for the absence of a 2-hydroxyl group attached to the ring A and the type/position
of one of the sugar moieties. However, except for the lack of signal from the terminal
glucose sugar unit, a comparison of the NMR (1D, 2D) spectral data of (2) with those of
(1) indicated the close attachment of the aglycone with the β-Glu- at C-28. The presence of
the galactose sugar unit in the significant downfield shift of C-3 (δC 82.9) and the coupling
patterns of the anomeric protons confirmed the presence of β-D-glucose and β-D-galactose
at C-28 and C-3, respectively (Table S3). The characteristic key HMBC correlations (Figures
S18 and S19) of δH 3.24 (1H, d, J = 3.5 Hz, H-3) with δC 96.3 (galactose C-1”) and δH 5.33
(1H, d, J = 8.3 Hz, H-1′) with δC 179.0 (aglycone C-28), assigned in the structure of (2) as 3β-
O-β-D-galactopyranosylolean-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester, (Figure 1)
was confirmed by the 2D-NMR and mass spectral data (Figures S13–S20) [24–26,28]. This is
the first report of the isolation of the compound (2) from the Combretaceae family by the
SciFinder database; it was isolated before from the leaves of Aralia elata [29].

3.1.3. Identification of Compound (3)

Compound (3) was identified as a white amorphous compound. Its molecular formula
was determined to be C41H66O12, m/z 750.4072 ([M]−, 4%, calcd. 750.4554), its most
abundant peak was at m/z 711.3965 ([M–3H]+ –2H2O, 100%, calcd. 711.4108), and it
showed a characteristic fragment at m/z 713.4022 ([M–H]+ –2H2O, 10%, calcd. 713.4265)
based on HR-ESI-MS data (Figure S29) in the negative mode. The comparison of the 1D-
and 2D-NMR spectral data of (3) with those of (2) indicated their close relationship with
the aglycone, the β-Glu- at C-28, and also in the significant downfield shift of C-3 (δC 81.7).
The assignments of the spectral data analysis of the sugar moieties, which were established
by 1H–1H COSY and HMBC correlations (Figures S27 and S28), suggest that the glycosidic
sequence of (3) does not correspond to sequence of (2). The 1H- and 13C-NMR (Figures
S21–S23) demonstrated signals for one terminal β-D-glucopyranosyl (Glc) and α-arabinose
(Ara) units [δH 6.37, d (8.0), H-1′, δC 96.6, 74.9, 79.7, 71.5, 80.1 (each CH), and 62.8 (CH2) of
Glc; and δH 6.06, d (5.5), H-1′′, δC 96.6, 71.5, 74.9, 69.6 (each CH), and 67.1 (CH2) of Ara]. In
the HMBC spectrum of (3), long-range correlations were observed between H-1′ of Glc and
C-28 of the aglycone at δC 178.1 and between H-1′′ of Ara with C-3 of the aglycone at δC
81.7. Thus, (3) was assigned as 3β-O-β-L-arabinopyranosylolean-12-en-28-oic acid, 28-O-β-
D-glucopyranosyl ester (Table S3 and Figure 1 and Figures S21–S28) [30]. Compound (3)
is a rare triterpenoid saponin that is being reported for the first time in the Combretaceae
family. In accordance with the SciFinder database, this is the second report of (3) in nature.
It is noteworthy that compound (3) was firstly isolated by Geizi et al. from the leaves of
Lafoensia glyptocarpa [30].

3.1.4. Identification of Compound (4)

Compound (4) displayed as yellow amorphous. Its chemical formula was determined
as C38H50O23, Mol. Wt. 874.7950. Its most abundant peak is m/z 575.2101 [M—7OH−

–C9H8O4
2−, 100%, calcd. 575.2422] in positive mode (Figures S38 and S44, Table S2),

and it showed characteristic fragments at m/z 263.1319 [M–2H—3 sugar moieties –CH3
–3CH3O−, 50%, calcd. 263.0344] and 587.1901 [M–2H –6OH− –CH3O− –C8H8O3

2CH3O−,
2%, calcd. 587.1765] based on the HR-ESI-MS data (Figures S39 and S45, Table S2) in
negative mode. The results of the spectral data analysis revealed the presence of a flavonol
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skeleton substituted with penta-methoxy groups, which was identified as a myricetin
pentamethyl ether [24,31–33], based on the 1H, 13C, and DEPT-NMR spectra (Table 3,
Figures S30–S33). These spectra demonstrated the presence of four aromatic protons,
including two meta-coupled protons at δH 6.38 (overlapped, H-6) and 6.52 (br.s, H-8) of the
A-ring, δH 6.69 (t, H-2′) and 6.70 (t, H-6′) of the B-ring of the flavonol moiety, and five
methoxy groups at δH 3.80 (br.s, CH3OCH3O−), 3.76 (s, CH3O−), 3.75 (br.s, CH3OCH3O−),
3.70 (s, CH3OCH3O−), and 3.27 (s, CH3O−) which were correlated with the five quaternary
carbons at δC 57.0, 56.8, 57.2, 57.3, and 60.4, respectively. The HSQC (Figure S34) confirmed
the presence of 5,7,3′,4′,5′-pentamethyl ether [6,12,24,31–33]. The NMR spectral data of
compound (4) (Table 3 and Figures S30–S37) showed the possible presence of the three
sugar moieties; this was confirmed by the presence of three anomeric proton signals
at δH 6.37, (d, J = 8.4 Hz), 4.17, (d, J = 9.0 Hz), and 3.95, (d, J = 7.6 Hz), which were
correlated with the three anomeric carbons at δC 107.3, 105.5, and 105.2, respectively, from
the HSQC (Figure S34) [24,27,31–33] and from the presence of a characteristic fragment at
m/z 517.1487 [M–H—2 glucose units—CH3, 5%, calcd. 517.1346], which was coincident
with C25H25O12

• (Table S2, Figures S39 and S45) in a negative mode. The anomeric
configuration of the three Glu was established to be β-based on the relatively large 3JH-1-H-6
values (7.6–9.0 Hz) (Figures S30–S37). The presence of a flavonol substitutional part
was confirmed by the presence of a characteristic peak at m/z 371.15604 [M–3glucose
parts, 1%, calcd. 371.1131], coincident with C20H19O7

• (Table S2, Figure S38 and S45)
in positive mode. In addition, the presence of 3-O-β-glucosyl substitutions was evident
from the HMBC correlation between the proton signal at δH 6.37 (d, J = 8.4 Hz, H-1′′)
and at C-2 and C-3 (δC 149.4 and 139.3, respectively) (Figure 2, Figures S36 and S37).
Thus, the structure of (4) was confirmed to be 3-[β-O-D-glucopyranosyl]-(1′′′→6′′)-O-β-
D-glucopyranosyl-(1′′′′→6′′′)-O-β-D-glucopyranosyl-5,7,3′,4′,5′-pentamethoxy flavonol,
named glutosinumoside (Figures 1 and 2). When compared with the SciFinder database,
no reports on the occurrence of (4) in the herbal plants have been found in the literature.

Table 3. NMR spectral data of compound (4) in CD3OD (500 MHz) for 1H-NMR and (125 MHz)
for 13C-NMR.

Position Type
HSQC COSY HMBC Myricetin *

δH (J in Hz) δC
1H-1H (H→C) δH (J in Hz) δC

Aglycone

2 C 149.4 157.2

3 C 139.3 134.3

4 C 178.5 178.1

5 C 149.5 161.4

6 CH 6.37 (overlapped) 108.2 C5, C7, C9,C10 6.67, br.s 98.6

7 C 149.1 165.8

8 CH 6.52, br.s 108.2 C7, C9, C10 6.36, br.s 92.8

9 C 149.5 157.0

10 C 139.2 105.6

1′ C 123.6 122.1

2′ CH 6.69, t 116.3 C2,C3,C1′,C2′,C3′ 7.55, br.s 116.4

3′ C 149.3 146.5

4′ C 148.0 150.6

5′ C 147.6 7.04 (d, J = 8.7 Hz) 111.9

6′ CH 6.70, t 114.6 C2,C3,C1′,C4′,C5′ 7.73 (br.d, J = 8.7 Hz) 123.0
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Table 3. Cont.

Position Type
HSQC COSY HMBC Myricetin *

δH (J in Hz) δC
1H-1H (H→C) δH (J in Hz) δC

β-Glucose

1′′ CH 6.37, d (8.4) 107.4 C2, C3
4.4, d (7.9) 105.6

5.69, d (7.7) 104.9

2′′ CH 3.12–3.19, m 75.3 C3′′, C4′′, C5′′
3.17, t (8.5) 75.5

4.08 75.7

3′′ CH 3.23, br.s 78.4 C2′′, C4′′, C1′′′
3.33 78.3

4.27 78.2

4′′ CH 3.27, m 71.7 C3′′, C5′′
3.29 71.5

4.15 71.4

5′′ CH 3.12–3.19, m 75.3 C6′′ C2′′, C4′′
3.27 77.7

4.04 76.2

6′′ CH2 3.76, 3.80, br.s 67.5 C5” C4′′
3.67, dd (11.9, 4.9)
3.83, dd (11.9, 2.1) 62.7

4.35; 4.65, brd (10.7) 69.3

β-Glucose

1′′′ CH 4.17, dd (2.6, 9.0) 105.5 C2′′ C1′′, C4′′ 4.4, d (7.9) 105.6

2′′′ CH 3.12–3.19, m 75.3 C1′′′ C1′′′, C3′′′, C4′′′, C5′′′ 3.17, t (8.5) 75.5

3′′′ CH 3.31, br.s 78.5 C2′′′ 3.33 78.3

4′′′ CH 3.31, m 71.7 C2′′′ 3.29 71.5

5′′′ CH 3.27, br.s 78.5 C2′′′ 3.27 77.7

6′′′ CH2 3.75, 3.80, br.s 67.5 C1′′′′, C1′′′, C4′′′
3.67, dd (11.9, 4.9)
3.83, dd (11.9, 2.1) 62.7

4.35; 4.65, brd (10.7) 69.3

β-Glucose

1′′′′ CH 3.95, d (7.6) 105.2 C2′′′′ 4.4, d (7.9) 105.6

2′′′′ CH 3.22, br.d 75.4 C1′′′′ C3′′′′, C4′′′′, C5′′′′ 3.17, t (8.5) 75.5

3′′′′ CH 3.31, br.s 78.5 C2′′′′ 3.33 78.3

4′′′′ CH 3.31, m 71.7 C2′′′′ 3.29 71.5

5′′′′ CH 3.27, br.s 78.4 C2′′′′ 3.27 77.7

6′′′′ CH2 3.70, 3.74, br.s 65.5 C1′′′′, C4′′′′ 3.67, dd (11.9, 4.9)
3.83, dd (11.9, 2.1) 62.7

5-O-CH3 3.75, br.s 57.2 C5 3.86, s 56.7

7-O-CH3 3.80, br.s 57.0 C7 3.85, s 56.2

3′-O-CH3 3.70, s 57.3 C3′ 3.86, s 56.7

4′-O-CH3 3.27, s 60.4 C4′, C5′ 3.86, s 56.7

5′-O-CH3 3.76, s 56.8 C5′ 3.86, s 56.7

* [24,27,31–33].

3.1.5. Identification of Compound (5)

The 1D-NMR data (Figures S40 and S41) identified the structure of compound (5) as
white, amorphous vanillic acid, which was in accordance with the results of an authentic
sample and reported data in the literature [34,35]. This compound was previously identified
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from C. glutinosum by HPLC analysis [20]. 1H-NMR spectrum data (CD3OD, 500 MHz) are
as follows: δH: 6.76 (1H, d, J = 8.0 Hz, H-5), 7.50 (1H, s, H-2), 7.48(1H, br.d, J = 9.0 Hz, H-6),
3.85 (3H, s, CH3O−); 13C-NMR spectrum data (CD3OD, 125 MHz) δC: 169.2 (COOH), 116.2
(C-2), 149.1 (C-3), 152.8 (C-4), 114.3 (C-5), 125.7 (C-6), and 56.8 (CH3O−) [34,35].

3.1.6. Identification of Compound (6)

Compound (6) was yellow and amorphous, identified by 1H and 13C-NMR (CD3OD,
500 and 125 MHz) spectral data (Figures S42 and S43), as follows: δH: 7.27 (2H, s, H-2/H-6)
and 3.82 (3H, s, CH3O−); δC: 171.0 (COOH), 123.0 (C-3/C-5), 142.0 (C-4), 149.3 (C-1), 108.7
(C-2/C-6), 57.2 (CH3O−) [36]. In addition, co-chromatography with an authentic sample
revealed that this compound (6) is syringic acid. This compound was isolated from the
genus Combretum for the first time.

3.2. Biological Activities of Main Fractions and Isolates from C. glutinosum
3.2.1. In Vitro Cytotoxic Activity

Based on the biological, bio-guided procedure, the anticancer activity of the five
extracts of C. glutinosum was determined to select the most significant extract(s) for further
phytochemical investigations (Table 4). The anticancer activity of DCM and the aqueous
extracts against MCF7 and HT29 demonstrated a growth inhibition of 62%-93% compared
to the control after treatment with 50 µg/mL, indicating that the activity is associated with
the natural compounds within the DCM extract. Therefore, the DCM extract was kept for
future investigations. The growth inhibition % of the crude EtOH was superior to that of
the DCM, reaching 93% against MCF7 (Table 4). Thus, further investigations were carried
out on the crude EtOH extract. Table 5 shows the cytotoxic activity of the crude EtOH
extract in addition to the six isolated compounds and doxorubicin. The most sensitive cell
line was MCF7; the most active compounds were (1), followed by (5), (6), and (4) (Table 5).

Table 4. Percent (%) of the growth inhibition compared to control after treatment with each of the
five crude extracts of C. glutinosum (50 µg/mL, n = 3, 72 h).

Extract
Growth Inhibition% ± SD

MCF-7 HT-29 MRC-5

Crude EtOH 93 ± 2.40 90 ± 1.24 85 ± 3.21

DCM 89 ± 2 93 ± 1 94.2 ± 0.6

MeOH 80% 55 ± 3 35 ± 5 47 ± 4

n-Hex 31 ± 5 25 ± 4 48.4 ± 5.5

Re. Aq 81 ± 1 62 ± 2 49 ± 3
EtOH = ethanol; DCM = dichloromethane; MeOH = methanol; n-Hex = n-hexane; Re. Aq = remaining aqueous.

Table 5. Cytotoxic activity (IC50 µM ± SD, n = 3, 72 h) of the isolated compounds from C. glutinosum
and doxorubicin against three cell lines and normal fibroblasts.

Extract */
Compound MCF7 HT29 HepG2 Average **

IC50
MRC5

EtOH Ext. 3.50 ± 0.74 12.09 ± 2.22 2.99 ± 0.56 6.19 13.84 ± 1.57

1 1.37 ± 0.21 4.54 ± 1.48 3.30 ± 0.02 3.07 10.22 ± 1.46

2 2.40 ± 0.22 18.48 ± 0.78 3.37 ± 0.02 8.08 14.76 ± 0.32

3 2.27 ± 0.19 6.24 ± 0.93 2.42 ± 0.21 3.64 3.54 ± 1.35

4 1.72 ± 0.19 3.99 ± 1.03 3.30 ± 0.93 3.00 15.68 ± 3.02

5 1.48 ± 0.02 6.62 ± 0.67 3.82 ± 0.50 3.97 7.04 ± 0.61

6 1.48 ± 0.34 4.06 ± 0.48 2.10 ± 0.22 2.54 13.85 ± 2.00

Doxo 0.29 ± 0.03 0.13 ± 0.03 2.33 ± 0.19 0.91 3.71 ± 0.02
* IC50 of extract in µg/mL, ** average cytotoxicity (IC50) of each extract/ compound against the three cancer cells.
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3.2.2. Effect of Compounds (1) and (3) on Gene Expression

Compared to the vehicle control, both doxorubicin and compound (1) caused a sig-
nificant upregulation of the pro-apoptotic caspase 3 and bax gene expression and the
downregulation of survivin in MCF7 cells. The effect of doxorubicin was more significant
compared to compound (1) with respect to Caspase 3 and survivin, while compound (1)
showed a greater bax upregulatory effect than doxorubicin, as shown in Figure 3. Moreover,
both compounds showed significant cell-cycle effects through the downregulation of PCNA
and CCND1 gene expression, while compounds (1) and (3) surpassed the effect of doxoru-
bicin with respect to CCND1. The effect of doxorubicin was more remarkable compared to
compound (3) with respect to the caspase 3 and bax genes, while compound (3) surpassed
doxorubicin in downregulating survivin, as shown in Figure 4. Thus, compounds (1) and
(3) were shown to affect cancer’s critical hallmarks by inducing apoptosis and perturbing
the MCF7 cell cycle.
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expression of caspase 3, Bax, survivin, PCNA, and CCND1 in MCF7 cells (24 h). RT-PCR was used
for the estimation of the proteins (mean ± S.D., fold change = 1 dashed line, n = 2 × 2 independent
experiments). p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) were considered significant.
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expression of caspase 3, Bax, survivin, PCNA, and CCND1 in MCF7 cells (24 h) RT-PCR was used
for the estimation of the proteins (mean ± S.D., fold change = 1 dashed line, n = 2 × 2 independent
experiments). p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) were considered significant.

4. Conclusions

This study was conducted to evaluate the cytotoxic activity of the polar fraction
(ethyl acetate) of the Sudanian plant, C. glutinosum, to identify new phytochemicals for
effective therapy. The study reported herein the isolation and identification of six bioactive
components, including three triterpenoid saponins [28-O-[β-D-glucopyranosyl-(1”→6′)-[β-
D-glucopyranosyl]-maslinic acid (1), 3β-O-β-D-galactopyranosylolean-12-en-28-oic acid,
28-O-β-D-glucopyranosyl ester (2), and 3β-O-β-L-arabinopyranosylolean-12-en-28-oic acid,
28-O-β-D-glucopyranosyl ester (3)], a flavonol-glycoside derivative (4), and two phenolic
acids (5,6). One compound of isolates was identified for the first time from nature, viz.,
glutosinumoside (4) [flavonol-glycoside]. This research also showed that four bioactive
phytochemicals [(1–3) and (6)] had not before been isolated from C. glutinosum nor the
Combretaceae family. The biological results of this study demonstrated that the plant has
significant cytotoxic activity.
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