Research on Hydrometallurgical Separation Technology
1. Introduction
2. Summary of Published Articles
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ohto, K.; Kawakita, H.; Yoshizuka, K. Katsutoshi Inoue and Solvent Extraction and Ion Exchange: Contributing to the United Nations’ Sustainable Development Goals. Solvent Extr. Ion Exch. 2021, 39, 449–454. [Google Scholar] [CrossRef]
- Matsumoto, K.; Sezaki, Y.; Hata, Y.; Jikei, M. Selective Recovery of Platinum (IV) from HCl Solutions Using 2-Ethylhexylamine as a Precipitant. Separations 2021, 8, 40. [Google Scholar] [CrossRef]
- Ueda, Y.; Morisada, S.; Kawakita, H.; Ohto, K. Selective Extraction of Platinum(IV) from the Simulated Secondary Resources Using Simple Secondary Amide and Urea Extractants. Separations 2021, 8, 139. [Google Scholar] [CrossRef]
- Ohto, K.; Fuchiwaki, N.; Furugou, H.; Morisada, S.; Kawakita, H.; Wenzel, M.; Weigand, J.J. Comparative Extraction of Aluminum Group Metals Using Acetic Acid Derivatives with Three Different-Sized Frameworks for Coordination. Separations 2021, 8, 211. [Google Scholar] [CrossRef]
- Kurniawan, Y.S.; Sathuluri, R.R.; Ohto, K.; Iwasaki, W.; Kawakita, H.; Morisada, S.; Miyazaki, M.; Jumina, J. New Concept for the Study of the Fluid Dynamics of Lithium Extraction Using Calix[4]arene Derivatives in T-Type Micro-reactor Systems. Separations 2021, 8, 70. [Google Scholar] [CrossRef]
- Washino, T.; Demura, M.; Morisada, S.; Ohto, K.; Kawakita, H. Separation of Microalgae by a Dynamic Bed of Magnetite-Containing Gel in the Application of a Magnetic Field. Separations 2022, 9, 120. [Google Scholar] [CrossRef]
- Matsumoto, K.; Yamakawa, S.; Sezaki, Y.; Katagiri, H.; Jikei, M. Preferential precipitation and selective separation of Rh(III) from Pd(II) and Pt(IV) using 4-alkylanilines as precipitants. ACS Omega 2019, 4, 1868–1873. [Google Scholar] [CrossRef] [Green Version]
- Pang, G.; Morisada, S.; Kawakita, H.; Hanamoto, T.; Umecky, T.; Ohto, K.; Song, X.-M. Allosteric extraction of the second gallium anion assisted by the fist gallium-loaded fluorinated secondary amide reagent. Sep. Purif. Technol. 2021, 278, 119036. [Google Scholar] [CrossRef]
- Ohto, K.; Sato, T.; Pang, G.; Umecky, T.; Morisada, S.; Kawakita, H. Effect of spacer length between two weak NH hydrogen atoms of secondary diamido reagents on anionic platinum extraction. Hydrometallurgy 2022, 213, 105932. [Google Scholar] [CrossRef]
- Ohto, K. Review on adsorbents incorporating calixarene derivatives for metals recovery and hazardous ions removal—Concept of adsorbent design and classification of adsorbents. J. Incl. Phenom. Macrocycl. Chem. 2021, 101, 175–194. [Google Scholar] [CrossRef]
- Kuyucak, N.; Volesky, B. 2.4 Biosorption by algal Biomass. In Biosorption of Heavy Metals; Volesky, B., Ed.; CRC Press: Boca Raton, FL, USA, 1990; pp. 173–198. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohto, K. Research on Hydrometallurgical Separation Technology. Separations 2022, 9, 299. https://doi.org/10.3390/separations9100299
Ohto K. Research on Hydrometallurgical Separation Technology. Separations. 2022; 9(10):299. https://doi.org/10.3390/separations9100299
Chicago/Turabian StyleOhto, Keisuke. 2022. "Research on Hydrometallurgical Separation Technology" Separations 9, no. 10: 299. https://doi.org/10.3390/separations9100299
APA StyleOhto, K. (2022). Research on Hydrometallurgical Separation Technology. Separations, 9(10), 299. https://doi.org/10.3390/separations9100299