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Abstract: Nitrogen oxide (NOx) is a major gaseous pollutant in flue gases from power plants,
industrial processes, and waste incineration that can have adverse impacts on the environment
and human health. Many denitrification (de-NOx) technologies have been developed to reduce
NOx emissions in the past several decades. This paper provides a review of the recent literature
on NOx post-combustion purification methods with different reagents. From the perspective of
changes in the valence of nitrogen (N), purification technologies against NOx in flue gas are classified
into three approaches: oxidation, reduction, and adsorption/absorption. The removal processes,
mechanisms, and influencing factors of each method are systematically reviewed. In addition, the
main challenges and potential breakthroughs of each method are discussed in detail and possible
directions for future research activities are proposed. This review provides a fundamental and
systematic understanding of the mechanisms of denitrification from flue gas and can help researchers
select high-performance and cost-effective methods.
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1. Introduction

The pollutants produced by power plants, industrial processes, and municipal solid
waste incineration mainly include particulate matter, sulfur oxides, and nitrogen oxides
(NOx) [1,2]. NOx in flue gas mainly exists in the form of NO (90–95%) and NO2 (5–10%).
NOx emissions can cause a series of health problems, such as eye and throat inflamma-
tion, chest tightness, nausea, and headaches, as well as environmental problems, such as
ozone depletion, acid rain, haze, photochemical smog, and greenhouse gas emissions [3,4].
Therefore, NOx emissions must be reduced and controlled.

In regard to different combustion stages, NOx control methods can be categorized
into pre-combustion, in-combustion, and post-combustion control [5]. For pre-combustion
control, the focus is on reducing the nitrogen in the fuel, specifically by selecting a fuel with
a low nitrogen content or reducing the nitrogen content of the fuel. The in-combustion
control technology, also called low-NOx combustion technology, is mainly used to suppress
NOx generation by adjusting operation parameters, modifying burners, etc. [6]. For pre-
combustion and in-combustion control methods, only low removal efficiencies can be
achieved. Without further countermeasures, most of the exhaust gases from industrial
furnaces cannot meet emission standards. Therefore, a post-combustion approach is usually
used to achieve a higher NOx reduction [7].

Substantial research has been conducted in developing post-combustion technologies
to meet stricter environmental regulations for NOx. Figure 1 presents the statistics of yearly
published papers on the topic of NOx purification from flue gas. Table 1 lists currently
used purification technologies for NOx removal from flue gas after combustion.
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Figure 1. Publication of papers from the last four decades on NOx purification from flue gas. The
data were retrieved from the Web of Science database with the topics of “NOx removal” or “DeNOx”
and “flue gas” (totally 2078 papers). (a) represented the publication trend of papers between 1981
and 2021. (b) demonstrated the statistical results of top 10 journals ranked by the number of articles.

Table 1. Post-combustion methods for NOx removal.

Method Operation Concept Advantage Disadvantage Ref.

Selective catalytic
reduction (SCR)

Use gaseous reductants to
reduce NOx with catalysts

under approximate
temperature

High efficiencies

High costs of catalysts
Ammonia slip

Corrosion of equipment
Limited life span of catalyst

Large amounts of waste

[8]

Selective non-catalytic
reduction (SNCR)

Use gaseous reductants to
reduce NOx without
catalysts under high

temperature

Reliable technology
No catalyst used
Less equipment

investment

High consumption of reactant
Ammonia leakage

The formation of N2O and CO Fly
ash and unburned
carbon increasing

[9]

Absorption
Exposed to liquid

absorbents to scrub NOx
from gas phase

Simultaneous removal
of muti-pollutant
Simple operation
Stability against

inlet gas

High amount of liquid waste
Low efficiency

Large multi-stage scrubbers
[10]

Adsorption

NOx can be adsorbed by
porous solid materials

under approximate
pressure and temperature

No liquid wastes
High purification

efficiency
Simple equipment

High investment cost
Huge equipment [11]

Non-thermal
plasma (NTP)

High-energy electrons
excite molecules to

generate radicals that can
oxidize NOx in a very

short time

Low equipment cost
No waste

Simple operation
Useful by-product

High energy cost
Low efficiency

Low operating pressure
[12]

In this paper, the existing NOx purification methods are summarized and reviewed. In
regards to the different transformation approaches (methods causing an increase, decrease,



Separations 2022, 9, 307 3 of 27

or no change in the chemical valence of nitrogen), the purification against NOx from
flue gas is classified into three types: oxidation methods (N valence increases), reduction
methods (N valence decreases), and absorption/adsorption methods (no change in N
valence). Furthermore, some innovative methods that are still at laboratory scale, such as
non-thermal plasma, are also discussed. The aim of this paper is to present a comprehensive
overview of post-combustion NOx purification technologies with different physical state
reagents and to help researchers select methods with high performance for NOx removal
in specified situations.

2. Oxidation Methods

Regarding the presence of large amounts of insoluble NO in flue gas, oxidizing NO
to a much more soluble NO2 is a highly necessary step, followed by wet scrubbing or dry
absorption. In regard to the states of oxidants required for NO oxidation, the reactants are
divided into gas oxidants, liquid oxidants, and solid oxidants. The reaction mechanism
and the factors affecting the removal efficiency are reviewed.

2.1. Gas Oxidants

Due to the full and effective contact between reactants, gaseous oxidants are widely
employed to remove NOx from flue gas. Gas oxidants include oxygen (O2), ozone (O3),
chlorine species, and non-thermal plasma.

2.1.1. Oxygen (O2) Oxidants

Oxygen is one of the most common oxidants. Thermodynamically, oxygen can
spontaneously oxidize NO to NO2 and the activation energy for oxidizing NO by O2
is −4.41 kJ/mol in the temperature range of 270–600 K [13]. However, previous studies
have reported that in flue gases from power plants and in industrial processes, such as
sintering and waste incineration, the ratio of NO/NOx is still more than 90%, even though
there is a considerable proportion of oxygen (3–8%) in the flue gas [14–16].

In oxygenated gaseous environments, the reaction of NO with O2 proceeds as a
third-order reaction [17]:

2NO + O2 → 2NO2 (1)

− d[NO]

dt
= +

d[NO2]

dt
= 2 k· [NO]2·[O2] (2)

where the rate constant k is dependent on temperature. In untreated flue gases of power
plants, the concentration of NOx usually ranges between 200 and 400 ppm [18]. In the tail
gas of cement kilns, the concentration of NOx can reach 500–800 ppm or more, and O2 is
concentrated over 8–10% [19]. Therefore, the oxidation rate of NO by O2 is still low without
a catalyst.

Numerous reaction pathways, including a trimolecular reaction, a pre-equilibrium
mechanism with a dimer of NO ((NO)2) as an intermediate, and a pre-equilibrium mech-
anism with NO3 as an intermediate, have been proposed to explain the homogenous
oxidation of NO by O2 [20].

NO2 is produced from NO and O2 at a high pressure and low temperature.
Ting et al. [21] investigated the oxidation of NO to NO2 in the gas phase, absorption
in liquid water, and interactions with water vapor at pressures ranging from ambient to
30 bar. As the conversion rate of NO approached 90% over a longer residence period,
dry gas oxidation performed well in comparison to global reaction kinetics, which are
frequently applied at lower pressures. The study also demonstrated that the NO/NO2 ratio
is mostly unaffected by temperature (25–500 ◦C).

Although O2 might directly oxidize NO, the oxidation rate is still constrained. Cat-
alysts, including noble metals, metal oxides/complexes, activated carbon materials, etc.,
have been extensively studied in recent years. The introduction of diverse catalysts pro-
vided active sites, enhancing the reaction between nitric oxide and oxygen and improving
the oxidation efficiency. Mn-based catalysts are common catalysts that have recently at-
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tracted interest due to their plentiful supply, low cost, easy fabrication technique, and
strong thermal stability [22]. The MnO2 catalysts with various crystal morphologies have
shown significant catalysis activity. The γ-MnO2 catalyst demonstrated the highest activity
among the four catalysts (α-, β-, γ-, and δ-MnO2) and exhibited 91% NO conversion at
250 ◦C [23]. Gao et al. [24] proposed reaction pathways for NO oxidation by α-, β-, and
γ- MnO2 catalysts, as shown in reactions (3) and (4).

Mn−�−Mn
O2→ 2(−MnO)

NO2(gas)→ MnO−NO−OMn
(� represents oxygen vacancy, same below)

(3)

MnO−NO−OMn→ Mn−O−Mn + NO2 (4)

Lattice oxygens contributed to the production of bridging nitrates on the -MnO2
catalyst. The presence of Mn cations, which were quickly oxidized, led to the conversion of
NO and trans-(N2O2)2 species [25]. As a result, in addition to reactions (3) and (4) above,
the following reactions, reactions (5) and (6), also exist [24]:

NO (gas) Mn−O or Mn=O→ MnO−NO−OMn (5)

NO(gas) Mnn+
→ NO−

1
2 O2→ NO2(gas) (6)

Yuan et al. [26] discovered that NO adsorbed at oxygen vacancy would be a critical
poisoning species and deactivate MnO2. Possible pathways of NO oxidation based on
the Mars–van Krevelen (MvK) mechanism were proposed (as shown in Figure 2). As
the favoured pathway showed, the O2 on oxygen vacancies reacted with the nearby NO
absorbed on the Mn cations. An intermediate (ONOO) was formed during this step
and then decomposed to NO2. In this process, the adsorption of oxygen on oxygen
vacancies was considered as a decisive step. This result was consistent with previous
studies [24,27,28].
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Figure 2. Possible pathways of NO oxidation with the Mars–van Krevelen mechanism occurring
on Mn5c site and lattice O on MnO2. The red pathway represented the favoured mechanism of NO
oxidation on MnO2. Modified from [26] with permission from the American Chemical Society.
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2.1.2. Ozone (O3) Oxidants

O3 was extensively studied for flue gas purification or emission control due to its high
oxidation rate and efficiency, excellent oxidation selectivity, and broad temperature range
of use [29].

Recently, an ab initio calculation of quantum chemistry has been used to simulate the
oxidation process of NOx. Mok et al. [30] proposed the main 12-step oxidation reaction
of NOx oxidation. NO can be directly oxidized by O3 to NO2 (reaction (7)) and the rate
constant is measured as shown in Equation (8). The main pathways of NOx oxidation by
O3 are shown in Figure 3. However, this 12-step reaction mechanism ignores the interaction
of some intermediate gases (such as N2O, H2O, HNO3, etc.).

NO + O3 → NO2 + O2 (7)

k = 1.8× 10−14 cm3 mol−1 s−1 (8)
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reactions always occurring and dashed lines represent reactions occurring under certain conditions.
Adapted from [31].

Several studies have confirmed that the molar ratio affected the mechanism of NO
oxidation by O3 [31–33]. When the molar ratio was less than 1, NO was mainly oxidized to
NO2. When the molar ratio was greater than 1, the oxidation products were NO2, N2O5,
and HNO3. According to Ref. [31], the formation of HNO3 was due to the presence of
H2O in flue gas. It was also found that the concentrations of N2O5 and HNO3 sharply
decreased at temperatures ranging from 120 ◦C to 180 ◦C. Therefore, a way to control HNO3
formation when oxidizing NO by O3 could be to increase the reaction temperature. The
maximum yield of N2O5 was produced at 90 ◦C when the molar ratio of O3/NO was larger
than 1. The most soluble nitrogen oxides, N2O5, were the end product of NO oxidation by
O3. As Figure 3 depicted, the products besides N2O5 included NO2, NO3, N2O3, HNO2,
and HNO3. In particular, NO3 can rapidly react with NO and decompose to NO2. Finally,
all the NOx species can be transformed into N2O5 by the excess amount of O3. The NOx
removal rate reached 96.5% when the molar ratio of O3/NO NO was 1.8 [34].

Zhou et al. used ozone oxidation and an alkaline counter-flow packed scrubber to
investigate ozone decomposition, the oxidation properties of NOx, the removal efficiencies
of NOx and SO2, and the optimal factors [35]. It was found that as the temperature increased
and the initial ozone concentration declined, the NOx oxidation efficiency decreased. The
NO conversion process was not significantly impacted by SO2 presence. The most effective
additive to lower ozone consumption was CO(NH2)2. The ideal conditions for reducing
SO2 and NOx were reached, including a temperature of 150 ◦C, a stoichiometric ratio (0.6)
of ozone and NO, and a pH of approximately 8.

2.1.3. Chlorine (Cl2) and Chlorine Dioxide (ClO2) Oxidants

Gaseous chlorine species mainly refer to chlorine (Cl2) and chlorine dioxide (ClO2).
There is little research on its direct application for NO oxidation. As a high-valence
gaseous form of chlorine, ClO2 is more oxidative compared to Cl2. At temperatures
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ranging from 220 to 367 K, the oxidation rate constant of NO to NO2 by ClO2 (reaction (9))
was measured and found to be negatively correlated to temperature, with an Arrhenius
expression (Equation (10)) [36]:

OClO + NO → ClO + NO2 (9)

k = (1.04 ± 0.24)× 10−13 exp[(347 ± 58)/T] cm3 mol−1 s−1 (10)

where k represents the reaction constant rate and T represents the temperature of the
reaction, K.

Laboratory-scale experiments were carried out to investigate the conversion of NO to
NO2 [37]. It was found that ClO2 could effectively oxidize NO, and the conversion rate was
up to 100%. Cl2/ClO2 were often generated on-site using chemical or electrolytic methods
from either sodium chlorite or sodium chlorate solutions (reviewed in Section 2.2.3) owing
to the shipment and storage security requirements [38]. The application of Cl2/ClO2 for
de-NOx is usually followed by liquid phase scrubbing technology.

2.1.4. Non-Thermal Plasma (NTP)

Plasma is typically an ionized gas made up of several highly energetic electrons, free
radicals, excited species, photons, etc. Electricity-generated plasma is typically divided into
two forms: thermal plasma and non-thermal plasma [39]. Since gaseous pollutants might be
transformed into inert compounds by free radicals (H•, N•, O•, OH•, O3•, HO2•, etc.) in
plasma [40], NTP has been expanded to remove NOx in flue gases at atmospheric pressure
with significantly less investment, maintaining cost and energy requirements [12]. De-NO
and de-SO2 in a pulsed corona discharge process (PCDP) reactor have been modeled using
a mechanism and kinetic scheme, and the model has been confirmed by experimental data.
It has been discovered that NO and SO2 react with oxidizing radicals to form oxides with
higher valence states [41]. Table 2 lists the NTP procedures that are currently accessible
for NO oxidation from the perspectives of the NTP reactor, additives, gas composition,
reaction conditions, and removal efficiency.

Table 2. Experimental conditions and removal efficiencies of available NTP processes for
NO oxidation.

NTP Reactor Gas Composition Reaction Condition
Maximum
Removal
Efficiency

Ref.

DBD * Dry Air/NO (206 ppm)

Energy density: 90 J/L
Gas residence time: 3.3 s

Reaction temperature: 25 ◦C
Gas flow rate: 1 L/min

99.5% [42]

Coal-fired flue gas, NO
(200 ppm), SO2 (250 ppm)

Energy density: 22 J/L
Reaction temperature: 75 ◦C (do*)/90 ◦C

(io*)
Gas flow rate: 150 m3/h

30%(do)/70%(io) [43]

N2/NO (500 ppm)
Energy density: 570 J/L

Gas residence time: 0.64 s
Gas flow rate: 10 L/min

80% [44]

NO (300 ppm), SO2 (260 ppm),
N2 balance

Catalyst: TiO2
Pulse frequency: 900 Hz

Capacitor-Charging voltage: 12 kV Gas
residence time: 1.0 s

Reaction temperature: 25 C
Gas flow rate: 5 L/min

100% [45]
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Table 2. Cont.

NTP Reactor Gas Composition Reaction Condition
Maximum
Removal
Efficiency

Ref.

PCD *
NO (200 ppm), SO2 (150 ppm),
CO (150 ppm), H2O (10%), O2

(20%)

Energy density: 7.6 J/L
Gas residence time: 1.68 s

Reaction temperature: 137 ◦C
Gas flow rate: 1 L/min

65% [41]

NO (120 ppm), SO2 (525 ppm),
O2 (6%), CO2 (12%), H2O (3%),

N2 balance

Energy density: 80 J/L
Gas residence time: 5.0 s

Reaction temperature: 25 ◦C
Gas flow rate: 6 L/min

71% [46]

NO (180 ppm), SO2 (1013 ppm),
air balance

Energy density: 45.8 J/L
Gas residence time: 4.4 s

Reaction temperature: 25 ◦C
Gas flow rate: 72 L/min

40% [47]

NO (537 ppm), O2 (22%), H2O
(RH = 60%), N2 balance

Energy density: 48.3 J/L
Reaction temperature: 25 ◦C

Gas flow rate: 0.3 m3/h
98.3% [48]

EBGP * NO (200 ppm), NO2 (200 ppm)
SO2 (200 ppm), air balance

Absorbed dose: 20 kGy
Reaction ratio: 1:2

Gas residence time:30–40 s
Gas flow rate: 1 L/min

94.5% [49]

NO (1046 ppm), fuel-combustion
flue gas

Wet scrubber: NaClO2
Absorbed dose: 10.9 kGy

Gas residence time:11 min
Gas flow rate: 200 mL/h

95.03% [50]

* DBD represents dielectric barrier discharge; PCD represents pulsed corona discharge; and EBGP represents
electron beam generated plasma.

As shown in Figure 4, there are often three steps to the elimination of NOx via the
collision of electrons with neutral molecules [51]. Within the first nanoseconds, the intense
plasma electrons collide with gaseous molecules (with the main components being H2O, N2,
and O2), forming primary radicals (HO•, O•, and N•) and ions. Excited molecules, such
as oxygen, quickly interact with the main gas after it has been quenched to form more O
and HO. Then, the electron–ion and ion–ion reactions continue to produce more secondary
radicals with energies higher than those of gas molecules. Although these radicals have a
short lifetime under atmospheric pressure and ambient temperature settings, they could
convert NOx into HNO3 in a relatively short period of time (usually 10−3 s). These reactions
are intense with no apparent sequential response. Finally, before the NH4NO3 is collected
and used as a fertilizer, the HNO3 might be neutralized by the ammonia that was generally
used in the pulse corona discharge process.

2.2. Liquid Oxidants

For the removal of NOx, wet scrubbing techniques are comparable with other post-
combustion technologies. They may also be employed to regulate acid gases and particulate
matter simultaneously. As an advanced and stable technology, wet flue gas de-SO2 (WFGD)
contributes to more than 95% of the de-SO2 capacity and is now being implemented
worldwide [52]. However, due to the poor solubility of NO, almost all WFGD technologies
are unable to concurrently remove NOx. As a result, upgrading the WFGD to boost the de-
NOx function has lately drawn increasing interest. The simultaneous removal of SO2 and
NOx by the oxidation-scrubbing approach is possible if the NO is effectively oxidized, since
the solubility of NOx in water increases greatly with its valence. In Table 3, representative
oxidants and their redox potentials for liquid phase oxidation are listed.
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Table 3. Standard oxidation potentials of representative oxidants used in gas–liquid oxidation.

Oxidant Half-Cell Reaction Oxidation Potential
(eV) Ref.

Fluorine (F2) F2 + 2e− + 2H+ → 2HF 3.05 [53]

Hydroxyl radical (HO•) HO•+ H+ + e− → H2O 2.80 [54]

Sulfate radical (SO4
−•) SO4−•+ e− → SO2−

4 2.60 [55]

Ozone (O3) O3 + 2H+ + 2 e− → O2 + H2O 2.07 [53]

Persulfate (S2O8
2−•) S2O2−

8 •+ 2e− → 2SO2−
4 2.01 [53]

Peroxymonosulfate (HSO5
−) HSO−5 + H+ + 2e− → H2O + SO2−

4 1.82 [56]

Hydrogen peroxide (H2O2) H2O2 + 2H+ + 2e− → 2H2O 1.78 [53]

Permanganate (MnO4
−) MnO−4 + 4H+ + 3e− → 2H2O + MnO2 1.70 [53]

Chloranion (ClO3
-) 2ClO−3 + 12H+ + 10e− → 2H2O + Cl2 1.49 [53]

Chloine (Cl2) Cl2 + 2e− → 2Cl− 1.36 [53]

Chromate (Cr2O7
2−) Cr2O2−

7 + 14H+ + 6e− → 7H2O + 2Cr3+ 1.33 [53]

Molecular oxygen (O2) O2 + 4H+ + 4e− → 2H2O 1.23 [53]

2.2.1. H2O2 Oxidants

Hydrogen peroxide (H2O2) is an environment-friendly oxidant. However, the reaction
rate of direct NOx oxidation by H2O2 is still not ideal [57]. Therefore, it has attracted
extensive attention as a precursor of HO• [58]. Transition metal ions (such as Fe2+, Cu2+,
and Cr3+), transition metal oxides (such as CrO3, Al2O3), and physical phenomena are
widely used to catalyze the conversion of H2O2 to HO• [59].

The oxidation of NO by Fenton reagent can be divided into two main steps: (1) oxygen
radical generation; and (2) the oxidation of NO. The mechanism reactions are summarized
as follows [60,61]:

(1) Oxygen radical generation (Fenton reaction):

Fe2+ + H2O2 → Fe3+ + OH− + ·OH (11)

·OH + H2O2 → H2O + ·O2H (12)

Fe3+ + ·O2H → Fe2+ + O2 + ·OH (13)

Fe2+ + ·OH→ Fe3+ + OH− (14)

(2) Oxidation by •OH
NO + ·OH → H+ + NO−2 (15)

NO + ·OH → ·H + NO2 (16)

NO2 + ·OH → H+ + NO−3 (17)

NO−2 + ·OH → ·H + NO−3 (18)
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To increase oxidation efficiency, studies have focused on increasing hydroxyl radical
(•OH) generation and H2O2 consumption rates [62]. In a lab-scale bubbling reactor, Guo
et al. [63] investigated the effects of operating parameters, such as pH value, H2O2 concen-
tration, NO inlet concentration, and reaction temperature, on the NO removal efficiency.
A significant impact of pH value on NO removal effectiveness was discovered, and the
effectiveness of NO removal decreased as the reaction temperature rose. Hao et al. [64]
developed an integrated UV-heat/H2O2 oxidation system that removed NO by 96.3%.

Since it is challenging to recover the homogeneous catalyst from the solution, the
proposed Fenton-like method is a good substitute for the use of transition metals as
catalysts. By substituting Fe2+ with wet heterogeneous Fenton (-like) oxidation systems
(i.e., utilizing metal oxide catalysts or other solid materials to catalyze H2O2 to create
OH radicals), it is suggested that the Fenton process (homogeneous catalysis) overcame
these drawbacks [59,65–67]. Figure 5 illustrates the mechanism of NO removal in the
Fe2O3-based Fenton-like system [68].
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2.2.2. Peroxydisulfate/Peroxymonosulfate (PS/PMS) Oxidants

SO4• has a larger oxidation potential, more selectivity, greater efficiency, and a wider
range of pH adaptation than HO•. It is also utilized to oxidize SO2 and NOx concurrently.
The two precursors, peroxydisulfate (PS) and peroxymonosulfate (PMS), typically have
standard redox potentials of 2.01 V and 1.82 V, respectively [69]. These two sulfate radicals
are kinetically sluggish and stable before stimulation but extremely reactive after stimula-
tion [70]. The corresponding formation mechanisms of SO4•− are shown in reaction (19)
and (20) [71,72].

S2O2−
8

heat/UV/ultrasound→ 2SO•−4 (19)

S2O2−
8 + Me(n)+

(aq) → SO•−4 + SO2−
4 + Me(n+1)+

(aq) (20)

There are many factors influencing the oxidation process of SO2 and NOx by SO4
−•,

such as the temperature, pH value of the solution, and catalyst dosage. NO was oxidized
by PS in a bubble column reactor that was run in the semibatch mode [72]. The effects
of Na2S2O8 concentration, temperature, and solution pH on NO removal efficiency were
examined. It was found that the presence of SO2 significantly increased the NO gas
absorption and oxidation. The NO conversions in the presence of SO2 varied from 77 to
83% with lower temperatures (23 ◦C and 30 ◦C).

In the past years, several studies have focused on developing more effective activation
techniques for PS/PMS. Chen et al. [73] introduced a combined method with PMS and heat-
ing in a rotating packed bed (RPB) pilot reactor. The effectiveness of NO removal exceeded
70%. Liu et al. [74] looked into the variables affecting simultaneous desulfurization and
denitrification by using a NH4S2O8/UV reactor with a heat exchanger. The elimination of
NO with the maximum effectiveness was 96.1%. This might be due to UV light, which sped
up the breakdown of S2O8

2- into SO4•, combined with water to create •OH, and had a
severe oxidizing effect on NO in both cases [75–77]. Liu et al. [74] then conducted research
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on the simultaneous absorption of SO2 and NO by the concurrent thermal activation of
(NH4)2S2O8 by an ultrasound and Fe2+. The suitable addition of Fe2+ in the (NH4)2S2O8
solution boosted the oxidation and absorption of NO to some extent because the addition of
Fe2+ might result in the production of free radicals in the (NH4)2S2O8 solution [78]. Figure 6
illustrated the removal mechanism [79]. However, excessive (NH4)2S2O8 would engage in
self-consumptive reactions with free radicals SO4• and •OH, reducing the effectiveness of
the NO elimination [69,80].
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2.2.3. NaClO/ NaClO2 Oxidants

Flue gas contaminants are typically removed using hypochlorite and chlorate due to
their high oxidizability. The mechanism of NOx removal was investigated by Liu et al. [81]
utilizing UV-assisted Ca(ClO)2 and NaClO aqueous solution in a spray reactor. According
to reactions (21) to (24), the direct oxidations of hypochlorite were the auxiliary reactions,
while the oxidations of NO by a hydroxyl radical were the primary reactions (25)–(27).

HClO
UV light→ ·OH + ·C (21)

NO + ·OH↔ HNO2 (22)

HNO2 + ·OH↔ HNO3 + ·H (23)

HNO2 + HClO↔ HNO3 + HCl (24)

NO + ClO− ↔ NO2 + Cl− (25)

3NO2 + H2O↔ 2HNO3 + NO (26)

NO2 + H2O↔ HNO3 + HNO2 (27)

The direct removal of NO from flue gas using hypochlorite was not so impressive.
Byoun et al. [82] performed the removal tests of NO, SO2, and Hg0 in flue gas from an
industrial combustion unit using a spray wet scrubber with NaClO at a concentration of
0.1 L/m3. At a vaporization temperature of 165 ◦C and a solution pH range of 4.0–6.0, the
removal efficiencies of NO were only 50%

A series of studies have been conducted on the factors influencing the removal of NO
from flue gas by chlorates. Zhao’s [50] research on the removal of NO from diesel engine
exhaust using an electron beam and a wet scrubber revealed that the performance of NO
oxidation removal went NaClO2 > NaClO3 > NaClO, from high to low. The elimination
rate for NOx increased to 95% when CaO2 was introduced to a NaClO2 solution for
oxidation [83]. Hao et al. [84] made a NaClO2/Na2S2O8 compound oxidant to study the
oxidation of NO. The maximum NO elimination effectiveness could reach 82.7% under
optimal conditions. The effectiveness of NO removal rose with the compound oxidant flow
rate, solution pH, and vaporization temperature, but declined with the flue gas flow.

Recently, numerous processes have been studied to improve removal efficiency.
Hao et al. [85] proposed a three-region NO oxidation elimination technique with a NO
removal effectiveness of 94.5%. Furthermore, it was shown that ClO2 was quite selective in
the oxidation of NO. ClO2 is more likely to oxidize NO when various contaminants coexist
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in the flue gas. The results agreed with Hao’s [86] findings after oxidizing NO and Hg0

with UV/NaClO2, UV/NaClO, UV/Na2S2O8, UV/KHSO5, and UV/H2O2. In comparison
to the others (•OH and SO4•), the free radicals formed by UV/NaClO2 and UV/NaClO
showed higher activity, selectivity, and a better tolerance to the high concentration of
SO2. As a result, chlorate had a high rate of oxidation and was simple to obtain, offering
considerable potential for the combined removal of contaminants from flue gases.

3. Reduction Methods

Numerous reductants, including gaseous reductants, liquid reductants, and solid
reductants, can convert NO in flue gas to N2. The reduction process, catalysts, mechanism,
and key factors impacting the removal efficiency are reviewed. Table 4 summarizes the
typical reductants used for NOx purification from flue gas based on the physical states of
these reductants.

Table 4. Typical reductants used for technologies of NOx removal.

Physical
State Reductants Technologies Reaction Scheme Key Factors Ref.

Gas Ammonia (NH3) SCR

4NH3 + 4NO + O2 → 4N2 + 6H2O
4NH3 + 6NO → 5N2 + 6H2O

4NH3 + 2NO + 2NO2 → 4N2 + 6H2O
8NH3 + 6NO2 → 7N2 + 12H2O

Temperature window, NH3/NOx
ratio, oxygen concentration, catalyst

loading and the type of catalyst
support used

[87]

Hydrogen (H2) SCR 2NO + 4H2 + O2 → N2 + 4H2O [88]

Urea (CO(NH2)2) SNCR 2CO(NH2)2 + 4NO + O2 → 4N2 + 2CO2 +
2H2O

temperature, reagent/flue gas
mixing, reagent/NOx ratio and

reaction time
[89]

Liquid Sodium sulfide
(Na2S) Wet Scrubbing 2NO2 + Na2S→ N2 + Na2SO4

Gas–liquid ratio, solution
concentration, oxidants

concentration, temperature, pH
value, reaction time

[30]

Urea solution Wet scrubbing 2HNO2 + NH2–CO–NH2 → 2N2 + CO2 + 3H2O [90]

3.1. Gas Reductants

The gas phase reduction of NO often involves the use of NH3/urea, CO, H2, and HC.

3.1.1. NH3 and Urea(CO(NH2)2) Reductants

The current gas phase NOx treatment methods are mainly selective catalytic reduction
(SCR) and selective non-catalytic reduction (SNCR).

Selective catalytic reduction (SCR) of NOx using ammonia (NH3) has been extensively
investigated. Due to the great efficiency (>90%) and good stability of this technology,
post-combustion NOx removal has been applied in numerous industrial applications [91].

It is well known that the main reactions of SCR with NH3 are as below [92,93]:

4NH3 + 4NO + O2 → 4N2 + 6H2O (28)

4NH3 + 6NO → 5N2 + 6H2O (29)

4NH3 + 2NO + 2NO2 → 4N2 + 6H2O (30)

8NH3 + 6NO2 → 7N2 + 12H2O (31)

Regarding the side reactions, the most frequently employed catalysts have a tendency
to produce nitrous oxide (N2O) at high temperatures (>400 ◦C). As demonstrated in
reactions (32) and (33), which depict the oxidation of NH3 to NO, the unfavorable oxidizing
characteristics of the SCR catalysts became more prominent at temperatures greater than
500◦C, hence restricting the maximal NOx conversion [94]. Ammonium nitrate (NH4NO3)
would be generated at lower temperatures below 200 ◦C in accordance with reaction
(34) [87].

4NH3 + 4NO + 3O2 → 4N2O + 6H2O (32)
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4NH3 + 5O2 → NO + 6H2O (33)

2NH3 + 2NO2 → NH4NO3 + N2 + H2O (34)

Catalysts are one of the most important factors influencing the removal efficiency
of SCR, which can directly determine other factors, such as the temperature, residence
time, and ratio of NH3/NOx. Catalysts should possess the following characteristics when
selecting appropriate SCR catalysts: a high mechanical strength, high de-NOx activity,
operating temperature range, and excellent anti-poisoning. Catalysts of several varieties,
including supported noble metals (Pt, Pd, Ag, Au), supported noble/transition metals
(Pt/Al2O3, Pd/Al2O3, Rh/Al2O3, Rh/ZSM-5, etc.), supported transition metal oxides (NiO,
CO3O4, V2O5, Fe3O4, MnO2, etc.), and transition metals (Cu, Fe, Cr, V, Mn, etc.) have been
studied [91,95,96].

Mn-based catalysts have been the most widely explored among all transition metals
because of their high NOx removal potential at low temperatures [97]. The primary
variables that determine the catalytic activity of MnOx are crystallinity, specific surface
area, shape, and the oxidation state of Mn [98]. The fact that Mn is a multivalent transition
metal allows it to create a variety of stable oxides. MnO2 > Mn5O8 > Mn2O3 > Mn3O4 >
MnO is the order of the MnOx catalysts’ activities [99]. The efficiency of NOx removal was
improved by increasing the amount of oxygen vacancies on the surface of the catalysts.
However, deactivation is a problem for Mn-based catalysts as well. Chemical poisoning,
sulfur poisoning, hydrocarbon poisoning, and hydrothermal deactivation are the principal
deactivation processes of Mn-based catalysts [100–106]. The performance of Mn-based
catalysts against SO2 poisoning and their high-temperature hydrothermal stability are still
subpar, and there are few current studies in this area. Future study could concentrate
on enhancing the catalyst’s functional elements and creating novel support materials to
extend the catalyst’s useful life, increase its dependability, and lessen the deactivation of
Mn-based catalysts.

Similar to SCR, SNCR also has a broad use, regardless of the cost of its catalysts. With
NH3 acting as the reductant, the reaction temperature window for SNCR typically ranges
from 850 to 1100◦C. The operating circumstances have an impact on the reduction efficiency.
The normal removal efficiency in actual applications is less than 50%. Urea is a preferred
agent as an alternative to NH3 because of its nontoxicity, durability, high performance in a
wide temperature range, and low NH3 slip [9]. The decomposition mechanism of urea is
described as follows [93]:

NH2–CO–NH2 (aqueous) → NH2–CO–NH2 (molten) (35)

NH2–CO–NH2 (molten) → NH3 (gas) + HNCO (gas) ∆H298 = +186 kJ/mol (36)

HNCO (gas) + H2O (gas) → NH3 (gas) + CO2 (gas) ∆H298 = −96 kJ/mol (37)

The overall urea breakdown is depicted in reaction (38).

NH2–CO–NH2+H2O → 2NH3+CO2 (38)

Recently, research on urea-SCR-based catalysts has also been conducted. The NO
conversion mechanism on the binary Cu0.5Mn0.5/NUAC catalyst was presented and exten-
sively studied after a number of binary catalysts were created [107].

Concerns about handling large amounts of NH3 include: (I) safety issues, high toxicity,
and corrosion; (II) the outlet discharge of unreacted NH3 to the environment; (III) the
formation of ammonium sulfate, a corrosive and sticky liquid that is harmful to combustion
and downstream equipment; and (IV) high operating costs [5].

3.1.2. H2 Reductants

Hydrogen is regarded as a clean fuel and an environmentally favorable substance.
As a result, the favored NOx removal technique for catalysts is a low-temperature and
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selective catalytic reduction using H2. H2 offers a viable solution to meet the criterion of
raising emission limits without introducing secondary pollutants [88]. Under conditions
of excess oxygen, H2 has been studied as an effective reducing agent for SCR. Due to its
high efficiency, ability to reduce NOx at lower temperatures (<200 ◦C), high N2 selectivity,
and ability to only produce water, this technology is considered to be environmentally
friendly [108].

H2-SCR technology is particularly useful in industrial settings with access to H2 gas,
such as petrochemical factories and oil refineries. The reactions of NO removal by H2-SCR
in the presence of O2 are shown as follows [88]:

2NO + 4H2 + O2 → N2 + 4H2O
(

∆H298 = −574.0 kJ/mol NO

)
(39)

2NO + 3H2 + O2 → N2O + 3H2O
(

∆H298 = −412.0 kJ/mol NO

)
(40)

O2 + 2H2 → 2H2O
(

∆H298 = −241.8 kJ/mol H2

)
(41)

2NO + H2 → N2O + H2O
(

∆H298 = −170.2 kJ/mol NO

)
(42)

Catalysts are still the key factor in H2-SCR. The two primary components of H2-SCR
catalysts are active components and supports. The active components, such as noble
metals, bimetallic complexes, and non-noble metals (like Ce and Zr), have been extensively
studied [109,110].

In H2-SCR, noble metals are frequently utilized as catalysts. Noble metals have the
ability to degrade H2. Then the degraded H2 converts NO into N2 effectively. Platinum
is one of the most frequently utilized noble metals for H2-SCR (Pt). According to Resi-
toglu [111], the reaction over the Pt/Al2O3 catalyst began at about 90 ◦C. However, Pt
catalysts have a limited selectivity for N2 and an excellent selectivity for N2O, despite
having significant activity at low temperatures. The type of supports had a significant
impact on the catalytic activity of the Pt catalyst (such as Al2O3, SiO2, ZSM5, etc.) [110].
The catalyst activity could be impacted by the acidity and alkalinity of the catalyst. The
Pt/SiO2 catalyst performed better in terms of activity at low temperatures when Al2O3 and
SiO2 were compared as supports.

Noble metal catalysts, on the other hand, were poorly resistant to sulfur dioxide, which
caused sulfates and sulfites to develop on the catalysts’ active sites. Such species eventually
caused the SCR to stop working and decrease NO removal at low temperatures [112]. The
fundamental drawback of H2-SCR is the prevalence of expensive supported noble metal
catalysts as its active catalysts.

3.1.3. HC Reductants

The SCR of NOx with hydrocarbons(HC) as reducing agents has attracted a great deal
of attention [113]. HC-SCR appeared to be a promising technique for the removal of NOx
from flue gas [114]. However, the reducibility of CH4 was significantly lower than that of
H2 and CO, because it was a non-polar, high-bond-energy tetrahedron molecule [115].

The oxidation of NO to surface nitrates and the concurrent oxidation of HC to surface
oxygenates are the initial steps in the HC-SCR reaction of NOx. The ensuing reaction
between the surface intermediates results in the formation of CN and NCO species. After
then, the hydrolysis or oxidation of N2-containing molecules triggers the production of N2
and CO2.

Studies have shown that the surface acidity of catalysts, the oxidation activity of metal
ions, and the degree of metal dispersion were crucial variables impacting catalytic activities,
even though some aspects of these reaction processes were conflicting. Below are the SCR
reactions for NOx emissions utilizing HCs as the reductant [116]:

N2 + O2 → NO2 (43)
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CxHyOz + NO2 → N2 + CO2 + H2O (44)

The small temperature window of HC-SCR in comparison to other de-NOx systems is
one of its drawbacks (NSR and urea-SCR). These traits are largely related to hydrocarbons’
low selectivity for NOx [117]. Therefore, a range of active catalysts was used in the
HC-SCR process to improve the catalytic performance and widen the active temperature
window [118,119].

3.1.4. CO Reductants

Carbon monoxide (CO) is recognized as an efficient reagent for NOx reduction due to
its cheap cost. Since CO is also created during combustion and coexists in flue gas, CO-SCR
technology reduces NOx and CO concurrently, and it is anticipated that using CO as the
reducing agent would result in a far more affordable and straightforward feeding system
for the NOx abatement process [120].

The following two reactions might take place on the surface of a catalyst based on
the catalytic process of the L-H mechanism for supported metal oxide catalysts (M: low-
valence-state metal oxide, MO: high-valence-state metal oxide) [121]:

MO + CO(g)→ M + CO2(g) (45)

M + NO(g)→ MO + N2(g) (46)

Other two reactions also take place in the presence of oxygen:

M + NO(g) + O2(g)→ MO + N2(g) (47)

M + O2(g)→ MO (48)

In addition, the subsequent four reactions (Mx(SO4)y: metal sulfate) would also take
place in the presence of O2, SO2, and H2O [122]:

M + H2O(g) + SO2(g)→ Mx(SO4)y + H2(g) (49)

MO + H2O(g) + SO2(g)→ Mx(SO4)y + H2(g) (50)

M + O2(g) + SO2(g)→ Mx(SO4)y (51)

MO + O2(g) + SO2(g)→ Mx(SO4)y (52)

Mx(SO4)y + CO(g)→ M + COS(g) + CO2(g) (53)

Mx(SO4)y + CO(g)→ MO + COS(g) + CO2(g) (54)

When oxygen, sulfur dioxide, and water vapor are present, reactions (49), (50), (51)
and (52) lead to the poisoning and deactivation of the catalyst. It is clear from (53) and (54)
that employing CO as a reductant could prevent sulfur dioxide from poisoning catalysts,
which would help extend the catalyst’s life.

CO might be an advantageous reducing agent for NOx removal utilizing the SCR
method due to its poisonous nature [123]. The newly created class of internal combustion
engines, such as HCCI (homogeneous charge compression ignition) engines, released rela-
tively large levels of CO, which could be employed to reduce NO [124]. Since it could be
produced onsite due to the utilization of coal or natural gas at stationary sources, the expen-
sive steps of purchasing, transporting, and storing the reductant could be eliminated [125].

3.2. Liquid Reductants

Using substances, such as ammonia, urea, sodium sulfide (Na2S), and others, in
aqueous solutions to reduce NOx from flue gas is another de-NOx technique. For instance,
the elimination of NOx could be accomplished via an absorption method with the addition
of Na2S as a reductant. Mechanism related is shown in reaction (55) [30]. The majority
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of liquid reductants, such as aqueous urea or ammonium salts, often involve the direct
reduction of NOx. In real-world applications, liquid reductants are frequently employed as
absorbents to take acidic gases from flue gas and fix them with more reductants or oxidants.
More detailed relevant trials are required to offer a trustworthy method and development
because some outcomes have been disagreed upon or need further validation.

2NO2 + Na2S→ N2 + Na2SO4 (55)

Studies also put attention on techniques combining NOx oxidation and reduction
methods in aqueous solutions. Kim et al. designed and tested a wet packed-bed scrubber
with a DBD plasma oxidation process using the reducing agents Na2SO3 and Na2S [126].
With a lower chemical consumption and liquid-to-gas ratio, the results indicated that the
Na2S solution was more suitable than Na2SO3.

3.3. Solid Reductants

Polyoxometalates (POMs) have sparked a significant amount of interest from both
academic and industrial groups, due to their Bronsted acidity, vast molecule volume,
abundant active “lattice oxygen,” and pseudo-liquid-phase characteristic [127]. Among the
POMs, H3PW12O40 (HPW) stood out among the group thanks to its stronger affinity for the
polar NO and NO2 molecules. The published literature claimed that, in addition to nitrate,
the adsorbed NOx also exists in the bulk structure as NOH+ and N2O3 [128]. Yang [129]
and Belanger [128,130] completed a series of pioneering works on the adsorption and
denitrification performance of HPW. Yang developed a two-step process using H3PW12O40
as a solid catalyst to efficiently reduce NO to N2 in flue gas without the use of any reducing
gas. A total of 70% of the NO in a simulated flue gas was absorbed in the fixed bed at
150 ◦C at a space velocity of 5000 h−1. A total of 68.3% of the absorbed NO was converted
into N2 at 450 ◦C. The absorption of NO required the presence of O2 and H2O, whereas
SO2 and CO2 had no impact on either absorption or decomposition. These results were
confirmed by McCormick [131] and Zhang [132].

Keggin-type polytungstic acid is one of the most significant POMs and might produce
a variety of lacunary structures when the pH of its solution rises. With more internal
oxygen atoms exposed, these lacunary POMs could interact with different metals to gener-
ate substituted-type saturation structures, which would enhance the surface properties of
POMs. Germanium POMs were used as adsorbents and catalysts in a two-step procedure
described by Wang et al. [127]. W, Mo, and V derivatives of the Keggin structure were cre-
ated. A maximum adsorption efficiency of 80% (16.2 mgNO2/g) and an optimal adsorption
temperature of around 230 ◦C were found for germanium-based POMs.

There are three basic challenges in NO reduction by solid reductants: (1) the efficient
NO adsorption on the solid surface; (2) quick NO breakdown and desorption; and (3) the
cyclic renewal of the solid reducing agent.

4. Absorption/Adsorption Methods

Along with oxidation and reduction techniques, various liquids and solids could
absorb or adsorb NO from flue gas without altering their chemical valence. NO is then
desorbed and collected by adjusting pressure, temperature, pH of solution, etc. As a result,
the absorption/adsorption process produces pure gas compounds or beneficial by-products.
Both liquid phase absorption and solid phase adsorption processes have been thoroughly
studied.

4.1. Liquid Absorbents
4.1.1. Alkaline Solution

Alkaline solution absorption was effective for treating exhaust gases that contained
more than 50% NO2. Due to the low solubility of NOx, NOx in alkaline solutions could
be transformed into nitrite salts that have a tendency to disintegrate at low pHs and high
temperatures [133]. Based on these characteristics, high-valence NOx was often absorbed
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using the alkali solution absorption method following oxidation. While the absorption
effectiveness and the ratio of NO2/NO were relatively low, this technology might recycle
NOx into chemicals such as nitrite/nitrate and sulfate, which are commercially viable.

The mechanism of NOx absorption in alkaline solutions can be mainly divided into
gas-phase equilibrium, gas–liquid equilibrium, and liquid-phase equilibrium. The main
reactions are summarized in Table 5 [133].

Table 5. Reactions of NOx absorption from gas phase to liquid phase [133].

Reaction Phase Equilibrium Equilibrium Constant Value Units

Gas 2NO2(g)⇔ N2O4(g) - -

NO(g) + NO2(g)⇔ N2O3(g) - -

NO(g) + NO2(g) + H2O(g)⇔ HNO2(g) - -

Gas-liquid 2NO2(g)
w⇔ 2H+ + NO2

− + NO3
− 2.44 × 102 (kmol/m3)4/atm2

N2O4(g)
w⇔ 2H+ + NO2

− + NO3
− 3.56 × 101 (kmol/m3)4/atm

N2O3(g)
w⇔ 2H+ + 2NO2

− 6.14 × 10−5 (kmol/m3)4/atm

N2O5(g)
w⇔ 2H+ + 2NO3

− 4.25 × 1017 (kmol/m3)4/atm

NO2(g) + NO2
− w⇔ NO3

− + NO(g) 7.43 × 106 -

HNO2(g)
w⇔ HNO2(l) - -

3HNO2(l)
w⇔ H+ + NO3

− + 2NO(g) 3.01 × 101 atm2/(kmol/m3)

Liquid HNO2(l)
w⇔ H+ + NO2

− 4.60 × 10−4 kmol/m3

3HNO2(l)
w⇔ H+ + NO3

− + 2NO(l) 1.12 × 10−4 kmol/m3

2H+ + 3NO2
− w⇔ NO3

− + 2NO(l) 8.46 × 105 (kmol/m3)−2

w represents reactions occurring in presence of water.

For the above reactions, some are dominant. The absorption mechanism of NOx in
water and the NaOH solution was depicted in Figure 7 [134]. The overall reactions of NOx
absorption in water and the alkaline solution are summarized in reactions (56)–(58):

3NO2 + H2O→ 2HNO3 + NO ↑ (Water) (56)

2NO2 + 2OH− → NO−3 + NO−2 + H2O (Alkaline solution) (57)

NO + NO2 + 2OH− → 2NO−2 + H2O (Alkaline solution) (58)
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More attention should be given to reducing physical mass transfer limitations. High
mass-transfer rate absorbers need to be developed to alleviate the footprint problems
associated with tandem processes [135].

4.1.2. Complex Absorbents

A variety of chelating agents were added to the solution to form a complex in order
to increase the removal effectiveness of NO [136]. The solubility of NO in a solution
could be greatly improved by adding metal complexation agents (often ferrous and cobalt
chelating agents) to the wet scrubbing process, which helps to improve the effectiveness of
de-NOx [137].

Chelating substances, such as Fe2+-EDTA (ethylenediaminetetraacetic acid, or EDTA),
could improve the solubility of NO by creating stable ferrous-nitrosyl complexes as shown
in reactions (59)–(62) [138]. Because Fe2+-EDTA was quickly oxidized to Fe3+-EDTA by
O2, NO, and NO2 in flue gas (reactions (78) and (79)), the concentration of the active
Fe2+-EDTA in the scrubbing solution diminished quickly. The removal effectiveness of NO
declined dramatically.

NO(g)→ NO(aq) (59)

NO(aq) +
[
Fe2+ − EDTA

]2−
→
[
Fe2+ − EDTA(NO)

]2−
(60)

4
[
Fe2+ − EDTA

]2−
+ O2 + 4H+ → 4

[
Fe3+ − EDTA

]−
+ 2H2O (61)

2NO +
[
Fe2+ − EDTA

]2−
+ 2H+ → N2O +

[
Fe3+ − EDTA

]−
+ H2O (62)

The crucial stage in de-NOx by the Fe2+-EDTA solution was the regeneration of
Fe2+-EDTA, which involved changing Fe3+-EDTA and Fe2+-EDTA(NO) to Fe2+-EDTA in or-
der to maintain a high NO removal efficiency. Therefore, to effectively reduce Fe3+-EDTA at
room temperature, a variety of materials have been used, including activated carbon [139],
metal (Se, Zn, Fe, and Al) powders and compounds [140–142], thiosulfates [143], sul-
fites [144], and bisulfates [145,146]. Reaction (63) shows how iron(0) is used to regenerate
Fe3+-EDTA:

5Fe + 2
[
Fe2+ − EDTA(NO)

]2−
+ 12H+ → 2

[
Fe2+ − EDTA

]2−
+ 5Fe2+ + 2NH4

+ + 2H2O (63)

It was found that in the presence of sulfite (SO3
2) and hydrosulfite (HSO3

−) ions, Fe3+ was
gradually reduced back to Fe2+, which meant that a specific SO2 level in the flue gas could
promote NO absorption [147]. However, when the SO2 concentration was excessive, SO2
might compete with NO for the limited complexant (Fe2+-EDTA) in the solution, thereby
reducing the efficiency of de-NOx.

The pH of the solution is another important factor affecting the efficiency of NOx
removal. In comparison to both low and high pH values, an intermediate pH often
resulted in a higher elimination efficiency [148,149]. It could be concluded that at a pH of
around 6.0, the complex formation constant of Fe2+-EDTA was at its highest value. The
complex formation constant decreases significantly as the solution becomes more acidic or
more alkaline.

4.2. Solid Adsorbents

NOx could also be removed from flue gas directly through adsorption using porous
solid adsorbents. The removal efficiency, activation techniques, and factors influencing the
efficiency (such as coexisting gases and humidity) were reviewed. In addition to activated
carbons and zeolites, metal-organic frameworks (MOFs) have recently been applied.
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4.2.1. Activated Carbons (AC)

Due to its high porosity, large surface area, and varied surface chemical properties,
activated carbon (AC) is widely utilized industrially as an adsorbent for the control of
NOx. Table 6 summarizes the adsorption of NOx with activated carbons from different
carbon sources.

Table 6. Adsorption of NOx with activated carbons from different carbon sources.

Carbon Source Activation
Condition

BET
Surface (m2/g) Reaction Condition Performance Ref.

Commercial
activated coke

Steam activation
(800 ◦C) 218

Temperature 120 ◦C, gas flow
rate 0.420 Nm3/h, composition

of gases: 82.8% N2, 6.0% O2,
11.0% H2O, 1000 ppm NO and

1000 ppm NH3.

Removal efficiency:
30.4% [150]

Commercial
activated carbon

Steam activation
(850 ◦C), V

impregnation
-

Temperature: 200 ◦C, space
velocity: 6500 L/(kg·h), SO2
(1500 ppm), NO (500 ppm),

NH3 (500 ppm), O2 (3.4%), H2O
(2.5%), N2 balance, gas flow

rate: 7.00 L/min, contact time:
150 min

Removal efficiency:
70% [151]

Commercial
activated carbon

fibers

1 M HNO3
impregnation for

48 h
1498

Temperature: 200 ◦C, SO2 (200
± 10 ppm), NO (60 ± 3 ppm),
air balance, gas flowrate: 0.06

L/min, contact time:
20 min

Removal efficiency:
60% [152]

Coconut shell
Ionic liquid and

KOH
impregnation

1114

Sorbent: 3.00 g, temperature: 25
◦C, SO2 (5 ppm), NO2 (5 ppm),
RH (50%), air balance, gas flow
rate: 30.00 L/min, contact time:

1200 min

Breakthrough time:
41 min [153]

Palm shell
CO2 activation
(1100 ◦C), Ce
impregnation

-

Temperature: 150 ◦C, SO2 (2000
ppm), NO (500 ppm), O2 (10%),
N2 balance, gas flow rate: 0.15
L/min, contact time: 300 min

Adsorption
capacity: 3.5 mg/g [154]

Because of the limited physisorption of pollutants on the micropores or surface of
AC, the absorbed gas escapes frequently when the temperature or air pressure changes.
To enhance catalytic performance, AC must be treated with pre-activation or covering
components. The porosity, surface area, and pore size of ACs could be improved via both
physical activations (steam and CO2 activation) and chemical activations (metal oxides,
alkaline metals, and acids) [155]. Gao et al. [156] investigated the NO adsorption process
using NiO-modified AC/KOH at room temperature. A 5.26 mg/g adsorption capacity and
a 95.6% adsorption efficiency were attained. The results showed that a rise in lattice oxygen
(O2- in Ni-O) and OH-/Ox species was responsible for the high removal efficiency of NO.

Flue gas typically contains O2 and water vapor, which improve NO removal. The
adsorbed NO on the surface of AC could be easily oxidized by O2, then NO2 could
be captured by H2O to form nitrate acids or salts. The Langmuir–Hinshelwood and
Eley–Rideal models provide excellent illustrations of the oxidation pathways of NO over
AC [157].

However, the coexistence of SO2 restricted the NO adsorption, with little NO adsorbed
when the SO2 concentration was more than 700 ppm and the NO adsorption capacity
decreased as the SO2/NO ratio increased [158]. Due to the creation of sulfates and the
sulfating of the AC surface, additional downsides have also been documented, including
deactivation at low temperatures and poisoning in the presence of SO2 [159].
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The disadvantages mentioned above could be alleviated by impregnating AC with
metal oxides (V2O5, CuO, Fe2O3, MnO2, Cr2O3, and CeO2), which act as initiators to
oxidize NO or reduce it to N2. For instance, while palm shell activated carbon (PSAC)
could remove SO2, it might remove SO2 and NO concurrently when it is impregnated with
metal oxides, especially when it is impregnated with 10% the weight of CeO2 [160,161].

The regeneration process played a crucial role in the adsorption technology of NOx.
An effective regeneration of the adsorbents ensures the cost-effectiveness and sustainability
of the integrated process for the removal of NOx from flue gas. Studies have obtained high
regeneration efficiencies (94.2% over five cycles [162] and 94.8% over two cycles [163]) of
activated carbon monoliths synthesized with cobalt oxide (ACM-Co3O4). Furthermore,
Li et al. [164] found that the SCR activity of AC significantly improved after several
desulfurization and regeneration cycles, which indicated that the presence of SO2 could
enhance the performance of AC adsorbence after regeneration.

4.2.2. Zeolites

Zeolites have been widely employed as an adsorbent for SOx and NOx removal be-
cause of their low cost, nontoxicity, special surface features, and well-defined pore structure.

The mechanism of NOx adsorption removal on the zeolites was studied.
Zheng et al. [165] prepared Pd/zeolite as a passive NOx adsorber (PNA) material. It
was found that NOx trapping and release were not simple chemisorption and desorp-
tion events but involved rather complex chemical reactions. Fundamentally, NO might
either physically adsorb by permanently attaching to the surface and forming nitrosyl
complexes, or it could reversibly bind to the surface through the binding of nitrogen with
the framework cations. Pressure swing adsorption (PSA) allowed the removal of physically
adsorbed NO with a minor reduction in pressure, while chemically adsorbed NO could not
be removed as readily, even at extremely low pressures [11].

The adsorption performance of zeolites could be effectively improved by surface
impregnation. To improve the purification performance of NaX zeolite, ion exchange
experiments were conducted with cation K+, Ca2+, Mn2+, and Co2+ by Deng et al. [166].
The result showed that a massive amount of purified NO was degenerated in a reductive
way and mainly converted to N2. Chiu et al. [167] found that CuCl2 impregnation on the
zeolite MCM-41 (MCM) increased the NO removal from 62.8% to up to 73%.

Several studies have focused on combined technologies to improve the effectiveness of
NO adsorption and remove NOx at the same time. Wang et al. [168] observed NOx storage
and reduction with CH4 over HZSM-5. With this method, a 95% elimination effectiveness
of NOx could be attained at room temperature. The effectiveness of NOx removal was
kept at over 90% in a cyclic operation. The NOx storage and reduction over HZSM-5 in
conjunction with non-thermal plasma in the presence of water were also explored by Wang
et al. Due to the competing adsorption of H2O and NOx on the surface of HZSM-5, the
NOx adsorption capacity might be reduced when H2O is present [169].

4.2.3. Metal-Organic Frameworks (MOFs)

More than 20,000 different MOFs have been created in the last decade. Since their
microstructure and constituents are flexible, their shape, size, and functionality can be
modified [170]. As for chemisorption, several primary adsorption pathways between
SO2/NOx and the active sites of MOFs were proposed [171,172]. Acid–base interactions,
complexation, and hydrogen bonds all played significant roles in the chemisorption among
various host–guest interactions. Figure 8 summarizes these important mechanisms of
adsorption between NOx and MOFs.

When exposed to industrial exhaust flue gas, very few MOFs have been observed
to be stable [173]. Large-scale MOF production has not yet been commercialized. More
attention has been dedicated to improving the stability and selective adsorption capability
of MOFs in recent years.
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5. Conclusions and Perspectives

In this paper, the recent literature was reviewed on the purification technologies
for NOx removal from flue gas. A novel classification method was proposed from the
perspective of changes in the valence of nitrogen (N). According to different transforma-
tion approaches (methods causing an increase, decrease, or no change in the chemical
valence of nitrogen), the purification against NOx from flue gas was classified into three
types: oxidation methods (N valence increased), reduction methods (N valence decreased)
and absorption/adsorption methods (no change in N valence). The removal processes,
mechanisms, and influencing factors of each method were reviewed according to different
physical state reagents.

Oxidation methods utilize gas oxidants (including oxygen (O2), ozone (O3), Chlo-
rine (Cl2)/Chlorine dioxide (ClO2) and non-thermal plasma (NTP)), and liquid oxidants
(including H2O2, peroxydisulfate/peroxymonosulfate (PS/PMS), and NaClO/NaClO2).
Among these reagents, gas oxidants have attracted a large amount of attention due to their
full and effective contact with NOx. However, the high energy consumption of oxidants’
generation restricted their large-scale use. Methods utilizing liquid oxidants possessed
many advantages, such as available and inexpensive reagents, simple operations, and the
simultaneous removal of multi-pollutants. Nevertheless, high oxidation performance still
required homogeneous and heterogeneous catalysts to participate in the reaction. Solid
catalysts showed their promise in liquid oxidation due to the uncomplicated recovery from
aqueous solutions.

Reduction methods were widely applicable in most industrial situations. Much
research has been focused on the design and development of more efficient, more durable
catalysts that is more resistant to H2O and SO2. Liquid reductants were generally utilized
after the oxidation of NOx into NO2 to ensure a high reduction efficiency. Recently, solid
reductants have attracted interest from both academic and industrial groups. For instance,
H3PW12O40 (HPW) was reported to reduce NO without any reducing gas.

Absorption/adsorption methods provided an effective way to transfer NOx from the
gas phase to the liquid/solid phases. However, due to the extremely low solubility of NO
in aqueous solutions, pre-oxidation is necessary to make the ratio of NO2/NOx exceed 50%
beyond alkaline absorption. Regarding solid adsorption methods, porous materials, such
as activated carbon, zeolites, and metal–organic frameworks (MOFs) were widely studied.
According to the proposed mechanisms, increasing the acidity or alkalinity of the adsorbent
surface and covering it with metal oxides can dramatically improve the performance of NO
adsorption. Therefore, the development of adsorbent modification methods with a higher
performance and more detailed mechanisms of the behavior between NOx and adsorbents
needs to be further studied.
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