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Abstract: The single cell protein (SCP) technique has become a popular technology in recent days,
which addresses two major issues: increasing world protein deficiency with increasing world popula-
tion and the generation of substantial industrial wastes with an increased production rate. Global
fruit production has increased over the decades. The non-edible parts of fruits are discarded as wastes
into the environment, which may result in severe environmental issues. These fruit wastes are rich in
fermentable sugars and other essential nutrients, which can be effectively utilized by microorganisms
as an energy source to produce microbial protein. Taking this into consideration, this review explores
the use of fruit wastes as a substrate for SCP production. Many studies reported that the wastes
from various fruits such as orange, sweet orange, mango, banana, pomegranate, pineapple, grapes,
watermelon, papaya, and many others are potential substrates for SCP production. These SCPs can be
used as a protein supplement in human foods or animal feeds. This paper discusses various aspects
in regard to the potential of fruit wastes as a substrate for SCP production.

Keywords: bioconversion; fermentation; fruit wastes; microbial protein; single cell protein

1. Introduction

Single cell proteins (SCPs) or microbial proteins from fruit wastes have gained in-
creased attention in the recent past as a relatively cheap and safe protein source because of
the worldwide protein scarcity. The idea of using microorganisms as a food source is not
new, as in the past century, microorganisms in the form of fermented food such as bread,
wine, alcoholic drinks, beer, sake, cheese, yogurt, and soya sauce have been consumed as
biomass or SCPs [1–3].

SCP refers to the dead, dried microbial cells or total protein extracted from the pure
microbial culture of algae, bacteria, filamentous fungi, unicellular algae, and cyanobacteria
cultivated on different carbon sources that are used as a protein supplement in human foods
or animal feeds [4–7]. In addition to high protein content, SCP also contains fats, carbohy-
drates, nucleic acids, vitamins, and minerals and is rich in certain essential amino acids,
including lysine, threonine, and methionine, limited in most plant and animal feeds [8,9].
Microbial protein has become popular for its various benefits, such as high efficiency in
substrate conversion, high productivity due to the fast growth rate of microorganisms,
and is neither seasonal nor climate dependent. Furthermore, SCP production is possible
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using a wide variety of raw materials [10]. Microorganisms utilize cheap and abundant
agro-waste as a carbon and energy source for growth and to produce biomass, which can
help to reduce the environmental impact caused by improper waste disposal [11].

Carbohydrate is the most widely used substrate for SCP production [12]. Various
substrates of agricultural origin commonly used for the production of SCP include sugar-
cane bagasse, paper mill waste, rice husk, wheat straw residue, cassava waste, sugar beet
pulp, coconut waste, grape waste, orange peel residue, sweet orange residue and mango
waste, whey, and many others [11,13]. Among these, fruit wastes are rich in fermentable
sugars and other essential nutrients that support microbial growth. Thus, fruit wastes
are suitable substrates for the production of microbial proteins [10,14,15]. The majority of
these fruit wastes are often improperly disposed into the environment and constitute huge
environmental problems [16]. In some fruits, peels are the primary by-product representing
almost 30% of the total weight [17]. In this regard, this review aimed to explore the use of
different types of fruit wastes as a substrate to produce SCPs.

Various microorganisms have been used for the production of SCPs; bacteria (Cellu-
lomonas, Alcaligenes, Brevibacterium, Lactobacillus spp., and Rhodopseudomonas), algae (Spir-
ulina and Chlorella), fungus (Aspergillus, Trichoderma, Fusarium, and Rhizopus) and yeast
(Candida, Saccharomyces, Rhodotorula, and Rhodosporidium) [9,10,18,19]. Bacteria possess a
high protein content (50–65%, Table 1) and a short generation time. However, the use of
bacteria in SCP production is limited because of the poor public acceptance, difficulty in
harvesting, and high nucleic acid content compared to yeast and molds [4,20].

Table 1. Nutritional compositions of microorganisms (% dry weight) (Kalaichelvan and Arul-
pandi, 2019).

Microorganisms Protein Fat Ash Nucleic Acid

Fungi 30–45 2–8 9–14 7–10
Algae 40–60 7–20 8–10 3–8
Yeast 45–55 2–6 5–10 6–12

Bacteria 50–65 1–3 3–7 8–12

The filamentous nature of fungi facilitates the harvesting process, however, they
have limitations, such as lower protein content (30–45%), lower growth rate, and poor
acceptability [10]. Some fungal species, such as Aspergillus, Fusarium, and Penicillium,
produce mycotoxins that are harmful to human health [21]. Therefore, such fungi must be
avoided, or toxicological evaluations should be done before being recommended for SCP
production. Arthrospira platensis, also known as Spirulina, is a widely used algae and has
many benefits, including higher digestibility, as they lack cell walls and are rich in vitamins
(A and B) [9,22]. Yeast is suitable for SCP production because of its superior nutritional
quality, high lysine content, larger size making them easier to harvest, a considerable
amount of lysine and tryptophan content, ability to grow on low pH, and lower nucleic
acid content [10]. In addition, yeast and fungi are the most accepted and highly utilized
microorganisms for SCP production because of their long history of use in traditional
fermentation [3]. Further, cyanobacteria including Spirulina spp., Arthrospira platensis, and
Aphanizomenon flos-aquae; algae including Chlorella luteoviridis, Chlorella pyrenoidosa, Chlorella
vulgaris, Odontella aurita, and Tetraselmis chuii; yeasts, including Saccharomyces cerevisiae,
Fusarium venenatum, Yarrowia lipolytica; and bacteria, Clostridium butyricum, are the accepted
microorganisms for food use in the EU [6].

SCPs have a wide application in animal feed and human food supplements. SCPs
are used in animal feed for fattening calves, poultry, pigs, and fish breading, while in
the food industry, they are widely used as meat substitutes, texture-providing agents,
flavor enhancers, vitamin carriers, emulsifiers, and to enhance the nutritive value of baked
products, soups, ready-to-serve meals, and many other food products [9,23]. Moreover,
SCP is being manufactured under different commercial names such as Quorn®, AlgaVia®,
Marmite®, Vitam-R®, Pruteen®, Brovile®, FermentIQ™, among others [12,24].
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Though SCP has been successfully commercialized in Japan, Russia, France, Finland,
and England for decades [25], the study of optimal fermentation conditions, various
potential substrates, and a broad range of microorganisms is still being carried out by many
researchers. The search for cheap and abundant carbon sources is the domain concept as
the future development of SCP production mainly depends on the type of substrate. This
review mainly discussed the potential of fruit wastes as substrates in SCP production.

2. SCP

The increasing protein deficiency in an increasing world population urges us to focus
on new, alternate, and unconventional protein production in order to meet the nutritional
demand. Alternative proteins include SCPs, plant-based novel proteins, cultured meat,
seaweed or macroalgae, and insects [6]. SCP techniques have become a more popular
technology in recent days. SCP refers to the dead, dried microbial cells or total protein
extracted from the pure microbial culture of algae, bacteria, filamentous fungi, unicellular
algae, and cyanobacteria cultivated on different carbon sources that are used as a protein
supplement in human foods or animal feeds [4,5,7,9]. Algae as a source of SCP refers to the
true algae and prokaryotic cyanobacteria [1]. Despite the fact that the name suggests one
single cell, biomass produced from fungi and some algae has been considered in the term
SCP [26]. Carol L Wilson coined the term SCP to designate microbial biomass products in
1966 [9]. In Germany, consumption of Saccharomyces cerevisiae as a requirement for food
increased rapidly during the First World War, and during the Second World War, aerobic
yeasts, such as Candida utilis were produced as a food supplement mainly incorporated
into soups and sausages. Since then, the rapid growth of SCPs has taken place on a large
scale [8,27].

Although animal proteins are considered high-quality proteins, SCP can be a replace-
ment for the expensive conventional plant and animal protein sources in human, animal,
and fish diets. SCP or microbial protein has complied with the essential amino acid require-
ments and scoring patterns for adults recommended by the FAO/WHO [28–30]. In addition
to the high protein content (60–82% of dry cell weight), SCP contains fats, carbohydrates,
nucleic acids, vitamins, minerals, and higher essential amino acids, including lysine and
methionine, which are limiting in many plant and animal proteins [8,31,32].

Potential feedstocks for SCP production are industrial wastewater, agricultural wastes,
petroleum residues including fuel oil and n-paraffins, methane, heptane, methanol, bio-
gas, CO2, ethanol, methanol, methane, molasses, brewery residues, cellulosic biomass,
and many other industrial and agricultural residues [33,34]. Microbial protein grown on
agricultural wastes is emerging as one of the important protein supplements because of
its higher protein content and short growth cycle of microorganisms, which lead to rapid
biomass production [35]. In addition, microbes can grow on cheap nutrient sources, which
result in economically beneficial protein supplements for balanced nutrition [36].

3. SCP Production Methods

The production of SCPs involves the growth of cells in a fermenter and includes
processes such as washing to separate the unused medium, pre-concentration to a suitable
level, final drying, and packaging [37]. After fermentation, the yeast biomass is harvested
and may be subjected to downstream processing steps such as washing, cell disruption,
protein extraction, and purification [35].

Solid, semi-solid, and submerged fermentation methods are the three techniques
widely used to cultivate microorganisms for SCP production [4]. In solid-state fermenta-
tion, microorganisms are grown on solid substrates (rice or wheat bran, rice bran, straw,
fruit, and vegetable waste) in the absence of free-flowing water. Furthermore, solid-state
fermentation has been extensively studied for the production of various value-added prod-
ucts such as SCP, feeds, enzymes, ethanol, organic acids, biologically active secondary
metabolites, B complex vitamins, pigments, and flavors, amongst others [38–40]. Semi-
solid fermentation is a type of solid-state fermentation in which the free liquid content is
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increased to facilitate nutrient availability and control fermentation [39]. In submerged or
liquid state fermentation, substrates containing the nutrients needed for microbial growth
are always used in a liquid state. Soluble sugars, molasses, liquid media, and fruit and veg-
etable juices are a few common substrates used in submerged fermentation [9,41]. Though
the purification of the products is easier in submerged fermentation methods, it requires
huge capital investment and has high operating costs [4].

Furthermore, fermenters are also classified based on the mode of operation; batch
fermentation, fed-batch fermentation, and continuous fermentation. Microbial culture is
inoculated to a fixed volume of media in a fermenter, and the broth is removed at the
process end in the batch fermenter, while feeding rates control the nutrients supply in the
fed-batch fermenter. Continuous fermentation is perfect for biomass production, where
the fresh medium is continuously added, and the used medium and cells are harvested
simultaneously [42]. Fermenters are equipped with aerators to supply oxygen for the
aerobic process, a stirrer for mixing the medium, a thermostat for temperature control, a pH
detector, and other control devices to keep different parameters required for the constant
growth [4].

After fermentation, the biomass is washed, dried, and mixed up with animal feed
or directly used. Generally, fermentation products contain only 1–5% solids. Thus, pre-
concentration is required to facilitate the dehydration process. Pre-concentration can
be done in several ways, including centrifugation followed by heating, filtration, and
evaporation. The final product should be in a dry powder form which facilitates subsequent
handling and decreases transportation costs. From an economic standpoint, drum drying
and spray drying are the cheapest methods for water removal [4,37]. The final product
should be light in color, highly soluble, high in nutritional value, and free of viable cells
for human feeding purposes. In addition, the breakdown of cell walls and nucleic acid
reduction would increase the digestibility and palatability [4,43]. Finally, the dried biomass
is packed under a vacuum or nitrogen atmosphere, and the packaging method varies with
manufacturers and the product type [35]. The basic operation in SCP production is shown
in Figure 1 and shows the basic operations of SCP production.
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4. Factors Affecting the SCP Production

According to the literature, yield and productivity of SCP production depend on
various factors such as microorganism type, inoculum size, inoculum age, culture medium
composition such as carbon and nitrogen sources, substrate concentration, incubation
period, shake rate, and environmental conditions such as incubation temperature, medium
pH, the moisture content of solid cultures, dissolved oxygen, and aeration rate [7,11,23].

Microbial strains with a low generation time, high nutritional content, low nucleic acid
content, high digestibility, and pH tolerance are invariably considered for SCP production.
In addition, they should be nonpathogenic and non-toxin producers or recognized as GRAS
(generally recognized as safe) and have the ability to grow on different complex substrates.
Other characteristics that make microorganisms suitable for SCP production include suit-
ability in downstream processing, tolerance to high cell density, ease in handling, stability
in growth rate during continuous cultivation, and good organoleptic properties [44].

Many studies focused on the effect of process parameters, including pH, temperature,
substrate concentration, and fermentation time, on SCP production using various microor-
ganisms [45,46]. Fungi usually require a lower pH than bacteria for their growth [30].
Filamentous fungi have optimum pH in the range of 3.8 to 6.0 and can grow in a wide range
of pH, 2.0–9.0. Yeasts can grow at a pH of 2.5 to 8.5 with an optimal range of 4.0–5.0 [47].
Generally, the fermentation processes are carried out with mesophilic strains (temperature
up to 50 ◦C) [47,48].

Limonene (91–95%) is a terpene compound predominantly found in citrus essential
oils. Limonene and other bioactive compounds present in fruit peels exhibit antimicrobial
activity in nature and inhibit the fermentation process [49]. Autoclave sterilization can
remove a huge amount (62%) of limonene content [50]. Moreover, after the extraction of
bioactive compounds, fruit peels can be used in the fermentation process [49].

Lignocellulosic materials contain 70% carbohydrates, mainly cellulose and hemicellu-
lose, which require pre-treatment in order to convert carbohydrates to fermentable sugars.
These pre-treatments generate numerous by-products that are toxic to yeast cells, such as
phenolic compounds including vanillin and 4-hydroxybenzoic acid (PHBA), furan deriva-
tives, like 5-hydroxymethyl-2-furaldehyde (5-HMF) and furfural and weak acids (acetic
acid and formic acid) [51].

5. Substrates for the Production of SCP

The degree of SCP production depends on the substrate types and culture medium
composition, which have a considerable effect on cell growth rate [7,20,23]. Substrates used
for SCP production should be nontoxic, abundant, regenerable, nonexotic, inexpensive,
have a carbohydrate and nutrient content, and capable of supporting rapid growth [7].

Several carbon sources are used as energy sources by microorganisms for producing
SCP. Conventional materials such as starch, molasses, lignocellulosic biomass, fruit and
vegetable wastes, and brewery residues, and unconventional substrates such as petroleum
by-products, natural gas, ethanol, methane, and methanol have been used as the substrates
for SCP production [7,9,33]. Agricultural wastes are low-cost, naturally abundant, nontoxic,
and renewable resources and have increased attention in multiapplication [52].

Several agricultural and agro-industrial waste products have been used for the pro-
duction of SCP and other metabolites, including whey, sugarcane bagasse, rice husk, wheat
straw residue, cassava waste, sugar beet pulp, coconut waste, grape waste, orange peel
residue, sweet orange residue, and mango waste [9,11]. Furthermore, important factors
that influence microbial growth are the energy and carbon sources and the ability to utilize
carbon sources. Microorganisms such as bacteria, fungi, yeast, and algae utilize inexpensive
raw materials such as starch, lignocelluloses, and organic wastes as carbon and energy
sources for cell growth. In some cases, raw materials require pre-treatment or hydrolysis
before use [8]. Waste sources of carbon are customary and cheap to use. This paper mainly
discusses the potential of fruit wastes as the substrate for SCP production.
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6. Fruit Production and Waste Generation

Global production of fruits has been growing steadily over the past decade, and the
estimated global fruit production was 883.4 metric tons (MT) in 2019, and Asia produced
512.6 MT of fruits which contributed to 58.0% of the world production. China is the
first major producer of fruits globally, followed by India, Brazil, the United States, and
Mexico. In 2019, the most produced fruit in the world was bananas (116.8 MT), followed by
watermelons (100.4 MT), oranges (78.7 MT), mangoes, mangosteens, and guavas (55.9 MT),
pineapple (28.2 MT), citrus fruits (14.5 MT), and papaya (13.7 MT) [53].

A recently published WHO/FAO report recommends a minimum of 400 g of fruit and
vegetables per day (excluding potatoes, cassava, and other starchy tubers) to improve health
and for the prevention of non-communicable diseases including heart diseases, cancer,
diabetes, and obesity, as well as for the prevention of several micronutrient deficiencies [54].
Increasing concern for health has led to an increase in fresh fruit consumption over the past
few years [55]. Increasing fresh fruit consumption leads to the accumulation of fruit skins,
rinds, and the residue left over at the point of consuming fruits.

Further, fruits are generally consumed directly as food or dessert. As most fruits are
seasonal and have a low shelf-life, fruits are processed into various products to extend
their availability all over the year. Fruits are generally processed into bottled fruits, juices,
jams, marmalades, jellies, bars, pickles, canned, frozen, concentrates, dehydrated products,
alcoholic beverages, and other minimally processed products [17].

In the recent past, intensive fruit production has caused a massive generation of fruit
wastes, and the improper management of these wastes can constitute a public health risk
and severe environmental problems. The main solid waste in the fruit processing industry
is fruit peels [56]. In general, the non-edible portion of fruits and vegetables, such as peels,
pods, seeds, and skins, are discarded during processing, and it accounts for about 10–60%
of the total weight of the fresh produce [57]. Peels are the primary by-product representing
almost 30% of the total weight [17], and can be very high in some fruits (e.g., banana
30–40%, papaya 10–20%, pineapple 29–40%, mango 25–40%, orange 30–50%) [58–60].

Traditionally fruit wastes are used as animal feed, source of fuel, fertilizers, and
various other value-added novel products, including pectin, biodiesel, bioethanol, biogas,
biohydrogen, bio-oil, organic acids, enzymes, polysaccharides, flavors, coloring agents,
bioactive functional phytonutrients, probiotics, edible coatings, green nanoparticles, bio-
degradable plastics, biochar, biosorbent, SCP, single cell oil [49,56,61–65].

The fruit processing industry generates massive waste, and the proper disposal in-
creases processing costs. Generally, to reduce the production costs, these fruit wastes
are discarded into the environment. Though the fruit wastes are biodegradable, if not
processed further, these fruit wastes become spoiled rapidly and cause objectionable odor
and give rise to immense environmental and health problems. Decaying fruit wastes are
harbourage for microorganisms and attract pests, including flies which can cause infectious
diseases and other serious health issues [13,66,67].

Agro-industrial wastes contain phenolic compounds and other toxic compounds,
which may cause deterioration of the environment when the waste is discharged into the
environment [68]. Fruit waste dumped in the landfills gradually rotten on landfills and
releases methane, a potent greenhouse gas that traps 21 times more heat in the atmosphere
than carbon dioxide [67]. Therefore, recycling or reusing fruit peel is a timely requirement.
Using agro-wastes in SCP production can minimize environmental pollution associated
with waste disposal and fulfil the world protein demand.

7. Physico-Chemical Properties of Fruit Waste

Physico-chemical composition gives an idea about the potential of fruit wastes in
SCP production. The lignocellulosic fruit peel wastes contain a large number of soluble
sugars, starch, fiber (cellulose, hemicelluloses, lignin, and pectin), ash, fat, protein, and
other micronutrients. Liquid peel waste contains mainly simple sugars such as sucrose,
glucose, and fructose and a significant amount of minerals and nitrogen content [58].
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The solid fruit peel waste contains simple sugars (reducing and non-reducing sugars)
and complex carbohydrates, such as cellulose, hemicellulose, and lignin, which can be
metabolized by microorganisms [16,69]. The physico-chemical composition of fruit peel
varies with fruit, types of cultivars, maturity level, geographic locations of cultivations,
seasonal variations, and processing conditions (e.g., drying method, drying temperature,
particle size) [17,46,70].

Carbohydrates are an abundant component in many fruit peels (above 50% of fruits’
dry weight) [17,71]. Dias et al., 2020 reported that pineapple contains 83% carbohydrates,
while a lower value was reported with other peels such as yellow passion fruit (59%),
orange (59%), and avocado peels (8%) on a dry weight basis. Dias et al., 2020 also stated
that the selected fruit peels contained a significant amount of fat and ash, and the values
vary with the fruit peel varieties [72]. Ripe banana peel contains 13.8% soluble sugar, 8%
crude protein, 6.2% ether extract, and 4.8% total phenolic compounds [73]. Rivas et al., 2008
stated that the orange peel contains 16.9% soluble sugars, 3.8% starch, fibre (9.2% cellulose,
10.5% hemicelluloses, 42.5% pectin and 0.8% lignin),3.5% ash, 2.0% fats and 6.5% proteins in
dry weight [74]. Orozco et al., 2014 reported that orange peel contains 14.5% hemicellulose,
cellulose 11.9%, and a small amount of lignin 2.2% [75]. Many studies reported a low value
for lignin which makes the fruit peels amenable to the hydrolysis process [74–76].

Furthermore, the use of fruit peel for the production of SCP is determined by its
availability and low cost, composition, and absence of toxic substances and fermentation
inhibitors [35]. For instance, citrus peels, such as orange peels, are rich in essential oils
and limonene, a predominant component with antimicrobial property, which hinders
the digestion process of microbes or fermentation process, thus resulting in less biomass
production. Therefore, prior to hydrolysis, limonene is removed from the citrus bio-waste
in the pre-treatment steps [20,49].

8. Fruit Waste as Substrate for SCP Production

Fruit waste is rich in carbohydrates and other essential nutrients that could support
microbial growth. Thus, fruit processing waste is a potential substrate for value-added
products such as organic acids, methane/biodiesel, ethanol, enzyme, secondary metabolites,
organic acids, and SCP [10,14,15]. SCP production has gained more attention in recent
decades, and a wide variety of fruit wastes have been used as substrates. The cost and
the economic viability of SCP production largely depend on substrate cost [10]. Hence,
waste from various fruits can be a suitable substrate for SCP production. Fruit peel
waste is lignocellulosic wastes [77] containing simple and complex sugars that can be
metabolized by microorganisms [16]. The proximate analysis also revealed that the fruit
waste contained variable amounts of carbohydrates, protein, lipid, and moisture content
essential for microbial growth in SCP production [20].

Many studies recently aimed at producing CP from various fruit peels by using solid-
state, semi-solid, and liquid-state fermentation. Fruit peels such as beles fruit, watermelon,
banana, papaya, mango, sweet orange, apple, pineapple, plantain, pomegranate rind,
cactus pear, and virgin grape marc are some potential substrates used for microbial growth
and SCP production [18,36,78–80]. Table 2 shows the various microorganisms and fruit
wastes used for SCP production.
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Table 2. SCP production using various microorganisms and fruit wastes as a substrate.

Microorganism Substrate (Fruit Waste) Type of Fermentation
Medium Reference

Yeast

Yarrowia lipolytica (formerly
Candida lipolytica, or

Saccharomyces lipolytica)
Olive fruits wastes SF/LSF [81]

Candida utilis

Pineapple cannery effluent SF/LSF [82]

Pineapple waste SF/LSF [83]

Mixture of the banana and orange waste SF/LSF [84]

Orange peel SF/LSF [85]

Mango wastes SSF [86]

Cyberlindnera spp. Banana peel hydrolysate SF/LSF [87]

Geotrichum candidum Orange peel SF/LSF [88]

Saccharomyces cerevisiae

Watermelon, mixture of fruit wastes SF/LSF [89]

Watermelon, pineapple SF/LSF [90]

Yam peel SF/LSF [91]

Apple, orange peel SF/LSF [36]

Cucumber peel, orange peel SF/LSF [20]

Pineapple waste SF/LSF [11,46,92,93]

Papaya waste SF/LSF [94]

Apple, papaya, banana SF/LSF [77]

Guava peels and cashew bagasse SSF [95]

Rind of pomegranate,
mango, banana, apple, sweet orange peel SSF [79]

Orange peels SSF [96,97]

Pichia pinus Mango waste SF/LSF [98]

Fungi

Aspergillus niger

Banana peel, orange peel, cucumber peel,
pineapple peel, watermelon peel SF/LSF [29]

Banana peel SF/LSF [99]

Banana peel SF/LSF [45]

Banana, papaya, orange SF/LSF [100]

Lemon peel, orange peel, apple pomace SSF [101]

Aspergillus niger
Rhizopus oryzae Orange peels SSF [97]

Aspergillus niger
Saccharomyces cerevisiae Orange peel SSF [96]

Aspergillus terreus Banana peel SSF [102]

Penicillium roqueforti,
Penicillium camemberti Bergamot fruit (citrus fruit) peel SSF [103]
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Table 2. Cont.

Microorganism Substrate (Fruit Waste) Type of Fermentation
Medium Reference

Phanerochaete chrysosporium,
Panus tigrinus Banana peel, pineapple peel, papaya peel SF/LSF [16]

Phanerochaete chrysosporium Banana peels, pineapple peels, and
papaya peels SF/LSF [16]

Rhizopus oligosporus
Papaya waste, cucumber peelings,

pomegranate fruit rind, pineapple fruit
skin, and watermelon skin.

SSF [104]

Trichoderma viride,
Trichoderma reesei Orange peel SSF [105]

Bacteria

Rhodococcus opacus Orange wastes, lemon wastes SF/LSF [106]

Other natural sources/mixed cultures

Natural microorganisms in
Palmyrah toddy Papaya, watermelon, and banana peel SF/LSF [80]

Lactobacillus
culture isolated from curd

Mix fruit wastes such as pineapple peel
residue, pomegranate waste, apple waste,

and pear waste
SF/LSF [107]

SF/LSF, Submerged or liquid state fermentation; SSF, Solid state fermentation.

These agro-wastes used as a substrate for the selected microorganisms are composed
of sugar, starch, and other cellulose materials that are metabolizable by microorganisms
through the secretion of extracellular enzymes [16]. Lignocellulosic wastes such as agricul-
tural residues and fruit peels are mainly composed of cellulose, hemicellulose, and lignin.
Cellulose is converted into sugars, generally by the action of acids or cellulolytic enzymes.
Starch materials such as wastes from corn, cassava, potatoes, and root crops are hydrolyzed
to fermentable sugars by enzymes from malt or moulds. Cane, molasses, and fruit waste
extract, like pineapple waste extract, contain valuable components, mainly sucrose, glucose,
fructose, and other nutrients [108].

9. Types of Fruit Waste
9.1. Fruit Wastes Rich in Simple Sugars

SCP production depends on the type of substrate used and the composition of the
culture medium. In a liquid state fermentation system, a fruit waste extract medium is
used. Fruit waste extract consists of various components with a significant amount of
carbohydrates, a small amount of protein, lipid, and ash [17,72,80], and they are rich in
valuable components, mainly sucrose, glucose, fructose, and other nutrients [108]. Most
microorganisms readily utilize simple sugars such as carbon and energy sources, and amino
acids are used as nitrogen sources [109,110].

9.2. Fruit Waste Rich in Fibers

Fruit processing waste mainly consists of outer and inner shells, peels, and seeds.
These fruit wastes contain fiber, and hence the waste can be categorized as structural
polysaccharides-rich sources [66]. Large amounts of agro-industrial wastes such as bagasse,
straw, stem, stalk, cobs, husk, and fruit peel are mainly composed of cellulose (35–50%),
hemicellulose (25–30%), and lignin (25–30%), also being called “lignocellulosic materi-
als” [111,112]. Typically, cellulose forms a skeleton surrounded by hemicellulose and lignin
in lignocellulosic materials and acts as a protective barrier to cell destruction by bacteria
and fungi (Figure 2).
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Cellulose is a homopolysaccharide composed of β-d-glucopyranose units joined via
β-1,4 glycosidic linkage. The long chain cellulose polymers are linked together by hy-
drogen and Van der Waals bonds and packed into microfibrils [68,113]. Hemicelluloses
are heterogeneous polymers that comprise five main sugars (L-arabinose, D-galactose,
D-glucose, D-mannose, and D-xylose) and some organic acids (acetic and glucuronic acids).
Hemicellulose has different classifications based on the main sugar in the backbone: xylans,
glucans, mannans, arabinans, xyloglucans, arabinoxylans, glucuonoxylans, glucomannans,
galactomannans, galactoglucomannans, and β-glucans. In contrast, lignin is not formed by
sugar units but formed by a complex three-dimensional structure of phenylpropane units.
Three phenyl propionic alcohols are primary monomers of lignin; p-coumaryl alcohol,
coniferyl alcohol, and sinapyl alcohol [68,114].

10. Bioconversion of Lignocellulosic Fruit Waste

The preparation and pre-treatment of lignocellulosic wastes into a suitable form for
SCP production include size reduction by grinding and chopping, physical, chemical,
or enzymatic hydrolysis of polymers to increase substrate availability, supplementation
with nutrients (phosphorus, nitrogen, salts), and setting the pH and moisture content,
heat treatment for macromolecular structure pre-degradation and elimination of major
contaminants [113].

Liquid extraction of fruit wastes mainly contains soluble sugars and minerals required
for microbial growth. Microorganisms can utilize these simple sugars as carbon and energy
source. Therefore, the liquid extraction of fruit wastes does not require pre-treatment such
as hydrolysis. However, in solid-state or semi-solid state fermenters, the substrate is used in
the form of a solid. Basic macromolecular structure (cellulose, starch, lignocellulose, pectin,
fiber) is a common feature in all solid agro-industrial wastes, which gives the substrate the
properties of solids [113]. Microorganisms cannot utilize these structural polysaccharides,
and the biomass production on lignocellulosic wastes implies a high economic cost; hence
conversion (Figure 3) of these structural polysaccharides into fermentable sugars such as
glucose and xylose is necessary [115].
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Hydrolyzing cellulose is difficult because of its large molecular structure, which
imparts crystallinity and poor solubility. Further, lignin presence around the cellulose fiber
prevents direct contact between cellulose and hydrolyzing solvents [116]. However, fruit
wastes mainly contain free sugars besides hemicelluloses, cellulose, and lesser amounts of
lignin [117]. The bioconversion of lignocellulosic materials to fermentable sugars involves
a combination of pre-treatment (biological, chemical, mechanical, or a combination of three)
and hydrolysis/saccharification (chemical or enzymatic) [118].

Pre-treatment is required to break down the crystalline structure of the cellulose,
remove hemicellulose, and break down the lignin barrier to increase the accessibility of
cellulose for hydrolysis [112,118,119]. The mechanical pre-treatment aims to reduce the
overall size of the material and reduce cellulose crystallinity by means of mechanical
comminution such as grinding, milling, and chipping [120]. Dilute-acid (0.5–2.0% H2SO4)
with a high-pressure steam explosion method is the commonly used pre-treatment tech-
nique [121]. Of the three components, lignin is more resistant to hydrolysis or degradation
than cellulose and hemicellulose because of its highly ordered crystalline structure.

Alkaline and acid hydrolysis methods are used to degrade lignocellulose under high
temperatures; lignin is liberated, hemicellulose is readily hydrolyzed into monomeric
sugars and a complex mixture of compounds that tend to inhibit the fermentation of sugars,
while cellulose is essentially inert. Many other technologies such as acid, alkaline treatment,
steam explosion, enzymatic hydrolysis, and subcritical and supercritical water treatments
have been developed for the pre-treatment and hydrolysis of lignocelluloses [116,122].

Lignocellulose can be hydrolyzed into simple sugars either enzymatically by cellu-
lolytic enzymes or chemically by sulfuric or other acids [123]. The enzymatic hydrolysis
process of agro-industrial lignocellulose is in two steps: pre-treatment of lignocellulosic
material to destroy its complicated structure and enzymatic conversion of material into
fermentable sugars [119]. Lignocellulosic waste requires physical/chemical pre-treatment
to liberate cellulose from lignin since cellulose in the lignin-hemicellulose-cellulose com-
plex network is not accessible to enzymatic hydrolysis. Enzymes such as cellulases, β-
glucosidases, and pectinase are highly used in the enzymatic hydrolysis of fruit peel [124].
Jahid et al., 2018 also stated that the enzymatic hydrolysis of fruit peel using cellulase and
xylanase enzymes gives good yields of total reducing sugars and pentose sugars [117].

For the complete hydrolysis of cellulose, the synergistic action of four cellulase en-
zymes is necessary; endoglucanases, exoglucohydrolases, β-glucosidases, and endoglu-
canases. Hydrolysis of the hemicellulose fraction requires a more complex group of en-
zymes, “hemicellulases”. Xylan is the major polymer found in hemicelluloses which
require endo-β-1,4-xylanase, β-xylosidase, α-L-arabinofuranosidase, α-glucuronidase, α-
galactosidase, acetylxylan esterase and ferulic acid esterase [123].

Therefore, the use of mixed cultures of Saccharomyces cerevisiae and cellulolytic mi-
croorganisms such as Aspergillus niger can be one of the solutions to enhance the hydrolysis
of fruit peels. Aspergillus niger is known to produce cellulase, amylase, and pectinase
enzymes which can hydrolyze carbohydrates [99]. Clostridium spp., Thermomonospora spp.,
Cellulomonas spp., Trichoderma spp., and Aspergillus spp. are known to be cellulase pro-
ducers. Commercially, xylanases are produced from Trichoderma reesei, Aspergillus niger,
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Humicola insolens, and Bacillus spp. [125,126]. Celluclast® 1.5 L, Pectinex® Ultra SP-L,
Novozyme 188, Cellic® CTec2, and Biogazyme 2x are some of the commercial enzymes
used in lignocellulose hydrolysis [124,127].

Maximizing the bioavailability of fermentable substrate components is a key challenge
in biomass pre-treatment due to the loss of sugars during conventional pre-treatment
approaches. The formation of inhibitory compounds such as hydroxymethylfurfural (HMF)
and luvilinic acid should be prevented during pre-treatment [124]. Among the methods
used in the hydrolysis of lignocellulose wastes to release fermentable sugars, cellulolytic
enzymes are the most promising method for large-scale applications (DeMartini et al.,
2013). The enzymatic method is preferred than the acid or alkaline processes since they are
specific biocatalysts, can operate under much milder reaction conditions (pH 4.5–5.0 and
40–50 ◦C), and are environmentally friendly, while some fermentation inhibitor products
are generated [123,128]. However, this enzymatic method requires expensive equipment,
and the price of enzymes has a high impact on SCP production from lignocellulosic wastes.
Figure 4 illustrates the generalized process stages of lignocellulose bioconversion into SCP.
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11. Conclusions

In conclusion, a large quantity of fruit waste is generated with an increased produc-
tion rate. Fruit waste contains a significant amount of nutrients that can be utilized by
microorganisms and thus can be a good source for SCP production. SCP can be produced
by iquid, solid or semi-solid state fermentation system. Fruit waste extract rich in simple
sugar is used in a liquid state fermentation system. Fruit waste used in solid or semi-solid
state fermentation systems are rich in structural polysaccharides; cellulose, hemicellulose,
lignin, and pectin. This lignocellulosic fruit waste cannot support microbial growth. Hence,
the conversion of lignocellulosic wastes into simple sugars is required to increase SCP yield.
The utilization of fruit wastes in SCP production not only helps to control pollution but
also solves malnutrition problems by providing protein supplements at an affordable price.
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