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Abstract- In this study all one parameter motions obtained from two parameters
motion on the plane, are investigated. It is shown that the pole points which on fixed
and moving plane at any position of (4, ) are on a line. It is also shown that the
velocity vector lengths of these axis are the same. Moreover, the locus of any
Hodograph of any point, and accelaration poles of the motion are investigated.
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1. INTRODUCTION

A general planar motion is given by
Y, =xcos@ —ysinf +a

(1.1)

¥y, =xsin@ + ycosd +b.

If 6, a and b are given by the functions of time parameter #, then this motions is called
as one parameter motion. One parameter planar motion given by (1.1) can be written in

the form
Y| [4 Cl[x .
1l o 11 (12)

Y=4X+CY=[y, »,]', X=[x y['.C=[a b] (1.3)
where, Ae SO(2) and Y and X are the position vectors of the same point B,

respectively, for the fixed and moving systems, and C is the translation vector. By
taking the derivates with respect to ¢ in (1.3), we get

Y=AX+AX+C (1.4)
where the velocities Z = Y , Z = ;IX + C , V. = A).( are called absolute, sliding, and

or

relative velocities of the point B, respectively. The solution of the equation V—/ =0
gives us the pole points P = (x bV p) on the moving plane. The locus of these points is
called the moving pole curve, and correspondingly the locus of pole points on the fixed
plane is called the fixed pole curve. The solution of the equation ::IX + C =0 gives

acceleration pole of the motion. If 8, a and b are function of A and u in one parameter
planar motion (1.1), then this motion is called two parameters motion and it is denoted
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by M, . Now let us analyse two parameters planar motion given by (1.1). The
equations of two parameters planar motion is as follows [1]:

Y, =xcosA—ysinA+/lu (1.5)
y, =xsin A+ ycos A +b(A,u) . '

Here if A and u are functions of ¢, then one parameter motion is obtained. Therefore this
motion is called one parameter motion obtained from A, and shown by M, [1]. Note

that Eq.(1.5) gives Eq.(1.3) for 4 = A(¢), = p(¢). Let us investigate P rotation poles
of all one parameter M, motion obtained from two parameters M, motion at a
position of (4, ).

2. THE POLES OF THE MOTIONS

Theorem 2.1- The pole points of M, motions obtained from M, on a moving plane
lie on a line at each (A, i) position.

Proof- Since the point B is fixed on the moving plane, Z =0 and the same point is

also fixed on the fixed plane, then I?,~ =0. From Eq.(1.5), if 1:1X + C =0 is solved,
then we obtain

X=P=—(4)"C, 2.1)

P 1 { p—cosA(b, A+b, p) ' 22)

| £ prcos A +sin A(h, A+b, 1)
Therefore the point P = (x bV p) of the moving plane gives the family of the lines
(b,sind+/lcosA)x, +(—{sinA+b, cosA)y, + (b, =0 .

Corollary 2.1- On moving plane at the 4= =0 position, the pole points of M,
motions obtained from M, lie on the line

{x,+b,y,+tb, =0 . (2.3)
This result is obtained by Bottema [1].
Theorem 2.2- The pole points of M, motions obtained from M, on a fixed plane lie
on a line for each (4, u).
Proof- If the point P=(x,,y,) is substituted for X in the equation which is
Y = AX + C, then the pole of the fixed plane is obtained as follows:

—blcos/1+4(€sin/1+b#cos/1)
— |cosA —sinAd 1 lu
P=| . +
sinA  cosA L b(A, 1)
b,sinA+--(b,sind+/{cosi)
L A |

and simplifiying
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P=(x,.3,)=| b, +tu—b, 2 b(a )+ 12| (2.4)
A A
Therefore the point P= (g,g) of the fixed plane gives the lines
Ox, +b,y, +tb, =P u—b b(A,u)=0 . (2.5)

Corollary 2.2- On the fixed plane at the position of 4 = ¢ =0, the pole points of M,
motions obtained from M ,, lies on the line

0x,+b,y, +b, =0. (2.6)
Corollary 2.3- The pole lines on the fixed and moving planes are coincide at the
positionof A =u=0.
Theorem 2.3- For all M, motions obtained from M ,, if the & is the angle between

the pole ray going from the pole P to the point B and the sliding velocity Z then at

a position of (/1, ,u), we have 0 = % + A . In addition, these vectors are perpendicular if

C=md™r
Y

is derived. If this equality is substituted into Z = ,:lX + é’, then following equation is

A=2krx (k=0,1,2,...).
Proof- From Eq.(2.1)

obtained

V. =Al-sinA(x—x,)—cos A(y—,), cosA(x—x,) —sin Ay =y,)) . (2.7)

Since
PB:(X—Xp,y—yp), (28)

then

_—

<PB, Z> = —ﬂ: sin ﬂ”ﬁ?

2

In addition, we have
(7.7 e
From last two equations we get cos@ = —sin A and thus
0="14.
2
Theorem 2.4- In all M, motions obtained from M, motion, the length of the sliding
velocity vector V—f is

-1

|

Proof- By taking the norms of vectors PB and Z in Eq.(2.7) and (2.8), we have
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HE?H = Ja=-x,) +(y-,)

and
Vf = i(—sinﬂ(x—xp)—cosl(y—yp),cosﬂ,(x—xp)—sin/I(y—yp))
== =
and hence
1=l

Theorem 2.5- The lengths of the directrix vectors of the pole lines corresponding to
each (4, u) position of all M, motions obtained from M, are equal on the fixed and

moving planes.

Proof- If the pole P in Eq.(2.2) is written in terms of the parameter 4, then the pole P

A
given by
P=(=b,cos A, —b, sin /1)+4(£sin/1 —b,cosA,b, sin A +€cosl) (2.9)
A
=D +#V1
A

gives a family of lines which passes through the point p, with the directrix vT

Similarly, if the pole P of a fixed plane in Eq.(2.4) is written in terms of the
Y2

parameter —, we obtain
A
P=(~b, +ub(2, )+ 5 (- b,.0) (2.10)
A
= p_z + 4 Vs -
A

As directrixes in Equations (2.9) and (2.10) are being
v, =(lsinA—b, cosi,b, sinA+lcosd)
and

taking the norms, we get
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— — 2
v =v, =1/£2+bﬂ .

Moreover, for the translation vector C = (E 1,b(A, ,u)), since

then
el -5,
Therefore, we have -
F-F-te.l

Definition 2.1. When the sliding velocity vectors of a fixed point are carried to the
starting point, without changing the directions, then the locus of the end points of these

vectors, which is a curve, is called hodograph.
.2 2

Now as a special case, let 4 +x =1 and analyse any (x,y) point of the locus of the
hodographs in all M, motion obtained from M ,, , according to the position of 4 and x :
are they ellipse, circle or hyperbol?

Let the determinant of coefficents of

, =(—xsinA—ycosA /.1+£.
n=( y ) u @11

¥, = (xcos A— ysinA+b,) A+b, u
be
detA=b, (—xsinA—ycosA)+l(-xcosA+ ysind—b,).
Then
bﬂ n=Lty,
detA

2=
and

,L.l _ (—xsinA —ycosﬂ)y.z—(xcos/l—ysin/i +b4)J;1
detA

L] 2 L] 2
are obtained. Substituting these in 4 + ¢ =1, then we get
2

(b,2 +3* cof A+y? sitf A+b,’ —2xysindcosi+2vb, cosi—2yb, sind)y, +
. 2

(Ez +x7 it A+y° cos /1+2xysinxlcosﬁ,)y2 + 2.12)

(~20b, +2xysindcost—2xysin® A+2xh, sind+2xycod A-2y” sindcosi+2yb, cosd)y, 3,

— (deta)
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Corollary 2.4- In all M, motions obtained from M, motions, the locus of the
hodographs of any point (x,y) is independent of the selection of .
Theorem 2.6- In all M, motions derived from M , motions, the hodograph of any
(x,y) point is an ellipse at the position A =b, =b, =0[1].
Proof- Setting A =b, =b, =0 in Eq.(2.12), we get
. 2 o 2 o .
x>y, (P +y)y, +2xvy, y, =xL7. (2.13)
which shows an ellipse.
Theorem 2.7- The hodograph, being on the x-axis at the position A =b, =b, =0 of the
symmetric two points, is a circle [1].
Proof- Setting B, = (/,0) in (2.13), we get
. 2 ) 2

nty, =t ?
which is a circle with the radius /. For the orbit of the point B, = (¢,0),

y,=LcosA+Llu ,

v, =LsinA+b(A, u)
are obtained from Eq.(1.5). This orbit changes according to the each (/1, ,u). From the
last equation

yi=~tp
); , =1 i
are obtained for the point B, = (£,0), from which
L] 2 L] 2

oty =t .
The scalar velocity of the point B, is also given by

Ly =1

which is a constant. Elementary analytic geometry shows us that the area of the ellipse
obtained from (2.13) is 7z.£.|x|. This area is only dependent on x. The area of an ellipse

for a point on the pole line is zero. Moreover, hodograph of this point is circle for
By=(-£,0) and A=b, =b,=0.

3. THE ACCELERATION POLES OF THE MOTIONS
Now we will investigate the locus of the points which have zero sliding acceleration.
We need to solve first, the equation

AX+C=0. (3.1
For the acceleration of M, motion obtained from M ,,, from the equation
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we get
Yl 1 ;{sinxl—i-(/.l)z cos A —.ﬂ:cosﬂ+(/.1)2 sind | ¢
Vi (/’1)4 _'_('i)z .):cos/l—(ﬂ)zsinxl .ﬂ,sin/1+(/.1)2 cos A
we get
X, = | (AsinA+ () oSl 1)+~ A cost+Q) SinA)b, (A -+b,, (i +2b,, Ajetb, A+, 1)
B+
and
%, = (Acosi—(? SIA)C 1) +(A sinA-+(AY: cosh)b, () +b, (1) +2b,, A 1erb, kb, 1)
W+
which are the coordinates of the acceleration poles at a position (ﬂ, y). For A=u=0,
we have
X, = #2) (b (A +b,, (1) +2b,, A i+ b, A+b, 1), (3.2)
W+ '+
N
=t W p, Gy b, (i +2b,,, A pr+b, A+b, 1) . (3.3)

W+ D+
Theorem 2.8- The acceleration pole of the M, motions obtained from M, coincides with

the pole lines of fixed and moving plane at position A =y = /1 = /,t =0 .
Proof- From (3.2) and (3.3), we get

I oo oo /g .. .ﬂt
X, == (b Ab, ) =
(A7 (A7

are obtained. If _—’Lfis derived from the second equation and substituted in the first
A
equation, then we get
lx, +b,y, +lb, =0.
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