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Abstract- A review is made of the development of models used to examine the 
dynamic response of semi-rigid frames. The connection flexibility is modeled by linear 
elastic rotational springs. The reducing coefficients and the lateral rigidity values are 
determined by using a computer program. Response characteristics of frames are 
compared with reference to their modal attributes. 
Keywords- Semi-rigid, Reducing Coefficient, Lateral Rigidity 
 

1. INTRODUCTION 
     The purpose of engineering design is to produce a structure capable of withstanding 
the environmental loading to which it may subject to. In conventional frame design, 
engineers assume that the beam-to-column connections are ideally fixed or frictionless 
pinned [1,2]. In practice, beam-to-column connections behave between these extremes.  
     
     To define the real behavior, two connection models were developed. In the first 
model, linear elastic springs which represent flexible connection behavior are located at 
the intersection of beam and column. In the second model, linear elastic springs are 
located at the ends of the beam. The main difference between these models is the 
location of the linear elastic springs. This difference affects behavior, dynamic 
properties and model attributes of frames. 
 

2. SEMI-RIGID FRAME MODELS AND REDUCING COEFFICIENTS 
     The first semi-rigid frame model is shown in Figure 1. The model includes a beam 
with moment of inertia Ib and length L, and two columns with moment of inertia Ic, and, 
length H. The modulus of elasticity E is the same in all frame elements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. First Semi-Rigid Model 
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     The connections are modeled as rotational springs at beam-to-column joints. 
Rotations and the lateral displacement are incorporated in the study. One can determine 
rigidity at the ends of frame elements by the term of rigidity index. For the connection 
with the hinge, rigidity index is zero, and flexural moments do not occur at the ends of 
frame elements. For a rigid connection, this value is infinite, and flexural moments 
occur at the ends of frame elements [3]. Flexural moments at the two ends for a frame 
element, with spring coefficients represented by Cθ,j and Cθ,k, can be given by 
 

Φ= xCM jjf ,θ j   ; Φ= xCM kkf ,θ k                                                               (1) 
 
where Mjf and Mkf  are flexural moments, respectively, at j and k ends of a frame 
element , Φ j and Φ k are rotations occurred by rotational springs. 
 
     The relationship between spring coefficients and rigidity index can be written by 
 

x

ij
j EI

LC
R ,θ=       ;    

x

ik
k EI

LC
R ,θ=                                                             (2) 

 
where Rj and Rk are rigidity index at two ends of a frame element, respectively. 
 
       The stiffness matrix of a semi-rigid column element in Figure 1 can be written by  
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where ; 
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     The stiffness matrix of a semi-rigid beam element in Figure 1 can be written by 
 

[Kbf]= 





































−

−−−

−

−

−−

−

332232

32131213

212122

32133213

46
0

26
0

612
0

612
0

0000

26
0

46
0

612
0

612
0

0000

βγβγ

γγγγ

βγβγ

γγγγ

h
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EA

L
EA

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EA

L
EA

bbbb

bbbb

bb

bbbb

bbbb

bb

    (7) 

 
     The second semi-rigid frame model is shown in Figure 2. The model includes a 
beam with moment of inertia Ib and length L, and two columns with moment of inertia 
Ic, and length H. The modulus of elasticity E is the same in all frame elements. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2. Second Semi-Rigid Model 
 
     The connections are modeled by rotational springs near beam-to-column joints and 
their presence will introduce relative rotations of Φ j and Φ k at the ends of the beam 
[4]. Denoting the stiffness of connections at the ends of beam Cθ,j and Cθ,k, respectively, 
the relative rotation between the joint and the beam end (rotational deformation of the 
connection) can be given by Equation (1). 
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     If we denote the joint rotation at the ends of the beam by φj and φk respectively, the  
slope-deflection equations for the beam modified for presence of connections can be 
given by [5,6] 
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     The beam stiffness matrix can be written as follows: 
 

[Kbf]=
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     The column stiffness matrix can be written as follows: 
 

[Kcf]= 
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     The structure stiffness matrix is obtained by assembling the column and beam 
stiffness matrices described above according to conventional stiffness matrix analysis 
procedure [7]. One obtains a 6x6 stiffness matrix for the frame of Figure 3.   
   
           ∆2                                          ∆5  
    θ3                                        θ6    
                   ∆1                                         ∆4            
                            
                                    
 
                                               
 
 
 
                                                                             
                                                                 
                                                                          

           Figure 3. Degrees-of-freedom 
 
     By assuming that ∆1 and ∆4 are equal and the axial deformations ∆2 and ∆5 are 
relatively small, one can eliminate ∆4, ∆2 and ∆5 from the frame of Figure 4. The 
reduced displacements are given by Figure 4. The remaining stiffness matrix is a 3x3 
matrix [8].  
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     Figure 4. The reduced displacements 
 

   {F} = [Ksf] x { δ }                                                                                   (15) 
 
     The relationship between deformations and forces are given by equation (10). 
Solving the above matrix equation for displacements except ∆ and back substituting the 
result into the first row, the one-degree-of–freedom system stiffness relationship can be 
written as 
 

     F= r
x

h
EI

α3

24
x   ∆                                                                                 (16) 

 
where ∆  is the lateral displacement ,and  F and αr  are  the lateral force and reducing 
coefficient respectively.                                                                    
 

3. DYNAMIC ANALYSIS AND NUMERICAL STUDIES 
 
     The primary objective of the present study is to investigate the dynamic 
characteristics of semi-rigid frames and how connection flexibility influences them. For 
a given frame in Figure 4, the equation of motion for a semi-rigid frame in free 
vibration is given by  

[ M ] {
..
v }+[k]{ v }={0}                                                                            (17) 

where 
..
v  and v  are, respectively,  acceleration and displacement of a structure [9,10]. 

 
     The dynamic characteristics of semi-rigid frames are determined by modal analysis. 
The frequency and period of a vibration will be investigated. The influence of 
connection flexibility will be studied. 
 
     In the present study, 3-story semi-rigid frames having four different spring 
coefficients were studied. The semi-rigid models for the present analysis are given in 
Figure 5. All frames have the same geometry, cross-section and material property to 
compare the influence of connection flexibility on dynamic characteristics. First, the 
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reducing coefficients were determined by using a computer program. Then, lateral 
rigidity values were calculated for each frame. The reducing coefficients and periods are 
given in Table 1 below. The values are given in terms of ton, meter, radian, second 
which are represented by ( t ), (m), (rd),(sec) respectively 
 
     All frame elements are designed by using steel. The modulus of Elasticity E is 
2.1x107 t/m2   for all elements. The length of beam elements are chosen 6 meters and the 
length of column elements are chosen 3.5 meters. The cross-section (0.25 x 0.50) area 
of each beam is 0.125 m2 and the cross-section (0.30 x 0.50) area of each column is 
0.150 m2. Therefore, the moment of inertia of each beam is 2.604x10-3 m4 and the 
moment of inertia of each column is 3.125x10-3 m4. According to the modal analysis 
procedures; w1, w2, w3 show the lumped-masses of all stories, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5. Semi-rigid models for the present analysis 
 

Table 1. Reducing coefficients 

Reducing coefficient (αr) Lateral rigidity ( t / m ) 
Connection model 

First Model Second Model First Model Second Model 

Semi-rigid (2000 tm/rd) 0.0231 0.2688 850.14 9874.67 

Semi-rigid (5000 tm/rd) 0.0542 0.2932 1989.48 10769.66 

Semi-rigid (20000 tm/rd) 0.1657 0.3725 6087.48 13648.36 

Semi-rigid (1020 tm/rd) 0.5663 0.5663 20801.14 20801.14 

Rigid  0.5663 0.5663 20801.14 20801.14 

              
      The results of the conducted analysis are given for each mod of vibration below. 
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Table 2. Dynamic results of 1st mod 
Vibration Frequencies (rd/sec) Vibration Periods (sec)  

Connection model 
First Model Second Model First Model Second Model 

Semi-rigid (2000 tm/rd) 14.9442 50.3316 0.4204 0.1234 

Semi-rigid (5000 tm/rd) 22.8610 53.1897 0.2748 0.1181 

Semi-rigid (20000 tm/rd) 39.9894 59.8779 0.1571 0.1049 

Semi-rigid (1020 tm/rd) 73.9213 73.9213 0.0850 0.0850 

Rigid 73.9213 73.9213 0.0850 0.0850 

                                   
Table 3. Dynamic results of 2nd mod 

Vibration Frequencies (rd/sec) Vibration Periods (sec)  
Connection model 

First Model Second Model First Model Second Model 

Semi-rigid (2000 tm/rd) 40.8282 139.1478 0.1539 0.0452 

Semi-rigid (5000 tm/rd) 62.4575 145.3168 0.1006 0.0432 

Semi-rigid (20000 tm/rd) 109.2531 163.5894 0.0575 0.0384 

Semi-rigid (1020 tm/rd) 201.9568 201.9568 0.0311 0.0311 

Rigid  201.9568 201.9568 0.0311 0.0311 

 
Table 4. Dynamic results of 3rd mod 

Vibration Frequencies (rd/sec) Vibration Periods (sec)  
Connection model 

First Model Second Model First Model Second Model 

Semi-rigid (2000 tm/rd) 55.7723 190.0794 0.1127 0.0331 

Semi-rigid (5000 tm/rd) 85.3186 198.5065 0.0736 0.0317 

Semi-rigid (20000 tm/rd) 149.2425 223.4673 0.0421 0.0285 

Semi-rigid (1020 tm/rd) 275.8781 275.8781 0.0228 0.0228 

Rigid  275.8781 275.8781 0.0228 0.0228 

 
 

4. CONCLUSION 
 
     The subject has been studied extensively for last 10 years. These studies were mostly 
about statical analysis and also, these connections models were not investigated 
together. Dynamic analysis of these connection models have been studied recently. 
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However, none of them is about the reducing coefficients and lateral rigidity values for 
different models. 
 
     In this study, two semi-rigid frame models were used. The connection flexibility was 
modeled by linear elastic rotational springs. A computer program was written to obtain 
the reducing coefficients for each model and dynamic analysis was performed for 
different types of each semi-rigid frame model.  
 
     In the first model, flexible connections were located at the intersection of beam and 
column. Four different spring coefficients were used for the connection flexibility. In 
the second model, flexible connections were located at the ends of the beam. Indeed, 
four different coefficients were used for representing the connection flexibility. The 
reducing coefficients and the dynamic characteristics were determined for each 
connection type. Dynamic properties were investigated with reference to modal 
attributes.  
      

This study compares these two connection models and sheds lights on the design of 
steel structures. For the structural design; this study gives designers information about 
the differences which can be occurred by modeling. The importance of modeling is one 
of the main aims of the study like determining reducing coefficients, lateral rigidity 
values, dynamic characteristics such as vibration periods and frequencies.  
 
     The study indicates that connection models have influences on the dynamic 
characteristics of frames. The location of the linear elastic connection springs affects the 
behavior and the lateral rigidity of semi-rigid frames. Linear elastic springs of the first 
model decrease the lateral rigidity values more than linear elastic springs of the second 
model. The dynamic results were represented in terms of vibration frequencies (rd/sec) 
and periods (sec). For each spring coefficient, vibration frequencies of the first model 
are lower than vibration frequencies of the second model in all modes. As a result, 
vibration periods of the first model are higher than vibration periods of the second 
model.  
 
     In practice, since beam and columns are connected at the ends of beam element, the 
second model represents the structural behavior better than the first model. For this 
reason, the second model is more suitable in steel frame design. 
 
    As the linear elastic rotational spring coefficients increase, the behavior of frames 
becomes more rigid. For the ultimate values of linear elastic rotational spring 
coefficients, there were no differences with the dynamic results of the rigid frame. 
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