

Mathematical and Computational Applications, Vol. 10, No. 1, pp. 45-56, 2005.
© Association for Scientific Research

PENALTY FUNCTION METHODS FOR CONSTRAINED
OPTIMIZATION WITH GENETIC ALGORITHMS

Özgür Yeniay

Hacettepe University, Faculty of Science
Department of Statistics, 06532,

Beytepe, Ankara
yeniay@hacettepe.edu.tr

Abstract- Genetic Algorithms are most directly suited to unconstrained optimization.
Application of Genetic Algorithms to constrained optimization problems is often a
challenging effort. Several methods have been proposed for handling constraints. The
most common method in Genetic Algorithms to handle constraints is to use penalty
functions. In this paper, we present these penalty-based methods and discuss their
strengths and weaknesses.

Key Words- Genetic algorithms, Optimization, Constraint handling, Penalty function

1. INTRODUCTION

 Genetic Algorithms (GAs) are stochastic optimization methods based on
concepts of natural selection and genetics [11,14]. They work with a population of
individuals, each representing a possible solution to a given problem. GAs typically
work by iteratively generating and evaluating individuals using an evaluation function.
The simplest of GAs work according to the scheme shown in Figure 1.

1. Initialize population of individuals (t)
2. Evaluate each individual using evaluation function (t)
3. Repeat until a stopping criterion is satisfied

- Select parents from population (t)
- Perform crossover on parents creating population (t+1)
- Perform mutation on population (t+1)
- Evaluate each individual of population (t+1)

Figure 1. The Steps of a Typical Genetic Algorithm

They have been applied to a wide range of problems in diverse fields such as
engineering, mathematics, operations research etc. (for a variety of applications, see
[11,29]). Most of the problems in these fields are stated as constrained optimization
problems. Since GAs are directly applicable only to unconstrained optimization, it is
necessary to use some additional methods that will keep solutions in the feasible region.
During the past few years, several methods were proposed for handling constraints by
GAs [6,7,23,25,36]. Most of these methods have serious drawbacks. While some of
them may give infeasible solution or require many additional parameters, others are
problem-dependent (i.e. specific algorithm has to be designed for each particular
problem). The most popular approach in GA community to handle constraints is to use

Ö. Yeniay

46

penalty functions that penalize infeasible solutions by reducing their fitness values in
proportion to their degrees of constraint violation [30,36]. In this paper, we analyze
these penalty-based methods.
 The rest of this paper is organized as follows. In the second section, a definition
of a constrained optimization problem is given. The third section gives constraint
handling methods and a classification of them. The fourth section provides an
introduction to penalty functions and explains penalty-based methods in more detail.
The last section concludes the paper.

2. CONSTRAINED OPTIMIZATION

 A constrained optimization problem is usually written as a nonlinear
optimization problem of the following form:

m,...,1qj0)x(h
q,...,1i0)x(g

tosubject
RSF)x,...,x(x)x(fMin

j

i

nt
n1

+==
=≤

⊆⊆∈=

 (1)

where t

n1)x,...,x(x = is the vector of solutions, F is the feasible region and S is the
whole search space. There are q inequality and m-q equality constraints.)x(f is usually
called the objective function or criterion function. Objective function and constraints
could be linear or nonlinear in the problem. Vector x that satisfies all the constraints is
a feasible solution of the problem. All of the feasible solutions constitute the feasible
region. Inequality constraints that satisfy 0)x(gi = are called active at x . Using these
definitions, nonlinear programming problem is to find a point Fx* ∈ such that

)x(f)x(f * ≤ for all Fx∈ [3].

3. CONSTRAINT HANDLING in GAs

 There are several approaches proposed in GAs to handle constrained
optimization problems. These approaches can be grouped in four major categories [28]:
Category 1: Methods based on penalty functions

- Death Penalty [2]
- Static Penalties [15,20]
- Dynamic Penalties [16,17]
- Annealing Penalties [5,24]
- Adaptive Penalties [10,12,35,37]
- Segregated GA [21]
- Co-evolutionary Penalties [8]

Category 2: Methods based on a search of feasible solutions
- Repairing unfeasible individuals [27]
- Superiority of feasible points [9,32]
- Behavioral memory [34]

Penalty Function Methods for Constrained Optimization 47

Category 3: Methods based on preserving feasibility of solutions
- The GENOCOP system [26]
- Searching the boundary of feasible region [33]
- Homomorphous mapping [19]

Category 4: Hybrid methods [1,4,13,18,22]

Note that there are other classification schemes of constraint handling methods in GAs.
As seen above even though many methods to handle constrained optimization problems
within GAs have been proposed this paper will concentrate on penalty function
methods.

3.1. Penalty Functions

 Penalty method transforms constrained problem to unconstrained one in two
ways. The first way is to use additive form as follows:





+
∈

=
otherwise),x(p)x(f

Fxif),x(f
)x(eval (2)

where)x(p presents a penalty term. If no violation occurs,)x(p will be zero and
positive otherwise. Under this conversion, the overall objective function now is)x(eval
which serves as an evaluation function in GAs.
Second way is to use multiplicative form,



 ∈

=
otherwise),x(p)x(f

Fxif),x(f
)x(eval (3)

For minimization problems, if no violation occurs)x(p is one and bigger than one,
otherwise.
The additive penalty type has received much more attention than the multiplicative type
in the GA community.
In classical optimization, two types of penalty function are commonly used: interior and
exterior penalty functions. In GAs exterior penalty functions are used more than interior
penalty functions. The main reason of this, there is no need to start with a feasible
solution in exterior penalty functions. Because finding a feasible solution in many GAs
problems is a NP- hard itself. The general formulation of an exterior penalty function is
[7],









++=φ ∑∑

+==
j

m

1qj
ji

q

1i
i LcGr)x(f)x((4)

Ö. Yeniay

48

where)x(φ indicates the new objective function to be optimized. Gi and Lj are the
functions of)x(gi and)x(h j constraints respectively, and ri ve cj are penalty
parameters. General formulas of Gi and Lj are,

[]β=)x(g,0maxG ii (5)
γ

=)x(hL jj (6)

where β and γ are commonly 1 or 2. If the inequality is hold, 0)x(gi ≤ and
[])x(g,0max i will be zero. Therefore the constraint does not effect)x(φ . If the

constraint is violated that means 0)x(gi > or 0h j ≠ , a big term will be added to)x(φ
function such that the solution is pushed back towards to the feasible region. The
severeness of the penalty depends on the penalty parameters ri and cj. If either the
penalty is too large or too small, the problem could be very hard for GAs. A big penalty
prevents to search unfeasible region. In this case GA will converge to a feasible solution
very quickly even if it is far from the optimal. A pretty small penalty will cause to spend
so much time in searching an unfeasible region; thus GA would converge an unfeasible
solution [25].

Death Penalty

 This simple and popular method just rejects unfeasible solutions from the
population: FSx,)x(P −∈+∞= . In this case, there will never be any unfeasible
solutions in the population. If a feasible search space is convex or a reasonable part of
the whole search space, it can be expected that this method can work well [30].
However, when the problem is highly constrained, the algorithm will spend a lot of time
to find too few feasible solutions. Also, considering only the points that are in feasible
region of the search space prevents to find better solutions.

Static Penalties

 In the methods of this group, penalty parameters don’t depend on the current
generation number and a constant penalty is applied to unfeasible solutions.
Homaifar et al. [15] proposed a static penalty approach in which users describe some
levels of violation. Steps of the method are as follows:
• Generate l levels of violation for each constraint,
• Generate penalty coefficient Rij (i=1,...,l ; j=1,…,m) for each level of violation and

each constraint. The bigger coefficients are given to the bigger violation levels,
• Generate a random population using both feasible and unfeasible individuals,
• Evaluate individuals using

[]2j

m

1j
ij)x(g,0maxR)x(f)x(eval ∑

=

+= (7)

where Rij indicates the penalty coefficient corresponding to jth constraint and ith
violation level. m is the number of constraints. Homaifar et al. [15] transformed equality

Penalty Function Methods for Constrained Optimization 49

constraints to inequality constraints by 0)x(h j ≤ε− (where ε is a small positive
number).
The disadvantage of this method is the large number of parameters that must be set. In
this method, for m constraints it is needed to set m(2l+1) parameters in total. For
instance, for m=5 constraints and l=4 levels of violation the total of 45 parameters
should be set. Michalewicz [31] shows that the quality of solutions is very sensitive to
the values of these parameters.
Kuri Morales and Quezada [20] suggested an another static penalty approach. In this
method, individuals are evaluated using the following formula:














−

∈
=

∑
=

s

1i
otherwise

m
KK

Fxif),x(f
)x(eval (8)

where s is the number of non-violated constraints and m is the total number of
constraints. Constraints can be equality or inequality. K is a large positive constant.
Kuri Morales and Quezada [20] used this constant as 1x109. There is only one
restriction on K. K should guarantee that an unfeasible individual must be graded worse
than a feasible individual. This approach uses information about the number of violated
constraints, not the amount of constraint violation.

Dynamic Penalties

 In the methods of this group, penalty parameters are usually dependent on the
current generation number. Jones and Houck [16] suggested following dynamic
function to evaluate individuals at each generation t:

)x,(SVC)tC()x(f)x(eval β+= α
where C, α and β are constants determined by users. Joines and Houck [16] used C=0.5,
α=1 or 2 and β=1 or 2.)x,(SVC β is described as

∑ ∑
= +=

β +=β
q

1i

m

1qj
ji)x(D)x(D)x,(SVC (9)

where



 ≤≤≤

=
otherwise,)x(g

qi1,0)x(g,0
)x(D

i

i
i (10)





 ≤≤+ε≤≤ε−

=
otherwise,)x(h

mj1q,)x(h,0
)x(D

j

j

j (11)

Ö. Yeniay

50

This dynamic method increases the penalty as generation grows. The quality of a
possible solution is very sensitive to changes of α and β values. There is no explanation
about the sensitivity of the method for different values of C. Even Joines and Houck
[16] stated that they used good selection of C=0.5 and α=β=2, Michalewicz [31] gave
some examples to state that these parameter values cause premature convergence. He
also showed that the method converges an unfeasible solution or a solution that is so far
from an optimal solution.
Kazarlis and Petridis [17] used the following dynamic penalty function,

sii

m

1i
i B)))S(d(W(A)g(V)x(f)x(eval δ








+φδ+= ∑

=

 (12)

where
A=severity factor,
m=total number of constraints,





=δ
otherwise,0

violatedisiconstraintif,1
i

Wi= weight factor for constraint i,
di(S)= measure of the degree of violation of constraint i introduced by solution S,

)S(iΦ = function of this measure,
β= penalty threshold factor,





=δ
otherwise,0

feasibleisSif,1
s

V(g)= an increasing function of the current generation g in the range (0,..,1).

Kazarlis and Petridis [17] tried linear, quadratic and cubic forms of V(g) and received
the best performance by

2

G
g)g(V 





= (13)

where G is the total number of generations. This method needs some parameters
depending on the problem. It is very hard to determine these parameters. Kazarlis and
Petridis [17] did not state why they took A=1000 and B=0 in their work.

Annealing Penalties

 There are some methods based on annealing algorithm in this group.
Michalewicz and Attia [24] developed a method (GENECOP II) based on the idea of
simulated annealing. Steps of this method are as follows:
• Separate all constraints into four subsets: linear equations, linear inequalities,

nonlinear equations and nonlinear inequalities,

Penalty Function Methods for Constrained Optimization 51

• Find a random single point that satisfies linear constraints and take it as a starting
point. The initial population consists of copies of this single point,

• Create a set of active constraints A which consists of nonlinear equations and
violated nonlinear inequalities,

• Set τ=τ0,
• Evolve the population using,

∑
∈τ

+=τ
Aj

2
j)x(f

2
1)x(f),x(eval (14)

• If τ<τf (freezing point) stop the procedure, otherwise,
- Diminish τ,
- Use the best solution as a starting point for next generation,
- Update A,
- Repeat the previous step of the main part.

GENOCOP II distinguishes between linear and nonlinear constraints. In the algorithm
only active constraints are under consideration at every iteration. While the temperature
τ decrease, selective pressure on unfeasible solutions increases. As an interesting point
of the method, there is no diversity of the initial generation that consists of multiple
copies of a solution satisfied all linear constraints. At each generation the temperature τ
decreases and the best solution found at the previous iteration is used as a starting point
of next iteration. The algorithm is terminated at a previously determined freezing point
τf .
The method is very sensitive to values of the parameters. There is no specific way how
to decide these parameters for any particular problem. Michalewicz and Attia [24] used
τ0=1, τi+1=0.1τi and τf=0.000001 in their experiments.
Carlson Skalak et al. [5] recommended to evaluate individuals using

)x(f)T,M()x(eval α= (15)

In the formula, α(M,T) depends on the parameters M, the measurement of constraint
violation, and temperature T, a function of running time of the algorithm. As execution
proceeds, T approaches to zero. Carlson Skalak et al. [5] used the following function for
α(M,T):

T/Me)T,M(−=α (16)

Initial value of penalty parameter is small but increases over time so that unfeasible
solutions found from last generations can be eliminated. For T,

t
1T = (17)

is used. Here, t indicates the last temperature used at the previous iteration.

Ö. Yeniay

52

Adaptive Penalties

 In the methods of this group, penalty parameters are updated for every
generation according to information gathered from the population.
Hadj-Alouane and Bean [12] evaluated an individual by following formula:









+λ+= ∑ ∑

= +=

q

1i

m

1qj
j

2
i)x(h)x(g)t()x(f)x(eval (18)

Here penalty parameter λ(t) is updated at every generation k:















λ
λβ

λ







β

=+λ
otherwise),t(

2#Caseif),t(

1#Caseif),t(1

)1t(2

1

 (19)

where Case # 1 denotes all of the best individuals in the last k generations are feasible,
and Case # 2 denotes they are not feasible. In other words, if all best individuals of last
k generations are feasible, penalty term λ(t+1) for generation (t+1) decreases. If they are
unfeasible penalty term is increased. Otherwise, i.e. if the best individuals in the last k
generations consist of feasible and unfeasible solutions, penalty term does not change.
The main problem of this method is how to choose k, β1 and β2.
Smith and Tate [35] suggested to evaluate each individual by following formula:

()∑
=









−+=

q

1i

k
i

allfeas)t(NFT
)x(gBB)x(f)x(eval (20)

where Ball is the value of the optimal objective function regardless of constraints, Bfeas is
the value of the optimal objective function satisfying constraints,)x(gi is the value of
violation for constraint i, k is the severity parameter and NFT (called Near Feasibility
Threshold) is the threshold distance from the feasible region F. Unfeasible solutions at
this distance are considered to be reasonable since they are very close to the feasible
region. Disadvantage of this method is how to choose NFT that is problem dependent
Yokota et al. [37] took the multiplication form as the evaluation function. Individuals
are evaluated by the following formula:



















 ∆
−= ∑

=

q

1i

k

i

i

b
)x(b

q
11)x(f)x(eval (21)

 where)x(bi∆ is the value of violation for constraint i . It is defined as follows,

Penalty Function Methods for Constrained Optimization 53

[]iii b)x(g,0max)x(b −=∆ (22)

For a feasible solution ii b)x(g ≤ is satisfied so for NFT=bi this approach is a special
case of the approach of Smith and Tate [35].
Gen and Cheng [10] improved the approach presented above by giving high penalties
for unfeasible solutions. Evaluation function is as follows:




















∆
∆

−= ∑
=

q

1i

k

max
i

i

b
)x(b

q
11)x(f)x(eval (23)

In the formula above,)x(bi∆ is the value by which the constraint i is violated in the
individual x . max

ib∆ is the maximum violation for constraint i among current population
and ε is a small positive number.)x(bi∆ and max

ib∆ are defined as follows:

[]iii b)x(g,0max)x(b −=∆ (24)

[])t(Px;)x(b,maxb i
max
i ∈∆ε=∆ (25)

The purpose of this method is to protect the diversity of the population and to protect
the unfeasible solutions, which form the big part of the population in the early
generations, from high penalties. Gen and Cheng [10] claims that their approach is
independent from the problem. However, this approach is only used in an optimization
problem so their claim can be appreciated as suspicious.

Segregated GA

 Le Riche et al. [21] developed a segregated GA (sometimes it is called as yet
another method) that uses two penalty parameters (say, p1 and p2) in two different
populations. The aim is to overcome the problem of too high and too low penalties (see
section 3.1). If a small value is selected for p1 and a large value for p2, a simultaneous
convergence from feasible and unfeasible sides can be achieved. The method works as
follows:

- Generate 2 x pop individuals at random (pop is the population size),
- Design two different evaluation functions:

)x(p)x(f)x(f 11 += and)x(p)x(f)x(f 22 +=
- Evaluate each individual according to two evaluation functions,
- Create two ranked lists according to)x(f1 and)x(f 2 ,
- Combine two ranked lists in a single one ranked population with size pop,
- Apply genetic operators,
- Evaluate the new population using both penalty parameters,
- From the old and new populations generate two populations of the size pop each,
- Repeat the last four steps of the process.

Ö. Yeniay

54

Le Riche et al. [21] applied their method to laminated design problem and obtained
excellent results. The way of choosing penalties for each of two populations is again
the main problem in the method.

Co-evolutionary Penalties
 Coello [8] developed a method of co-evolutionary penalties that split the penalty
into two values, so that the GA has enough information about the number of constraint
violations and the amounts of the violation. Each individual is evaluated by the formula:

)wviolwcoef()x(f)x(eval 21 +−= (26)
where)x(f is the value of the objective function, w1 and w2 are two penalty parameters
and coef is the sum of the amounts by which the constraints are violated. coef is defined
as follows:

0)x(g,)x(gcoef i

q

1i
i >∀= ∑

=

 (27)

where initial value of viol is zero and increases by one for each constraint that is
violated. This approach introduces the definition of four parameters. If they are not
carefully chosen, a lot of evaluation function assessments may be required. Note that
only inequality constraints are considered in this method.

4. CONCLUSIONS
 Real-world optimization problems have constraints that must be satisfied by the
solution of the problem. A variety of constraint handling methods have been suggested
by many researchers Each method has its own advantages and disadvantages. The most
popular constraint handling method among users is penalty function methods. In this
paper we discussed these methods and gave their weakness and strengths. It is
impossible to say one of the methods is the best for every problem. The main problem
of the most methods is to set appropriate values of the penalty parameters.
Consequently, users have to experiment with different values of penalty parameters.

5. REFERENCES
[1] Adeli, H. and Cheng, N.T. Augmented lagrangian genetic algorithm for structural

optimization, Journal of Aerospace Engineering, 7, 104-118, 1994.
[2] Bäck, T., Hoffmeister, F. and Schwell, H.P. A Survey of evolution strategies,

Proceedings of the Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann, 2-9, 1991.

[3] Bazaraa, M.S., Sherali H.D. and Shetty, C.M. Nonlinear programming: theory
and algorithms, John Wily and Sons, 2nd edition, 1993.

[4] Belur, S.V. CORE: Constrained optimization by random evolution, Late Breaking
Papers at the Genetic Programming Conference, Stanford University, 280-286,
1997.

[5] Carlson Skalak, S., Shonkwiler, R., Babar, S., and Aral, M. Annealing a genetic
algorithm over constraints, SMC 98 Conference, available from
http://www.math.gatech.edu/~shenk/body.html.

Penalty Function Methods for Constrained Optimization 55

[6] Coello, C.A.C. A Survey of constraint handling techniques used with evolutionary
algorithms, Technical Report, Lania-RI-99-04, Laboratorio de Inform atica
Avanzada, Veracruz, Mexico, 1999, available from
http://www.cs.cinvestav.mx/~constraint/.

[7] Coello, C.A.C. Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the art, Computer Methods in
Applied Mechanics and Engineering, 191, 1245-1287, 2002.

[8] Coello, C.A.C. Use of a self-adaptive penalty approach for engineering
optimization problems, Computers in Industry, 41, 113-127, 2000.

[9] Deb, K. An Efficient constraint handling method for genetic algorithms, Computer
Methods in Applied Mechanics and Engineering, 186, 311-338, 2000.

[10] Gen, M. and Cheng, R. A Survey of penalty techniques in genetic algorithms,
Proceedings of the 1996 International Conference on Evolutionary Computation,
IEEE, 804-809, 1996.

[11] Goldberg, D.E. Genetic algorithms in search, optimization and machine learning,
Addison-Wesley, Reading, MA, 1989.

[12] Hadj-Alouane, A.B. and Bean, J.C. A Genetic algorithm for the multiple-choice
integer program, Operations Research, 45, 92-101, 1997.

[13] Hajela, P. and Lee, J. Constrained genetic search via schema adaptation, An
immune network solution, Structural Optimization, 12, 11-15, 1996.

[14] Holland, J.H. Adaptation in naturel and artificial systems, MIT Press, Cambridge,
1975.

[15] Homaifar, A., Lai, S.H.Y. and Qi, X. Constrained optimization via genetic
algorithms, Simulation, 62, 242-254, 1994.

[16] Joines, J. and Houck, C. On the use of non-stationary penalty functions to solve
non-linear constrained optimization problems with GAs, Proceedings of the First
IEEE International Conference on Evolutionary Computation, IEEE Press, 579-
584, 1994.

[17] Kazarlis S. and V. Petridis, Varying fitness functions in genetic algorithms:
studying the rate of increase in the dynamic penalty terms, Proceedings of the 5th
International Conference on Parallel Problem Solving from Nature, Berlin,
Springer Verlag, 211-220, 1998.

[18] Kim, J.H. and Myung, H. Evolutionary programming techniques for constrained
optimization problems, IEEE Transaction on Evolutionary Computation, 1, 129-
140, 1997.

[19] Koziel, S. and Michalewicz, Z. Evolutionary algorithms, homomorphous mapping
and constrained parameter optimization, Evolutionary Computation, 7, 19-44,
1999.

[20] Kuri Morales, A. and Quezada, C.C. A Universal eclectic genetic algorithm for
constrained optimization, Proceedings 6th European Congress on Intelligent
Techniques & Soft Computing, EUFIT'98, 518-522, 1998.

[21] Le Riche, R., Knopf-Lenior, C. and Haftka, R.T. A Segregated genetic algorithm
for constrained structural optimization, Proceedings of the Sixth International
Conference on Genetic Algorithms, Morgan Kaufmann, 558-565, 1995.

Ö. Yeniay

56

[22] Le, T.V. Evolutionary approach to constrained optimization problems,
Proceedings of the Second IEEE International Conference on Evolutionary
Computation, IEEE Press, 274-278, 1995.

[23] Michalewicz, Z. A Survey of constraint handling techniques in evolutionary
computation methods, Proceedings of the 4th Annual Conference on Evolutionary
Programming, 135-155, 1995.

[24] Michalewicz, Z. and Attia, N. Evolutionary optimization of constrained problems,
Proceedings of the Third Annual Conference on Evolutionary Programming,
World Scientific, 98-108, 1994.

[25] Michalewicz, Z. and Fogel, D.B. How to solve it: Modern Heuristics, Springer
Verlag, Berlin, 2000.

[26] Michalewicz, Z. and Janikow, C.Z. Handling constraints in genetic algorithms,
Proceedings of the Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann, 151-157, 1993.

[27] Michalewicz, Z. and Nazhiyath, G. GENOCOP III: A Co-evolutionary algorithm
for numerical optimization problems with nonlinear constraints, Proceedings of
the Second IEEE International Conference on Evolutionary Computation, IEEE
Press, 647-651, 1995.

[28] Michalewicz, Z. and Schouenauer, M. Evolutionary algorithms for constrained
parameter optimization problems, Evolutionary Computation, 4, 1-32, 1996.

[29] Michalewicz, Z. Genetic algorithms + Data structures= Evolution programs,
Second Edition, Springer Verlag, Berlin, 1994.

[30] Michalewicz, Z., Dasgupta, D., Le Riche, R. and Schoenauer, M. Evolutionary
algorithms for constrained engineering problems, Computers & Industrial
Engineering Journal, 30, 851-870, 1996.

[31] Michalewicz, Z. Genetic algorithms, numerical optimization, and constraints,
Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan
Kaufmann, 151-158, 1995.

[32] Powell, D. and Skolnick, M.M. Using genetic algorithms in engineering design
optimization with non-linear constraints, Proceedings of the Fifth International
Conference on Genetic Algorithms, Morgan Kaufmann, 424-430, 1993.

[33] Schoenauer, M. and Michalewicz, Z. Evolutionary computation at the edge of
feasibility, Proceedings of the Fourth International Conference on Parallel
Problem Solving from Nature, Springer Verlag, 22-27, 1996.

[34] Schouenauer, M. and Xanthakis, S. Constrained GA optimization, Proceedings of
the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann,
473-580, 1993.

[35] Smith, A. and Tate, D. Genetic optimization using a penalty function, Proceedings
of the fifth International Conference on Genetic Algorithms, Morgan Kaufmann,
499-503, 1993.

[36] Smith, A.E. and Coit, D.W. Constraint handling techniques- penalty functions,
Handbook of Evolutionary Computation, chapter C 5.2. Oxford University Press
and Institute of Physics Publishing, 1997.

[37] Yokota, T., Gen, M., Ida, K. and Taguchi, T. Optimal design of system reliability
by an improved genetic algorithm, Electron. Commun. Jpn. 3, Fundam. Electron.
Sci.79, 41-51,1996.

