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Abstract- Genetic Algorithms are most directly suited to unconstrained optimization. 
Application of Genetic Algorithms to constrained optimization problems is often a 
challenging effort. Several methods have been proposed for handling constraints. The 
most common method in Genetic Algorithms to handle constraints is to use penalty 
functions. In this paper, we present these penalty-based methods and discuss their 
strengths and weaknesses. 
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1. INTRODUCTION 
 
 Genetic Algorithms (GAs) are stochastic optimization methods based on 
concepts of natural selection and genetics [11,14]. They work with a population of 
individuals, each representing a possible solution to a given problem. GAs typically 
work by iteratively generating and evaluating individuals using an evaluation function. 
The simplest of GAs work according to the scheme shown in Figure 1.  
 
1. Initialize population of individuals (t) 
2. Evaluate each individual using evaluation function (t) 
3. Repeat until a stopping criterion is satisfied 

- Select parents from population (t) 
- Perform crossover on parents creating population (t+1) 
- Perform mutation on population (t+1) 
- Evaluate each individual of population (t+1) 

Figure 1. The Steps of a Typical Genetic Algorithm 
 
They have been applied to a wide range of problems in diverse fields such as 
engineering, mathematics, operations research etc. (for a variety of applications, see 
[11,29]). Most of the problems in these fields are stated as constrained optimization 
problems. Since GAs are directly applicable only to unconstrained optimization, it is 
necessary to use some additional methods that will keep solutions in the feasible region. 
During the past few years, several methods were proposed for handling constraints by 
GAs [6,7,23,25,36]. Most of these methods have serious drawbacks. While some of 
them may give infeasible solution or require many additional parameters, others are 
problem-dependent (i.e. specific algorithm has to be designed for each particular 
problem). The most popular approach in GA community to handle constraints is to use 
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penalty functions that penalize infeasible solutions by reducing their fitness values in 
proportion to their degrees of constraint violation [30,36]. In this paper, we analyze 
these penalty-based methods. 
 The rest of this paper is organized as follows. In the second section, a definition 
of a constrained optimization problem is given. The third section gives constraint 
handling methods and a classification of them. The fourth section provides an 
introduction to penalty functions and explains penalty-based methods in more detail. 
The last section concludes the paper. 
 

2. CONSTRAINED OPTIMIZATION 
 
 A constrained optimization problem is usually written as a nonlinear 
optimization problem of the following form: 
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where t

n1 )x,...,x(x =  is the vector of  solutions, F is the feasible region and S is the 
whole search space. There are q inequality and m-q equality constraints. )x(f  is usually 
called the objective function or criterion function.  Objective function and constraints 
could be linear or nonlinear in the problem. Vector x  that satisfies all the constraints is 
a feasible solution of the problem. All of the feasible solutions constitute the feasible 
region. Inequality constraints that satisfy 0)x(gi =  are called active at x .  Using these 
definitions, nonlinear programming problem is to find a point Fx* ∈  such that 

)x(f)x(f * ≤  for all Fx∈ [3]. 
 

3. CONSTRAINT HANDLING in GAs 
 
 There are several approaches proposed in GAs to handle constrained 
optimization problems. These approaches can be grouped in four major categories [28]: 
Category 1: Methods based on penalty functions 

- Death Penalty [2] 
- Static Penalties [15,20] 
- Dynamic Penalties [16,17]  
- Annealing Penalties [5,24] 
- Adaptive Penalties [10,12,35,37] 
- Segregated GA [21] 
- Co-evolutionary Penalties [8] 

Category 2: Methods based on a search of feasible solutions 
- Repairing unfeasible individuals [27] 
- Superiority of feasible points [9,32] 
- Behavioral memory [34] 
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Category 3: Methods based on preserving feasibility of solutions 
- The GENOCOP system [26] 
- Searching the boundary of feasible region [33] 
- Homomorphous mapping [19] 

Category 4: Hybrid methods [1,4,13,18,22] 
 
Note that there are other classification schemes of constraint handling methods in GAs.  
As seen above even though many methods to handle constrained optimization problems 
within GAs have been proposed this paper will concentrate on penalty function 
methods. 
 
3.1. Penalty Functions 
 
 Penalty method transforms constrained problem to unconstrained one in two 
ways. The first way is to use additive form as follows: 
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where )x(p  presents a penalty term. If no violation occurs, )x(p  will be zero and 
positive otherwise. Under this conversion, the overall objective function now is )x(eval  
which serves as an evaluation function in GAs.   
Second way is to use multiplicative form, 
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For minimization problems, if no violation occurs )x(p  is one and bigger than one, 
otherwise. 
The additive penalty type has received much more attention than the multiplicative type 
in the GA community. 
In classical optimization, two types of penalty function are commonly used: interior and 
exterior penalty functions. In GAs exterior penalty functions are used more than interior 
penalty functions. The main reason of this, there is no need to start with a feasible 
solution in exterior penalty functions. Because finding a feasible solution in many GAs 
problems is a NP- hard itself. The general formulation of an exterior penalty function is 
[7], 
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where )x(φ  indicates the new objective function to be optimized. Gi and Lj are the 
functions of )x(gi  and )x(h j  constraints respectively, and ri ve cj are penalty 
parameters. General formulas of Gi and Lj are, 

[ ]β= )x(g,0maxG ii          (5) 
γ

= )x(hL jj           (6) 

where β and  γ are commonly 1 or 2. If the inequality is hold, 0)x(gi ≤  and 
[ ])x(g,0max i  will be zero. Therefore the constraint does not effect )x(φ . If the 

constraint is violated that means 0)x(gi >  or 0h j ≠ , a big term will be added to )x(φ  
function such that the solution is pushed back towards to the feasible region. The 
severeness of the penalty depends on the penalty parameters ri and cj. If either the 
penalty is too large or too small, the problem could be very hard for GAs. A big penalty 
prevents to search unfeasible region. In this case GA will converge to a feasible solution 
very quickly even if it is far from the optimal. A pretty small penalty will cause to spend 
so much time in searching an unfeasible region; thus GA would converge an unfeasible 
solution [25].  
 
Death Penalty 
 
 This simple and popular method just rejects unfeasible solutions from the 
population: FSx,)x(P −∈+∞= . In this case, there will never be any unfeasible 
solutions in the population. If a feasible search space is convex or a reasonable part of 
the whole search space, it can be expected that this method can work well [30]. 
However, when the problem is highly constrained, the algorithm will spend a lot of time 
to find too few feasible solutions. Also, considering only the points that are in feasible 
region of the search space prevents to find better solutions.  
 
Static Penalties 
 
 In the methods of this group, penalty parameters don’t depend on the current 
generation number and a constant penalty is applied to unfeasible solutions.  
Homaifar et al. [15] proposed a static penalty approach in which users describe some 
levels of violation. Steps of the method are as follows: 
• Generate l levels of violation for each constraint,  
• Generate penalty coefficient Rij (i=1,...,l ; j=1,…,m) for each level of violation and 

each constraint. The bigger coefficients are given to the bigger violation levels, 
• Generate a random population using both feasible and unfeasible individuals, 
• Evaluate individuals using 
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where Rij indicates the penalty coefficient corresponding to jth constraint and ith 
violation level. m is the number of constraints. Homaifar et al. [15] transformed equality 
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constraints to inequality constraints by 0)x(h j ≤ε−   (where ε  is a small positive 
number). 
The disadvantage of this method is the large number of parameters that must be set. In 
this method, for m constraints it is needed to set m(2l+1) parameters in total. For 
instance, for m=5 constraints and l=4 levels of violation the total of 45 parameters 
should be set. Michalewicz [31] shows that the quality of solutions is very sensitive to 
the values of these parameters.  
Kuri Morales and Quezada [20] suggested an another static penalty approach. In this 
method, individuals are evaluated using the following formula: 
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where s is the number of non-violated constraints and m is the total number of 
constraints. Constraints can be equality or inequality.  K is a large positive constant. 
Kuri Morales and Quezada [20] used this constant as 1x109. There is only one 
restriction on K. K should guarantee that an unfeasible individual must be graded worse 
than a feasible individual. This approach uses information about the number of violated 
constraints, not the amount of constraint violation.  
 
Dynamic Penalties 
 
 In the methods of this group, penalty parameters are usually dependent on the 
current generation number. Jones and Houck [16] suggested following dynamic 
function to evaluate individuals at each generation t:  

)x,(SVC)tC()x(f)x(eval β+= α  
where C, α and β are constants determined by users. Joines and Houck [16] used C=0.5, 
α=1 or 2 and β=1 or 2. )x,(SVC β  is described as 
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This dynamic method increases the penalty as generation grows. The quality of a 
possible solution is very sensitive to changes of α and β values. There is no explanation 
about the sensitivity of the method for different values of C. Even Joines and Houck 
[16] stated that they used good selection of C=0.5 and α=β=2, Michalewicz [31] gave 
some examples to state that these parameter values cause premature convergence. He 
also showed that the method converges an unfeasible solution or a solution that is so far 
from an optimal solution. 
Kazarlis and Petridis [17] used the following dynamic penalty function, 
 

sii

m

1i
i B)))S(d(W(A)g(V)x(f)x(eval δ








+φδ+= ∑

=

     (12) 

 
where 
A=severity factor, 
m=total number of constraints, 





=δ
otherwise,0

violatedisiconstraintif,1
i  

Wi= weight factor for constraint i, 
di(S)= measure of the degree of violation of constraint i introduced by solution S, 

)S(iΦ = function of this measure, 
β= penalty threshold factor, 
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V(g)= an increasing function of the current generation g in the range (0,..,1). 
 
Kazarlis and Petridis [17] tried linear, quadratic and cubic forms of V(g) and received 
the best performance by  
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where G is the total number of generations. This method needs some parameters 
depending on the problem. It is very hard to determine these parameters. Kazarlis and 
Petridis [17] did not state why they took A=1000 and B=0 in their work.  
 
Annealing Penalties 
 
 There are some methods based on annealing algorithm in this group.  
Michalewicz and Attia [24] developed a method (GENECOP II) based on the idea of 
simulated annealing. Steps of this method are as follows: 
• Separate all constraints into four subsets: linear equations, linear inequalities, 

nonlinear equations and nonlinear inequalities, 
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• Find a random single point that satisfies linear constraints and take it as a starting 
point. The initial population consists of copies of this single point, 

• Create a set of active constraints A which consists of nonlinear equations and 
violated nonlinear inequalities, 

• Set τ=τ0, 
• Evolve the population using, 

∑
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2
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• If τ<τf  (freezing point) stop the procedure, otherwise, 
- Diminish τ, 
- Use the best solution as a starting point for next generation, 
- Update A, 
- Repeat the previous step of the main part. 

 
GENOCOP II distinguishes between linear and nonlinear constraints. In the algorithm 
only active constraints are under consideration at every iteration. While the temperature 
τ decrease, selective pressure on unfeasible solutions increases. As an interesting point 
of the method, there is no diversity of the initial generation that consists of multiple 
copies of a solution satisfied all linear constraints. At each generation the temperature τ 
decreases and the best solution found at the previous iteration is used as a starting point 
of next iteration. The algorithm is terminated at a previously determined freezing point 
τf . 
The method is very sensitive to values of the parameters. There is no specific way how 
to decide these parameters for any particular problem. Michalewicz and Attia [24] used 
τ0=1, τi+1=0.1τi and τf=0.000001 in their experiments. 
Carlson Skalak et al. [5] recommended to evaluate individuals using  
 

)x(f)T,M()x(eval α=         (15) 
 
In the formula, α(M,T) depends on the parameters M, the measurement of constraint 
violation, and temperature T, a function of running time of the algorithm. As execution 
proceeds, T approaches to zero. Carlson Skalak et al. [5] used the following function for 
α(M,T): 
 

T/Me)T,M( −=α          (16) 
 
Initial value of penalty parameter is small but increases over time so that unfeasible 
solutions found from last generations can be eliminated.  For T, 
 

t
1T =           (17) 

 
is used. Here, t indicates the last temperature used at the previous iteration.  
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Adaptive Penalties 
 
 In the methods of this group, penalty parameters are updated for every 
generation according to information gathered from the population. 
Hadj-Alouane and Bean [12] evaluated an individual by following formula: 
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Here penalty parameter λ(t) is updated at every generation k: 
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where Case # 1 denotes all of the best individuals in the last k generations are feasible, 
and Case # 2 denotes they are not feasible. In other words, if all best individuals of last 
k generations are feasible, penalty term λ(t+1) for generation (t+1) decreases. If they are 
unfeasible penalty term is increased. Otherwise, i.e. if the best individuals in the last k 
generations consist of feasible and unfeasible solutions, penalty term does not change. 
The main problem of this method is how to choose k, β1 and β2. 
Smith and Tate [35] suggested to evaluate each individual by following formula:  
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where Ball is the value of the optimal objective function regardless of constraints, Bfeas is 
the value of the optimal objective function satisfying constraints, )x(gi  is the value of 
violation for constraint i, k is the severity parameter and NFT (called Near Feasibility 
Threshold) is the threshold distance from the feasible region F. Unfeasible solutions at 
this distance are considered to be reasonable since they are very close to the feasible 
region. Disadvantage of this method is how to choose NFT that is problem dependent  
Yokota et al. [37] took the multiplication form as the evaluation function. Individuals 
are evaluated by the following formula: 
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 where )x(bi∆  is the value of violation for constraint i . It is defined as follows, 
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[ ]iii b)x(g,0max)x(b −=∆         (22) 
 
For a feasible solution ii b)x(g ≤  is satisfied so for NFT=bi this approach is a special 
case of the approach of Smith and Tate [35].  
Gen and Cheng [10] improved the approach presented above by giving high penalties 
for unfeasible solutions. Evaluation function is as follows:  
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In the formula above, )x(bi∆ is the value by which the constraint i is violated in the 
individual x . max

ib∆ is the maximum violation for constraint i among current population 
and ε is a small positive number. )x(bi∆  and max

ib∆  are defined as follows: 
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The purpose of this method is to protect the diversity of the population and to protect 
the unfeasible solutions, which form the big part of the population in the early 
generations, from high penalties. Gen and Cheng [10] claims that their approach is 
independent from the problem. However, this approach is only used in an optimization 
problem so their claim can be appreciated as suspicious. 
  
Segregated GA 
 
 Le Riche et al. [21] developed a segregated GA (sometimes it is called as yet 
another method) that uses two penalty parameters (say, p1 and p2) in two different 
populations. The aim is to overcome the problem of too high and too low penalties (see 
section 3.1). If a small value is selected for p1 and a large value for p2, a simultaneous 
convergence from feasible and unfeasible sides can be achieved. The method works as 
follows: 
 

- Generate 2 x pop individuals at random (pop is the population size), 
- Design two different evaluation functions: 

    )x(p)x(f)x(f 11 +=     and    )x(p)x(f)x(f 22 +=  
- Evaluate each individual according to two evaluation functions, 
- Create two ranked lists according to )x(f1  and )x(f 2 , 
- Combine two ranked lists in a single one ranked population with size pop, 
- Apply genetic operators, 
- Evaluate the new population using both penalty parameters, 
- From the old and new populations generate two populations of the size pop each, 
- Repeat the last four steps of the process. 
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Le Riche et al. [21] applied their method to laminated design problem and obtained 
excellent results. The way of choosing  penalties for each of two populations is again 
the main problem in the method. 
 
Co-evolutionary Penalties 
 Coello [8] developed a method of co-evolutionary penalties that split the penalty 
into two values, so that the GA has enough information about the number of constraint 
violations and the amounts of the violation. Each individual is evaluated by the formula: 

)wviolwcoef()x(f)x(eval 21 +−=       (26) 
where )x(f  is the value of the objective function, w1 and w2 are two penalty parameters 
and coef is the sum of the amounts by which the constraints are violated. coef is defined 
as follows: 

0)x(g,)x(gcoef i
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where initial value of viol is zero and increases by one for each constraint that is 
violated. This approach introduces the definition of four parameters. If they are not 
carefully chosen, a lot of evaluation function assessments may be required. Note that 
only inequality constraints are considered in this method.  
 

4. CONCLUSIONS 
 Real-world optimization problems have constraints that must be satisfied by the 
solution of the problem. A variety of constraint handling methods have been suggested 
by many researchers Each method has its own advantages and disadvantages. The most 
popular constraint handling method among users is penalty function methods. In this 
paper we discussed these methods and gave their weakness and strengths. It is 
impossible to say one of the methods is the best for every problem. The main problem 
of the most methods is to set appropriate values of the penalty parameters. 
Consequently, users have to experiment with different values of penalty parameters. 
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