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Abstract: The goal of this research is to maximize chord-based composition possibilities given
a relatively small amount of information. A transformational approach, based in group theory,
was chosen, focusing on chord intervals as the components of a modified Markov process. The Markov
process was modified to balance between average harmony, representing familiarity, and entropy,
representing novelty. Uniform triadic transformations are suggested as a further extension of the
transformational approach, improving the quality of tonality. The composition algorithms are
demonstrated given a short chord progression and also given a larger database of albums by the
Beatles. Results demonstrate capabilities and limitations of the algorithms.

Keywords: algorithmic composition; tranformational music theory; triadic transformations;
Markov process

1. Introduction

Algorithmic composition occurs on a plane where science, technology and art, specifically music,
meet, and refers to musical composition techniques which were studied and developed well before
the advent of digital computers [1]. Development of musical technologies has always been related to
general technological advance. Specifically, computer-aided algorithmic composition begun in the mid
twentieth century, with the increasing availability of computer technologies [2]. It has since become a
significant field of research that has artistic and commercial representation.

The algorithm presented in this paper was developed for an on-going research involving
audio-based synchronization of guitar playing robot manipulators. The interactive goal of the robotic
system is to follow a given chord progression, played by a human musician, then modify it and
develop it in an interactive environment [3]. This demanded maximizing compositional possibilities
given a relatively short chord progression. A transformational approach was considered due to its
firm mathematical basis and potential to expand compositional capabilities. According to music
theorist David Lewin (1933–2003), transformational music theory has the potential to describe music
not from an objective outside perspective, but from the perspective of a musician thinking within
the music [4,5]. This, together with the limited input data scenario, provides the motivation for the
research presented herewith.

Transformational music theory involves analysis, characterization and formulation of
transformations in musical composition [6]. In [7], Hook suggests a generalized formulation, termed
the uniform triadic transformation (UTT), relates to two transformations between major and minor
triads. Transformational notions such as neo-Riemannian transformations and Tonnetz have appeared
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in recent research as methods of exploring harmonic relations in algorithmic composition. The research
appearing in [8] introduces a method of harmonization, given the melody and the desired style, based on
a database of music. A tree-based process of analyzing, constructing and trimming the harmony
using neo-Riemannian transformations is suggested. The Tonnetz is a graphical representation of the
relation between notes and triads and is applied in [9] for interactive composition. In [10,11], interactive
composition is designed using methods of tonal interval space [12]. An application of transformational
theory in music appear in [13], which focuses on specific groups as the basis for composition. Finally,
an example of composition using uniform triadic transformations (UTTs) appears in [14].

A Markov process was used as the basic structure for the current algorithm. Markov processes
have been applied to music over almost a century, being versatile and easy to implement [1,15,16].
However, due to data storage problems on one hand, and the difficulty producing musically acceptable
results on the other, Markov processes usually appear as part of a more complex algorithm [17]. In the
context of chord progression analysis, recent examples can be found in [18,19]. In [20], the factor oracle
is a structural basis for musical improvisation algorithms, addressing harmony, rhythm, melody and
style. An interval-based approach was suggested as a possibility for expanding the compositional
possibilities. The factor oracle was recently developed into a wider structure termed the variable
Markov oracle [21].

The modified Markov process described below was presented in [22], and optimally adjusts
the transition probabilities to control a balance between average source probability and entropy,
representing familiarity and novelty, respectively.

2. Transformational Music Theory

This section describes harmonic relations in music and triadic operations in the language and
notation provided by group theory, following [7].

All definitions below relate to pitch-class, and to the 12 tones of which western music is comprised.
This means that a tone r represents the same tone as r + 12.

A chord refers to several musical tones resonating simultaneously. The two main chord types in
western music are major and minor triads, made up of three tones each. The major triad with root
r is composed of three tones, (r, r + 4, r + 7). As r represents the same note as r + 12, the respective
intervals within the triad are the differences along the cycle, namely (4, 3, 5). Similarly, the minor triad
with root r is composed of the three notes (r, r + 3, r + 7), giving the differences (3, 4, 5).

In the other direction, each of the 24 pairs (t, (a, b, c)), where t ∈ Z12 and (a, b, c) is either (4, 3, 5)
or (3, 4, 5), corresponds to a triad (t, t + a, t + a + b).

2.1. Triadic Transformations

Definition 1. A triad can be represented by the ordered pair ∆ = (r, σ), where r is the root of the triad
expressed as an integer (mod 12), which is the relative shift in terms of semi-tones; and σ is a sign representing
its mode (+ for major, − for minor).

For example, (0,+) represents C major, while (8,−) represents G# minor.

Theorem 1. The set of all 24 major and minor triads forms an abelian group (isomorphic to Z12 × Z2) with
multiplication defined by

(r1, σ1)(r2, σ2) = ((r1 + r2) (mod 12), σ1σ2), (1)

This set is denoted by Γ.

Definition 2 ([7, p. 62]). Given ∆1 = (r1, σ1) and ∆2 = (r2, σ2), the transposition level t = r2 − r1 is the
interval between the roots, and the sign factor σ = σ1σ2 is the change in sign, following usual multiplication of
signs. The Γ-interval int(∆1, ∆2) is the ordered pair (t, σ), where t and σ are the transposition level and sign
factor, respectively. The Γ-interval is, therefore, the triadic transformation between ∆1 and ∆2.
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Hugo Riemann (1849–1919) defined three triadic operations (transformations), known today as
Neo-Riemannian operations:

1. The parallel operation (P) shifts the second note of the triad up or down a semitone transforming
between the major and minor triads of the same root. This can be seen, for example, in the shift
between C major and C minor. This transformation switches the intervals (4, 3, 5) and (3, 4, 5),
so it transforms a major triad to a minor one, and vice versa. More explicitly,

P : (r,+) 7→ (r,−), (r,−) 7→ (r,+).

2. The leading tone exchange (L) moves the bottom note of the major triad down a semitone or the
top note of the minor triad up a semitone. For example, transforming between C major and E
minor. By rotating the triad observe that

L : (r,+) 7→ (r + 4,−), (r,−) 7→ (r− 4,+).

3. The relative operation (R) transforms between relative major and relative minor triads by shifting
the top note of the major triad up a whole tone or by shifting the bottom note of a minor triad
down a whole tone. Here

R : (r,+) 7→ (r− 3,−), (r,−) 7→ (r + 3,+).

As a result that
L ◦ R : (r,+) 7→ (r− 7,+), (r,−) 7→ (r + 7,−)

preserves the type, and because 7 is prime to 12, it is clear that every triad can be transformed by
L, R to any other triad (i.e., the group of transformations generated by L, R acts transitively on Γ).

2.2. Uniform Triadic Transformations

The uniform triadic transformation, presented in [7], expands upon the neo-Riemannian
transformations, and provides a generalized algebraic framework for the study of triadic
transformations. A given uniform triadic transformation, or UTT, operates on major triads by a
certain shift, and on minor triads by another. The UTT is denoted by 〈σ, t+, t−〉, where σ ∈ {+,−} is
the sign factor, t+ is the transposition level given a major triad, and t− is the transposition level given
a minor triad. In this notation,

P = 〈−, 0, 0〉, L = 〈−,+4,−4〉, R = 〈−,−3,+3〉.

The UTT (σ, t+, t−) moves the triad (r, o) to the triad (r′, o′), where the new mode (i.e., major
or minor) is o′ = σo; and the new root is r′ = r + to (mod 12) (namely r′ = r + t+ if o = + and
r′ = r + t− if o = −).

As major and minor triads are being rotated independently, we have a set of 144 operations, and
this set {〈+, t+, t−〉 | t+, t− ∈ Z12} clearly forms a group, isomorphic to Z12 × Z12, which does not
contain the operation P. It is easy to check that

P ◦ 〈+, t+, t−〉 = 〈+, t−, t+〉 ◦ P,

and it follows that the group
U :=

{
〈±, t+, t−〉 | t+, t− ∈ Z12

}
,

of all the UTTs, is isomorphic to the semidirect product Z2 o (Z12 ×Z12), which has order 288.
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3. Modified Markov Process

The composition method is based on an extended Markov process, given a desired musical
progression to be improvised upon. The method takes into account two competing factors:

• Familiarity: The outcome is musical-theoretically coherent with the initial progression.
This property will be measured in terms of average probability.

• Novelty: Given the same input sequence, several possible outcomes are appropriate.
This property will be measured in terms of entropy.

Denote by ~C the given input data (which in our case is a sequence of triads). Let h~C be the
distribution of consecutive pairs of triads. This distribution defines a Markov process on triads, where
the distribution of the next triad is taken from the data (see for example Table 2). However, as stated,
this process only relates to the familiarity condition. We therefore modify the process by incorporating
the entropy.

A new distribution is defined that maximizes a linear combination of familiarity vs. novelty. Let δ

be a distribution on Γ, so that

∑
c∈Γ

δ(c) = 1. (2)

Definition 3. The average probability of δ (with respect to ~C) is

Eδ := Eδ[h~C] = ∑
c∈Γ

h~C(c)δ(c). (3)

Definition 4. The entropy of δ is
Hδ = −∑

c∈Γ
δ(c) · log2(δ(c)). (4)

The average favors repeating the most common symbols of ~C, while the entropy favors a uniform
distribution. To balance the two competing effects, the distribution δ is chosen to maximize the function

T(δ) = µ ·Eδ + (1− µ) ·Hδ, (5)

where the parameter µ is fixed and determines the degree of familiarity relative to the input data.
Rewrite (5) as follows:

T(δ1, . . . , δn) = µ
n

∑
i=1

δih(ci)− (1− µ)
n

∑
i=1

δi · log2 δi ,

where n denotes the number of possible states, which in this case is the cardinality of Γ, namely 24.
T is maximized under the constraint ∑ δi = 1.

Define the Lagrange function as follows:

L(δ1, . . . , δn, λ) = T(δ1, . . . , δn)− λ
n

∑
i=1

δi .

Taking the derivative of L by δi and comparing to zero, yields:

∂T(δ1, . . . , δn)

∂δi
− λ = 0 .

More explicitly,

µ · h(ci)− (1− µ) · ln δi + 1
ln 2

− λ = 0.
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Extracting δi:

δi =
1
e

2
µh(ci)−λ

(1−µ) ,

and summing all arguments:

1 =
n

∑
i=1

δi =
1
e

n

∑
i=1

2
µh(ci)−λ

1−µ .

Therefore,

λ = − (1− µ)

ln 2
+ (1− µ) · log2(

n

∑
i=1

2
µ·h(ci)

1−µ ),

leading to the optimal distribution vector

δi =
1
e
· e

µh(ci)−(−
(1−µ)

ln 2 +(1−µ) log2 ∑j 2

µh(cj)
1−µ )

1−µ =
1
e

2
µ

1−µ h(ci)+
1

ln 2−log2 ∑j 2
µh(cj)
1−µ

.

Maximizing using the Hessian matrix,

∂ f~C(δ1, . . . , δn)

∂δi
= µhi −

(1− µ)

ln 2
(ln δi + 1).

If i 6= j, then
∂2 f~C(δ1, . . . , δn)

∂δi∂δj
= 0,

and if i = j, then
∂2 f~C(δ1, . . . , δn)

∂δ2
i

= − (1− µ)

ln 2
1
δi

< 0.

It follows that the vector that maximizes the target function is:

δi =
2

µ
1−µ h(ci)

n
∑

j=1
2

µ
1−µ h(cj)

.

Figure 1 shows an example row of a transition probability matrix (hj) and the effect of µ on the
respective output probabilities. Given µ = 1, the transition with highest probability will always be
chosen. As µ decreases, the transition probability flattens out. Low values of µ yield a distribution that
appears uniform. This can be observed also in Figure 2.

Figure 2 shows average sequence matching given an arbitrary length—16 sequences—used for
producing a thousand new sequences. This correlates with Figure 1 implying that for low values of µ,
although the distribution is not uniform, it becomes approximately uniform. For higher values of µ,
the modified Markov process can be expected to yield chord progressions (or sequences in general) that
maintain similarity to the given input data. More sequence matching examples are presented below.
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Figure 1. Output probability vector, δj, given average transition probabilities, hj = {0.04, 0.09, 0.1, 0.22,
0.13, 0.17, 0.11, 0.03, 0.04, 0.07}, for decreasing values of µ.
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Figure 2. Average sequence matching given a length—16 sequences.

4. Demonstration Database

In order to demonstrate the modified Markov process and the transformational approach in
the following sections, two Beatles’ albums were chosen. The first was the Beatles’ debut album,
“Please Please Me” and the second was the extended LP, “Magical Mystery Tour”, their ninth album.
The Beatles music is considered as a significant influence on modern popular music and has been well
documented [23,24]. In the two albums, song structure is similar, but arrangements and production
are extremely different. In terms of style and harmony, Please Please Me is traditional sixties pop
music, and contains mainly diatonic chord sequences and blues-based chord sequences. The songs
in Magical Mystery Tour include a large degree of repetition, partly influenced by traditional Indian
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music. Diatonic and blues merge to yield a mixture of major chord based songs as well as songs with
very intricate harmonies.

The chords of all the songs used appear in [25]. This book does not include cover versions or
instrumental tracks and these were, therefore, omitted. In order to maintain structure, songs were
separated into two main parts, ‘A’ and ‘B’. Each A-part or B-part was typically made up of four chords
units that were repeated or modified, so for demonstration purposes, four chord progressions were
composed using the Markov process. A Markov process was created for each set of parts in each
album, and the modified probability matrices were created for various values of µ. New progressions
were chosen to begin with the E major chord which happens to be the most frequent chord in Beatles
music [23]. This was also important for comparing the results of the algorithms presented below.

Evaluation of new chord progressions depends on the purpose of the algorithm. For example,
a method for determining consonance of music, based on Euclidean distance within a tonal interval
space, appears in [12]. In [26], evaluation was related to the Wundt curve which describes the relation
between complexity and enjoyment.

In the results presented below, evaluation considers two factors–tonality and similarity to the
intervals and interval sequences of the input data. As both factors are significant in the quality of the
algorithms, the evaluation score was chosen to be the higher value of the two. Table 1 shows sets of
four-chord progressions created using the chords in the A-parts of the album Please Please Me as input
data. The sets were created for the original Markov probability matrix and for the modified Markov
process given µ = 1, 0.9, 0.8, 0.7, 0.6.

Table 1. New chord progressions given A-parts of Please Please Me.

Chord Progression Score Chord Progression Score

E G#m7 Gm7 F#m7 1 E E A Bm 1
E E E E 1 E G#7 A7 C 0.2

E Gm7 F#7 A7 0.7

no µ av. 1 µ = 0.8 av. 0.63

E G#m7 G#7 A7 0.4
E E E E 1 E G#7 G#m7 Em 0.2

E G#m7 A7 C 0.4

µ = 1 av. 1 µ = 0.6 av. 0.3

E E Bm A 1 E G#m7 G#7 A7 0.4
E E G C 1 E G#7 G#m7 D 0.4
E E E Am 1 E Gm7 A7 C 0.2

µ = 0.9 av. 1 µ = 0 av. 0.3

At µ = 1, only the most dominant state is chosen, which happens to be repetition—remaining
on the same chord. For high values of µ, new chord combinations appear, with the score remaining
similar to that of the original Markov process. Below µ = 0.8, chord combinations become arbitrary
as transition probabilities approach uniformity. The score decreases with the decrease in the quality
of tonality and compatibility with the original progressions. Although these examples are not
statistically significant, they demonstrate the modified Markov method and concur with the tendencies
in Figures 1 and 2. The modified Markov process itself does not add new chords to the input database.
The transformational will be shown to significantly increase the selection of new chords given the
same input progression.
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5. A Transformational Approach

In order to explain the transformational approach, a short chord progression will be analyzed.
The two bar progression in Figure 3 was chosen for demonstration.

Figure 3. Two bar progression.

Major chords are represented by upper case letters and minor chords by upper case letters
followed by a lower case ‘m’. Below the musical stave is the triadic notation of the progression, where
(9,−) represents A minor and so on (modulu 12). Below the triads, slightly indented, are the triadic
transformations. For example, the triadic transformation between (9,−) and (0,+) is (3,−). Musical
notes represent pitch-class rather than actual voice leading. The repetition sign (:) at the end adds
transition from G major (7,+) back to A minor (9,−). The triadic transformation is, therefore, (2,−).
Transition probabilities were calculated for the triads and for the transformations. For demonstration
purposes, and without loss of generality, the new progressions were chosen to be eight bars long, with
the first triad and transformation kept at their original values.

5.1. Modified Markov Process

As a result that each triad in the progression leads to a different triad, and because the last triad
leads back to the first, the average probability of the progression is given by the unit matrix. Using the
modified Markov process given µ = 1, the output probability (delta) matrix is identical to the average
probability, and the resulting four bar progression would be identical to the original one. Modifying
the values of µ would rearrange the given chords into new progressions.

5.2. Transformational Modified Markov Process

The probability matrix for the transformations in the progression appears in Table 2.

Table 2. Average transition probability—transformations.

(3,−) (4,−) (2,−)
(3,−)
(4,−)
(2,−)

0 0.5 0.5
1 0 0
1 0 0



The transformation (3,−) appears twice in the original progression, reducing the average
probability matrix dimension. The first row of the average transition probability matrix indicates
that after a (3,−) transformation, there is an equal probability of a (4,−) transformation or a (2,−)
transformation.

A sample output progression, given µ = 0.9, appears in Figure 4.
The first two bars are identical to the original progression; however, the choice of transformation

between triads (0,+) and (4,−), represented by the transformation (4,−), and the transformation
between (0,+) and (2,−), represented by (2,−), has added the (5,+) (F major) and (2,−) (D minor)
triads to the list of possible chords. As µ decreases, the possibility of the original transformations
appearing in a different order gradually increases, adding more chords to the possible output.
For example, choosing µ = 0.8 yielded the progression in Figure 5.
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Figure 4. Output progression, high µ1.

Figure 5. Output example, µ1 = 0.8.

Notice that after the first two bars, which happen to be identical to the original progression,
the transformation (4,−) is chosen, leading to B minor rather than to A minor. B minor leads to D
major, which follows the original (3,−) transformation; but then, a (3,−) transformation is chosen.
This interval, a (3,−) after a major chord, did not appear in the original progression and is non-diatonic.
It is an example of an interval that would be used rarely and carefully in composition. Choosing
µ = 0.5 yielded the output in Figure 6.

Figure 6. Output example, µ1 = 0.5.

The selection of new chords has increased, but the outcome is somewhat random and has little in
common with the original progression. This follows from the fact that the transformational approach
is atonal and, therefore, does not always correctly capture the tonal nature of the original progression.
This limitation of the transformational approach can be moderated by distinguishing between intervals
following major or minor chords, an approach inspired by the uniform triadic transformation (UTT) [7].

5.3. UTT-Based Approach

Using this approach, given the transition probabilities appearing in Table 2, the decision process
would be applied separately for transformations following major chords and transformations following
minor chords. In the example, given a minor chord, which occurs after either a (4,−) or a (2,−)
transformation, the output transformation is always (3,−), yielding a major chord. Given a major chord,
the opposite occurs, and (4,−) or (2,−) will be chosen, yielding a minor chord. Output results are, in
this case, independent of the values of µ. Possible output progressions include the original progression
(Figure 3) and the first output progression of the transformational method displayed above (Figure 4).

In Figure 7, each minor triad is followed by a (3,−) transformation, and each major triad is
followed by (4,−) transformation. This progression may be described by the UTT 〈−, 4, 3〉. In Figure 8,
each minor triad is, again, followed by a (3,−) transformation, but each major triad is followed by a
(2,−) transformation. This progression is described by the UTT 〈−, 2, 3〉.
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Figure 7. Output example, uniform triadic transformation (UTT)-based method.

Figure 8. Another output example, UTT-based method.

Extending these two progressions would eventually include all major and minor triads following
what is known as the circle of fifths (consecutive (5,+) transformations) or circle of fourths (consecutive
(4,+) transformations).

6. Large Database

To test the transformational approach, the chords of both Beatles albums were simplified to triads
and new chord progressions were created given each album as a separate database. Table 3 shows new
four-chord progressions created with the original and modified Markov processes created using the
triadic transformations between chords, for µ = 1, 0.9, 0.8, 0.7, 0.

At µ = 1 only the most dominant state is chosen, which happens to be repetition—remaining on
the same chord. The average score gradually decreases with µ. It is beyond the scope of the current
study to actually compare the musical results, however it is interesting to notice that as µ decreases,
there is a difference in the new progressions between the two albums. Employing the UTT-based
approach is also expected to improve tonality of new progressions.

Table 3. New chord progressions—transformational approach.

Please Please Me (1962) Magical Mystery Tour (1967)

Progression Score Chord Progression Score

E F#m7 F#m7 B 1 E G A D 0.8
E Gm Gm Gm 0.8 E Am Am Am 1
E A E G 0.8 E E E E 1
E Am Am Am 1 E F#m F#m F#m 1

Original Average 0.9 Original Average 0.95

E E E E 1 E E E E 1

µ = 1 Average 1 µ = 1 Average 1

E E A Bm 1 E B B Em 0.8
E A E A 1 E E E G 1
E G G G 0.8 E B B Am 1
E D D F 0.8 E B B C#m 1

µ = 0.9 Average 1 µ = 0.9 Average 0.95

E Am G#m G#m 0.7 E G# G# G# 0.8
E G#m A# G# 1 E A F C#m 0.7
E E C Am 0.7 E B C#m Am 0.7
E Dm Dm F 1 E A Cm Bb 0.4



Math. Comput. Appl. 2020, 25, 43 11 of 14

Table 3. Cont.

Please Please Me (1962) Magical Mystery Tour (1967)

Progression Score Chord Progression Score

µ = 0.8 Average 0.85 µ = 0.8 Average 0.65

E F# D#m Fm 0.4 E Dm G#m Dm 0.7
E F F Ebm 0.4 E B B Dm 0.7
E D Em F 0.8 E Am C A 0.6
E A D Eb 0.6 E F#m G# A#m 0.4

µ = 0.7 Average 0.55 µ = 0.7 Average 0.6

E Gm Dm Am 0.4 E D# G D 0.4
E B G Em 0.4 E Gm E Gm 0.3
E F#m A#m Dm 0.3 E Bb Gb E 0.6
E D# D# G 0.4 E F# G# C# 0.4

µ = 0 Average 0.38 µ = 0 Average 0.43

7. Sequence Matching

Sequence matching is an essential tool in the fields of bio-informatics and genetics. It is also used
as a method for comparing musical compositions [27,28].

Three examples of short progressions were chosen. The first is a repetitive transformational
passage from the piece ‘Wilde Jagd’ by Liszt; the second is a simplification of the main theme of the
Radiohead song ‘Morning Bell’; and the third is a modified version of the chorus of the Beatles’ song
‘Hello Goodbye’. The transformational and UTT approaches were applied to the transformations of
each progression, given 0 < µ < 1. A thousand new progressions of the same length were created
and compared to the original progression in terms of the transformations and the actual triads of each
input progression. The following figures show the percentage of maximal sequence matching.

Some examples of triad chains generated by order-24 UTTs, chosen from the musical literature,
appear in [7]. One of them is an excerpt from Wild Jagd by Franz Liszt. Figure 9 shows the maximal
matching of the transformations chosen (Figure 9a) and the respective output triads (Figure 9b). In this
example, the UTT-based approach succeeds in recreating the original progression for all values of µ

until just below 1. The transformational approach succeeds in recreating the original progression for
all values above approximately µ = 0.7. However, when µ is very close to 1, the results deteriorate.
This follows the fact that for µ ≈ 1, only the transformation with the highest probability is chosen,
preventing the new progression from completing the original progression (see Figure 1).
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Figure 9. Wilde Jagd—maximal sequence matching of transformations (a) and triads (b).
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In [29], the song Morning Bell by Radiohead was analyzed in terms of neo-Riemannian
transformations. In terms of maximal sequence matching (Figure 10), the UTT-based method achieves
higher results, indicating its capability to reproduce the original progression.
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Figure 10. Morning Bell—maximal sequence matching of transformations (a) and triads (b).

Figure 11 shows maximal sequence matching for the modified version of the chorus of Hello
Goodbye, which appears on the LP version of Magical Mystery Tour. The difference compared to
the previous examples can be attributed to the fact that this progression includes significantly less
repetition of transformations.
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Figure 11. Hello Goodbye—maximal sequence matching of transformations (a) and triads (b).

8. Conclusions

A transformational approach to chord-based composition was suggested within the framework
of a modified Markov process. The system optimizes the balance between familiarity, represented by
average harmony, and novelty, represented by entropy. The modified Markov itself is not actually
limited to harmony and can be used for algorithmic composition of melody, rhythm and possibly
other parameters. Combining the modified Markov process with the transformational approach can
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significantly expand the chord range in the new progressions. one of the disadvantages of using triadic
transformations in the Markov process is the atonality of the transformations. The UTT-based approach
moderates this problem as it maintains the mode of chord being followed, thus improving tonality
as well as sequence matching. The algorithms were demonstrated given a short chord progression
and also given a larger database of albums by the Beatles. Further work is expected to include more
evaluation examples, on the one hand, and real-time application, on the other.
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