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Abstract: The main aim of this paper is to propose a robust fault-tolerant control for a three degree of
freedom (DOF) mechanical crane by using a convex quasi-Linear Parameter Varying (qLPV) approach
for modeling the crane and a passive fault-tolerant scheme. The control objective is to minimize
the load oscillations while the desired path is tracked. The convex qLPV model is obtained by
considering the nonlinear sector approach, which can represent exactly the nonlinear system under
the bounded nonlinear terms. To improve the system safety, tolerance to partial actuator faults is
considered. Performance requirements of the tracking control system are specified in anH∞ criteria
that guarantees robustness against measurement noise, and partial faults. As a result, a set of Linear
Matrix Inequalities is derived to compute the controller gains. Numerical experiments on a realistic
3 DOF crane model confirm the applicability of the control scheme.

Keywords: 3 DOF crane; convex systems; fault-tolerant control; robust control; qLPV systems;
Takagi–Sugeno systems

1. Introduction

In recent years, fault-tolerant control (FTC) has become a relevant research field and has attracted
significant attention because of its applicability to industrial systems, which increases their security
and reliability. A fault can be defined as abnormal behavior of at least one characteristic property
or parameter that changes the system performance [1,2]. It is important to note that a fault denotes
a breakdown rather than a catastrophe [3,4]. In other words, a fault not necessarily ends in a system
stop. However, if no action is taken on time, the system performance begins to degrade that could end
in a catastrophe [5]. Therefore, in order to guarantee a minimum level of performance, it is necessary
to develop methods to improve system safety and reliability.

Model-based safety schemes require differential equations representing the complex dynamics
presented in physical systems, which are often nonlinear [6,7]. Recently, multimodel techniques such
as Linear Parameter Varying (LPV), quasi-LPV (qLPV), and Takagi–Sugeno (TS) systems have emerged
as an attractive alternative to deal with the analysis of complex nonlinear systems due to the fact that it
is possible to extend techniques developed for linear systems but applied to nonlinear systems [8–11].
In this paper, it is considered that qLPV and TS systems are the same because the convex model is
obtained through the so-called nonlinear sector approach [12]. This paradigm has been extensively
studied in the works of [13,14]. In the literature, FTC systems have been classified into two approaches:
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passive and active [15]. Passive FTC is an extension of robust control [16] and requires some knowledge
of possible failures that may affect the system. In this scheme, the controller is designed a priori to be
robust to faults, and non-online adaptation is made. This type of control is interesting because it does
not need any fault diagnosis module [17]. In contrast, active FTC systems offer flexibility in the design
task. They are assimilated as a variable structure technique because the controller is reconfigured when
a fault occurs [18]. However, it is necessary to include a Fault Diagnosis and Isolation (FDI) module,
which provides information about the faults [19,20]. The inclusion of the FDI module gives some
conservatism into the controller solution. This work is dedicated to the study of passive fault-tolerant
with application to a mechanical crane.

A mechanical crane can load hundreds of tons and are widely used in oil platforms, ships,
factories, railway depots, piers, among others [21]. By design, the crane is a sub-actuated system,
which means that it has more degrees of freedom (DOF) than control inputs. In the particular case of
the crane shown in Figure 1, it is assumed that the load is attached to a plane. The degrees of freedom
of the crane are three: the first one refers to movement on the x-axis (forward/backward movement
of the carriage); the second on the z-axis (up/down movement of the load); and finally the angular
displacement of the load on the x-axis. However, the system has only two actuators, which are
the trolley motor and the hoist motor. The control objective is to locate the crane at the desired position,
whereby the trolley motor moves the load as fast as possible. At the same time, the oscillations that
could destabilize the system must be minimized [22]. Due to this, it is essential to design control
schemes that consider the under-actuation, a large number of linearities, possible faults, and robustness
to the payload oscillations.

xc

Fx

m

l
θ

Fl

1
Figure 1. Three degrees of freedom mechanical crane.

In the literature, this problem has been approached by considering different methods,
e.g., sliding modes [23], LQ controllers [24], particle swarm optimization [25], adaptive control [26,27],
among others. Regarding safety systems, sliding mode differentiators can be consulted in [28]
and fault-tolerant control in [29,30]. Some authors have explored the design of robust controllers
based on multimodel techniques. For example, in [31], a robust stabilization method based on TS
models was proposed. The authors in [32] presented a hybrid controller that includes position
regulation and oscillation control designed using TS techniques. Similarly, in [33], a reduced-order
H2/H∞ LPV controller was proposed. In [34] a distributed parallel compensation control is explored
through TS techniques. In [35], a fault-tolerant LPV control was proposed. Authors in [36] proposed
a reconfiguration scheme for active fault tolerance by considering predictive control. However, none
of the reported works were subjected to performance tests in the presence of disturbances by unknown
additive signals.

This paper is devoted to developing a robust quasi-Linear Parameter Varying (qLPV) fault
tolerant-control system with H∞ criteria applied to a 3 DOF crane. The main idea is to propose
a control law that minimize oscillations in the load while the desired path is tracked. The proposed
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method is robust to disturbances, sensor noise, and partial faults. The method performance and
applicability are tested through numerical simulations on a 3 DOF mechanical crane by compensating
partial faults on the trolley and load motors.

2. Mathematical Modeling

The free-body diagram of three degrees of freedom traveling crane is shown in Figure 1. The cart
slides along a horizontal rail and at the same time that it is supported by two metal legs. A mass
is suspended from a cable attached to the cart. Force Fx is applied to the cart, which provokes
a displacement in the x-axis. This movement causes an angular displacement θ formed in the pendulum
by the load mass m and the cable of length l whose value can be changed by Fl , i.e., Fl activates
the elevation system by means of a motor and gears. The nonlinear model is given by the following
ordinary differential equations [23]:

M(q)q̈ + Dq̇ + C(q, q̇)q̇ + G(q) = F; (1)

with:

q =

xc(t)
l(t)
θ(t)

 ; F =

Fx(t)
Fl(t)

0

 ; M(q) =

 (Mx + m) m sin θ(t) ml(t) cos θ(t)
m sin θ(t) (Ml + m) 0

ml(t) cos θ(t) 0 ml(t)2

 ;

C(q, q̇) =

0 2m cos θ(t)θ̇(t) −ml sin θ(t)θ̇(t)
0 0 −ml(t)θ̇(t)
0 2mθ̇(t)l(t) 0

 ; D =

Dx 0 0
0 Dl 0
0 0 0

 ; G(q) =

 0
mg−mg cos θ(t)

mgl(t) sin θ(t)

 ;

where m is the load mass and g is the gravitational acceleration; Dx and Dy are the viscous damping
coefficients associated with the x- and z-axis respectively; finally, Mx and Ml are the traveling and
hoisting components of the crane mass, respectively, i.e., Mx = m + mc and Ml = m, where mc is
the cart mass. The parameter values considered in this paper are close to a real laboratory crane
system, e.g., [37].

The state-space derivation is obtained solving (1) for q̈, such as:

q̈ = −M(q)−1Dq̇−M(q)−1C(q, q̇)q̇−M(q)−1G(q) + M(q)−1F. (2)

By using sin θ(t) = Sθ , and cos θ(t) = Cθ ; Equation (2) in long hand becomes,

q̈ =−


0 0 −

mMlSθ l(t)θ̇(t)
µ(t)

0 0 −
mMxl(t)θ̇(t)

µ(t)

0
2θ̇(t)
l(t)

MlmCθSθ θ̇(t)
µ(t)


q̇−



(Ml + m)Dx

µ(t)
−

mSθ Dl

µ(t)
0

−
mSθ Dx

µ(t)
(Mx + m−mC2

θ )Dl

µ(t)
0

−
Cθ(Ml + m)Dx

l(t)µ(t)
mCθSθ Dl

l(t)µ(t)
0


q̇

−


−mgSθ(t)(MlCθ + m)

µ(t)
0

0
(Mx + m + mC2

θ )(mg−mgCθ) + gm2CθS2
θ

µ(t)
0 0

0
0

mCθSθ(mg−mgCθ) + (Mx Ml + Mlm + Mxm + m2 −m2S2
θ)gSθ

l(t)µ(t)


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+



Ml + m
µ(t)

−
mSθ

µ(t)
−
(Ml + m)Cθ

l(t)µ(t)

−
mSθ

µ(t)
Mx + m−mC2

θ

µ(t)
mSθCθ
l(t)µ(t)

−
(Ml + m)Cθ

l(t)µ(t)
mSθCθ

l(t)µ(t)
Ml Mx + Mlm + Mxm + m2 −m2S2

θ

m(l(t))2µ(t)


Fx(t)

Fl(t)
0

 ;

with µ(t) = Ml Mx + Mlm + Mxm + m2 −MlmC2
θ −m2C2

θ −m2S2
θ = Ml Mx + Mlm + Mxm−MlmC2

θ .
Recalling that q = [xc(t), l(t), θ(t)]T ; then, by considering small values of θ, i.e., Sθ ≈ θ, Cθ ≈ 1, θ2 ≈ 0,
and θ̇2 ≈ 0, the following equations can be obtained,

ẍc(t) =−
(Ml + m)Dx ẋc(t)

Ml Mx + Mxm
+

mθ(t)Dl l̇(t)
Ml Mx + Mxm

+
(Ml + m)mgθ(t)

Ml Mx + Mxm
+

(Ml + m)Fx(t)
Ml Mx + Mxm

− mθ(t)Fl(t)
Ml Mx + Mxm

;

l̈(t) =
mDxθ(t)ẋc(t)
Ml Mx + Mxm

− MxDl l̇(t)
Ml Mx + Mxm

− mθ(t)Fx(t)
Ml Mx + Mxm

+
MxFl(t)

Ml Mx + Mxm
;

θ̈(t) =
(Ml + m)Dx ẋc(t)

l(t)(Ml Mx + Mxm)
− mDlθ(t)l̇(t)

l(t)(Ml Mx + Mxm)
− 2θ̇(t)l̇(t)

l(t)
− (Mx Ml + Mlm + Mxm + m2)gθ(t)

l(t)(Ml Mx + Mxm)

− (Ml + m)Fx(t)
l(t)(Ml Mx + Mxm)

+
mθFl(t)

l(t)(Ml Mx + Mxm)
.

(3)

Remark 1. If θ(t) is not assumed to be small, the nonlinear terms would increase, increasing the complexity
of the convex system representation resulting in a more involved procedure for the controller design. However,
the consideration that the designed controller will keep load oscillations small makes it possible to assume θ ≈ 0.

Finally, by setting x(t) = [x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)]T =

[xc(t), ẋc(t), l(t), l̇(t), θ(t), θ̇(t)]T and u(t) = [Fx(t), Fl(t)]T, the state space representation is obtained:

ẋ(t) =



0 1 0 0 0 0
0 −m2Dx 0 m1Dl x5 m4g 0
0 0 0 1 0 0
0 m1Dxx5 0 −m3Dl 0 0
0 0 0 0 0 1
0 m2Dx

x3
0 −(m1Dl x5

x3
+ 2x6

x3
) −m5g

x3
0


x(t) +



0 0
m2 −m1x5

0 0
−m1x5 m3

0 0
−m2

x3

m1x5
x3


u(t); (4)

with m1 = m/(Ml Mx + Mxm); m2 = (Ml + m)/(Ml Mx + Mxm); m3 = Mx/(Ml Mx + Mxm);
m4 = m(Ml + m)/(Ml Mx + Mxm); m5 = (Mx Ml + Mlm + Mxm + m2)/(Ml Mx + Mxm). Note that
the nonlinear terms in (4) are given by:

z =
[

x5
1
x3

x5
x3

x6
x3

]
.

In order to obtain a TS model through the nonlinear sector approach, each nonlinear term is
bounded as x3 ∈ [0.1, 0.72] [m], x5 ∈ [−0.35, 0.35] [rad], and x6 ∈ [−3.467, 3.467] [rad/s], such as
the weighting functions are described as:

1. For z1 = x5 the limits are z1,min = −0.35 and z1,max = 0.35. The weigthing functions are
w11 =

z1,max−z1
z1,max−z1,min

and w12 = 1−w11. Therefore, z1 can be rewritten as z1 = z1,minw11 + z1,maxw12.

2. For z2 = 1
x3

the limits are z2,min = 1 and z2,max = 10. The weighting functions are w21 =
z2,max−z2

z2,max−z1,min

and w22 = 1−w21. Therefore, z2(t) can be rewritten as z2 = z2,minw21 + z2,maxw22.
3. z3 = x5

x3
is bounded as z3,min = −3.5 and z3,max = 3.5. The weigthing functions are

w31 =
z3,max−z3

z3,max−z3,min
and w32 = 1− w31, with z3 = z3,minw31 + z3,maxw32.
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4. Finally, z4 = x6
x3

is bounded as z4,min = −34.67 and z4,max = 34.67. The weighting functions are

w41 =
z4,max−z4

z4,max−z4,min
and w42 = 1− w41, with z4 = z4,minw41 + z4,maxw42.

Then, the nonlinear model can be represented by:

ẋ(t) =



0 1 0 0 0 0
0 −m2Dx 0 m1Dlz1 m4g 0
0 0 0 1 0 0
0 m1Dxz1 0 −m3Dl 0 0
0 0 0 0 0 1
0 m2Dxz2 0 −(m1Dlz3 + 2z4) −m5gz2 0


x(t) +



0 0
m2 −m1z1

0 0
−m1z1 m3

0 0
−m2z2 m1z3


u(t) (5)

The number of local sub-models is 24 = 16, then, the membership functions are computed as
the product of the weighting functions that correspond to each local model,

hi(z(t)) =
p

∏
j=1

wj
ij(zj), i = 1, 2, . . . , 2p. (6)

Note that the membership functions are convex which means that hi(z(t)) ≥ 0, ∑16
i=1 hi(z(t)) = 1.

The number of combinations are defined as given in Table 1.

Table 1. Weighing functions.

hi Combination hi Combination

h1 w1
0w2

0w3
0w4

0 h9 w1
1w2

0w3
0w4

0

h2 w1
0w2

0w3
0w4

1 h10 w1
1w2

0w3
0w4

1

h3 w1
0w2

0w3
1w4

0 h11 w1
1w2

0w3
1w4

0

h4 w1
0w2

0w3
1w4

1 h12 w1
1w2

0w3
1w4

1

h5 w1
0w2

1w3
0w4

0 h13 w1
1w2

1w3
0w4

0

h6 w1
0w2

1w3
0w4

1 h14 w1
1w2

1w3
0w4

1

h6 w1
0w2

1w3
1w4

0 h14 w1
1w2

1w3
1w4

0

h7 w1
0w2

1w3
1w4

0 h15 w1
1w2

1w3
1w4

0

h8 w1
0w2

1w3
1w4

1 h16 w1
1w2

1w3
1w4

1

Then, the convex qLPV model is derived as:

ẋ(t) =
16

∑
i=1

hi(z) [Aix(t) + Biu(t)] ;

y(t) = Cx(t); (7)

The matrix C is constant as y(t) represents the measured output which according to the nature of
the system is linear.

3. Convex H∞ Fault-Tolerant Controller

Under the presence of additive actuator faults, system (7) can be rewritten as

ẋ(t) = Ahx(t) + Bhu(t) + Gh f (t),

y(t) = Cx(t),
(8)
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where:

Ah =
16

∑
i=1

hi(z(x(t)))Ai, Bh =
16

∑
i=1

hi(z(x(t)))Bi, (9)

f ∈ Rs represents the additive fault vector and Gh ∈ Rn×s represents the fault matrix. Typically in
order to simulate actuator degradation, it is considered that Gh = Bh.

Then, a convex qLPV controller for the nonlinear 3 DOF crane, as the one shown in Figure 2,
is proposed with:

ε̇(t) = ω(t)− y(t) = ω(t)− Cx(t), (10)

where ω(t) is the reference and the control law is defined by:

u(t) =
16

∑
i=1

hi(z) [F1ix(t) + F2iε(t)] =
16

∑
i=1

hi(z)Fi

[
x(t)
ε(t)

]
= Fh

[
x(t)
ε(t)

]
, (11)

where F1i and F2i are the gain matrices to be computed. Then, the main problem is to determine
the optimal values for these control gains, such that the system be robust to disturbances and
sensor noise. Then, by considering the tracking comparator in the control scheme (10), the following
augmented system is obtained:

˙̄x(t) = Āh x̄(t) + B̄hu(t) + Ḡh f (t) + B̄ωω(t) (12)

with:

Āh =

[
Ah 0
−C 0

]
, B̄h =

[
Bh
0

]
, B̄ω =

[
0
I

]
, Ḡh =

[
Gh
0

]
, x̄ =

[
x(t)
ε(t)

]
.

+
++

-

Comparator

x yu∫
F1i

Crane Cw ε̇ ε F2i

Figure 2. Convex tracking control diagram.

Assuming that the pair [Āi, B̄i] is controllable and the control law (11), the following closed-loop
system is obtained:

˙̄x = (Āh+B̄hFh) x̄ + Ḡh f (t) + B̄ωω(t). (13)

System (13) can be rewritten equivalently as:

˙̄x = (Āh+B̄hFh) x̄ + Ḡωh f̄ω(t), (14)

with:

Ḡωh =
[

Ḡh B̄ω

]
, f̄ω =

[
f (t)
ω(t)

]
(15)

Then, by considering an H∞ performance criteria is considered to design a robust controller
Fh, which minimizes the energy L2-gain of the closed-loop system, such as norm upper bound is
simultaneously guaranteed:
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‖x̄(t)‖2∥∥ f̄ (t)ω

∥∥
2
≤ γ, γ > 0,

as a result, the following Theorem is derived:

Theorem 1. Given the qLPV system (7), the robust control (11) has a quadratic γ-performance level if there
exist matrices X, Mj, with γ > 0, such that the following optimization problem is solved ∀i, j ∈ [1, 2, . . . , 16]:

min γ̄, s.t.ĀiX+B̄i Mj+MT
j B̄T

i + XĀT
i Ḡωi XT

ḠT
ωi −γ̄I 0

X 0 −I

 ≤ 0. (16)

Then, the controller matrices and the performance are computed by Fi = MjX−1 and γ =
√

γ̄.

Proof. Let us consider the followingH∞ performance criteria:

V̇(x̄(t)) + x̄(t)T x̄(t) ≤ γ2 f̄ω(t)T f̄ω(t), (17)

where V̇(x̄(t)) is the derivative of the quadratic Lyapunov function x̄(t)T Px̄(t) > 0, with P = PT > 0,
over the trajectory of the augmented states, such as the performance criteria can be rewritten as:

˙̄x(t)T Px̄(t) + x̄(t)T P ˙̄x(t) + x̄(t)T x̄(t)− γ2 f̄ω(t)T f̄ω(t) ≤ 0. (18)

Then, by considering the augmented matrices given in (14), the following is obtained:

x̄T P((Āh+B̄hFh)x̄ + Ḡωh f̄ω) + ((Āh+B̄hFh)x̄ + Ḡωh f̄ω)
T Px̄ + x̄T x̄− γ2 f̄ T

ω f̄ω≤ 0, (19)

which can be equivalently rewritten as:

x̄T(PĀh+PB̄hFh+FT
h B̄T

h P + ĀT
h P + I)x̄ + x̄T(PḠωh) f̄ω + f̄ T

ω(Ḡ
T
ωhP)x̄− f̄ T

ω(γ
2 I) f̄ω ≤ 0. (20)

Then, the performance criteria can be factorized as:

[
x̄T f̄ T

ω

] [PĀh+PB̄hFh+FT
h B̄T

h P + ĀT
h P + I PḠωh

ḠT
ωhP −γ2 I

] [
x̄
f̄ω

]
≤ 0. (21)

In order to put together the unknown matrices P andFh, the inequality is pre and post-multiplyied

by

[
X 0
0 I

]
and its transpose, with X = P−1, such as the following is obtained:

[
ĀhX+B̄hFhX+XFT

h B̄T
h + XĀT

h + XTX Ḡωh
ḠT

ωh −γ2 I

]
≤ 0 (22)

With this transformation, the quadratic term can be eliminated by considering Mh = FhX and
γ̄ = γ2, such as the following Linear Matrix Inequality (LMI) is derived:[

ĀhX+B̄h Mh+MT
h B̄T

h + XĀT
h + XTX Ḡωh

ḠT
ωh −γ̄I

]
≤ 0, (23)
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which can be rewritten as:[
ĀhX+B̄h Mh+MT

h B̄T
h + XĀT

h Ḡωh
ḠT

ωh −γ̄I

]
+

[
XT

0

]
I
[

X 0
]
≤ 0. (24)

Then, by considering the Schur complement, the following LMI is obtained:ĀhX+B̄h Mh+MT
h B̄T

h + XĀT
h Ḡωh XT

ḠT
ωh −γ̄I 0
X 0 −I

 ≤ 0. (25)

Note that (24) and (25) are equivalent, and both can be used to find the gains. However, (25) is
written in a relaxed form to reduce the LMI conservatism. Finally, by considering the equivalent
matrices in (9), the LMI, as given in Theorem 1, is obtained. This completes the proof.

Remark 2. In this paper, the method considers a constant Lyapunov matrix P, which means it is necessary
to find a Matrix P such for all 16 LMIs. This problem can be relaxed by considering a parameter-varying Ph,
which is also called the non-quadratic Lyapunov functions [38]. This problem can reduce the conservatism
of the LMI and open new research areas for future work. However, it is essential to understand that powerful
semidefinite programming solvers as SEDUMI o Mosek can deal with quadratic functions, as presented in this
paper, and it is not necessary to address the non-quadratic problem.

4. Numerical Results

To validate the convex nonlinear model (7) of the 3 DOF crane with respect to the nonlinear
model given in [27], the parameters given in Table 2 are considered with initial conditions x(0) = 0,
l(0) = 0.22 [m], θ(0) = 0. A unit-input pulse it is considered for both actuators from 1 [s]≤ u(t) ≤ 2 [s],
such as the responses shown in Figure 3 are obtained.

Table 2. Parameters of the 3 degrees of freedom (DOF) crane.

Parameter Value Units

g 9.81 m/s2

m 0.50 kg
Mx 1.655 kg
Ml 0.50 kg
Dx 100 Ns/m
Dl 82 Ns/m

For the sake of simplicity and page limitation, only the comparison of the displacements are
showed here. As can be observer from Figure 3, the responses of both systems, the nonlinear and
the qLPV, are practically the same due to the fact that the convex model represents exactly the nonlinear
system on the sectors limited by the weighting functions. Then, this convex model can be used to
design the convex controller.

For the controller design, Theorem 1 is solved by minimizing γ such as the LMI (16) is feasible.
For such purpose, the YALMIP [39] toolbox and the SEDUMI [40] solver have been used. The computed
attenuation level is γ = 0.0314. Note that an attenuation level γ < 1 guarantees a good robust
performance against noise and disturbances. The resulting P matrix is:
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P =



29.2989 33.8755 35.2641 −25.3974 −112.0708 −1.1582
33.8755 41.7475 46.7113 −29.3192 −139.3964 −1.8173
35.2641 46.7113 165.1513 2.0182 −168.5182 −5.5944
−25.3974 −29.3192 2.0182 87.9937 86.5479 −4.0631
−112.0708 −139.3964 −168.5182 86.5479 478.4657 8.7512
−1.1582 −1.8173 −5.5944 −4.0631 8.7512 1.4297


.

Figure 3. Comparison between the nonlinear and the quasi-Linear Parameter Varying (qLPV) models.

The numerical simulations of the controller were carried-out by considering the initial conditions
given earlier and Gaussian random noise with zero mean and variance 0.2 in the measurements.
The control objective is to displace the cart to track a reference consisting of a pulse oscillation of
1 [m] from the origin, for 20 [secs] in each position, and maintain the load in 0.4 [m] for t ≥ 5 [s].
In addition, in order to evaluate the fault tolerance of the closed-loop system, an additive fault is
applied to the input u1, the fault is defined as follows:

Fault u1 =


0 t < 35

15% of u1 35 ≤ t ≤ 45

35% of u1 t > 45

.

The fault corresponds to a degradation of the force Fx given by the motor of the cart (25% and
35% of its nominal value). To include these faults, the matrix Gh = Bh, which represents the additive
fault. The numerical simulations results are displayed in Figure 4.

As it can be observed, the controller tracks the demanded changes in the cart position and also
maintains the load position. As a result that the proposed approach considers a passive fault-tolerant
approach, the controller is robust to the actuator’s fault. As it can be analyzed, the fault is compensated
as soon as it appears, which means that its effect is practically eliminated from the system response.
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Different fault scenarios were carried-out to test the controller performance and have been found that
for actuator faults involving a degradation higher than 50%, the controller cannot reach the desired
tracking position anymore. The effect of the noisy measured signals is reflected in the payload
oscillation as this signal looks trembling. In addition, despite the continuous displacement, the load
oscillation is attenuated maintaining a maximum of±2 degree with respect to the vertical. Nevertheless,
this does not represent a limitation because the main objective was to maintain the desired position
under partial faults. For more significant faults in magnitude, it would be necessary to replace
the motor in order to guarantee the system’s safety.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

  x
  [

m
]

x1  ref

x1  controlled

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

 z
 [m

]

x3  ref

x3  controlled

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-2

0

2

 [°
] 

x5 load oscillation

Figure 4. Control performance under an actuator fault.

5. Conclusions

This paper has presented a passive fault-tolerant controller for a 3 degree of freedom mechanical
crane. First, a convex model of the 3 DOF crane has been proposed, representing the nonlinear
dynamic by a set of linear models interpolated by nonlinear weighting functions. Then, a tracking
fault-tolerant controller withH∞ performance criteria has been developed over the nonlinear states’
trajectories. TheH∞ performance guarantees robustness against measurement noise and partial faults.
The numerical simulations results show the effectivity of the proposed method by tracking a predefined
position of the cart and the load while the oscillations are attenuated despite the actuator faults.
Future work will investigate the inclusion of measurement noise and will compare the development
with a full nonlinear controller such as a nonlinear or sliding model controller.

Author Contributions: Conceptualization, F.-R.L.-E. and S.G.-P.; formal analysis, O.S.-E. and C.H.-G.;
methodology, F.-R.L.-E. and G.V.-P.; software O.S.-E. and S.G.-P.; validation G.V.-P. and C.H.-G.; writing—original
draft preparation, F.-R.L.-E. and G.V.-P.; writing—review and editing, S.G.-P. and O.S.-E. All authors have read
and agreed to the published version of the manuscript.

Funding: The Consejo Estatal de Ciencia y Tecnológia del Estado de Chiapas financed this project under the grant
number 1123. Aditional funding was provided from Conacyt, grants Projects 88 and 2759; and Tecnológico
Nacional de México, grants 7641.20-P and 8017.20-P.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.



Math. Comput. Appl. 2020, 25, 48 11 of 12

References

1. Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M.; Schröder, J. Diagnosis and Fault-Tolerant Control;
Springer: Berlin/Heidelberg, Germany, 2006; Volume 691.

2. Martínez-García, C.; Puig, V.; Astorga-Zaragoza, C.M.; Madrigal-Espinosa, G.; Reyes-Reyes, J. Estimation of
Actuator and System Faults Via an Unknown Input Interval Observer for Takagi–Sugeno Systems. Processes
2020, 8, 61. [CrossRef]

3. Witczak, M. Fault diagnosis and fault-tolerant control strategies for non-linear systems. Lect. Notes Electr. Eng.
2014, 266, 375–392.

4. García, C.M.; Puig, V.; Astorga-Zaragoza, C.; Osorio-Gordillo, G. Robust fault estimation based on interval
takagi–sugeno unknown input observer. IFAC-PapersOnLine 2018, 51, 508–514. [CrossRef]

5. Nagy-Kiss, A.M.; Ichalal, D.; Schutz, G.; Ragot, J. Fault tolerant control for uncertain descriptor multi-models
with application to wastewater treatment plant. In Proceedings of the American Control Conference (ACC),
Chicago, IL, USA, 1–3 July 2015; pp. 5718–5725.

6. Wu, Y.; Dong, J. Fault detection for T–S fuzzy systems with partly unmeasurable premise variables.
Fuzzy Sets Syst. 2018, 338, 136–156. [CrossRef]

7. Quintana, D.; Estrada-Manzo, V.; Bernal, M. Real-time parallel distributed compensation of an inverted
pendulum via exact Takagi–Sugeno models. In Proceedings of the 2017 14th International Conference
on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico,
20–22 October 2017; pp. 1–5.

8. López-Estrada, F.R.; Theilliol, D.; Astorga-Zaragoza, C.M.; Ponsart, J.C.; Valencia-Palomo, G.;
Camas-Anzueto, J. Fault diagnosis observer for descriptor Takagi–Sugeno systems. Neurocomputing
2019, 331, 10–17. [CrossRef]

9. Gómez-Peñate, S.; López-Estrada, F.R.; Valencia-Palomo, G.; Rotondo, D.; Enríquez-Zárate, J. Actuator and
sensor fault estimation based on a proportional-integral quasi-LPV observer with inexact scheduling
parameters. IFAC-PapersOnLine 2019, 52, 100–105. [CrossRef]

10. Gómez-Peñate, S.; Valencia-Palomo, G.; López-Estrada, F.R.; Astorga-Zaragoza, C.M.; Osornio-Rios, R.A.;
Santos-Ruiz, I. Sensor fault diagnosis based on a sliding mode and unknown input observer for
Takagi–Sugeno systems with uncertain premise variables. Asian J. Control 2019, 21, 339–353. [CrossRef]

11. Chen, L.; Alwi, H.; Edwards, C. On the synthesis of an integrated active LPV FTC scheme using sliding
modes. Automatica 2019, 110, 108536. [CrossRef]

12. Ohtake, H.; Tanaka, K.; Wang, H.O. Fuzzy modeling via sector nonlinearity concept. Integr. Comput.
Aided Eng. 2003, 10, 333–341. [CrossRef]

13. Rotondo, D. Advances in Gain-Scheduling and Fault Tolerant Control Techniques; Springer: Berlin/Heidelberg,
Germany, 2017.

14. López-Estrada, F.R.; Rotondo, D.; Valencia-Palomo, G. A Review of Convex Approaches for Control,
Observation and Safety of Linear Parameter Varying and Takagi–Sugeno Systems. Processes 2019, 7, 814.
[CrossRef]

15. Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Ann. Rev. Control
2008, 32, 229–252. [CrossRef]

16. Yu, X.; Zhang, Y. Design of passive fault-tolerant flight controller against actuator failures. Chin. J. Aeronaut.
2015, 28, 180–190. [CrossRef]

17. Nasiri, A.; Nguang, S.K.; Swain, A.; Almakhles, D. Passive actuator fault tolerant control for a class of MIMO
nonlinear systems with uncertainties. Int. J. Control 2019, 92, 693–704. [CrossRef]

18. Liu, Z.; Liu, J.; He, W. Robust adaptive fault tolerant control for a linear cascaded ODE-beam system.
Automatica 2018, 98, 42–50. [CrossRef]

19. Nemati, F.; Hamami, S.M.S.; Zemouche, A. A nonlinear observer-based approach to fault detection, isolation
and estimation for satellite formation flight application. Automatica 2019, 107, 474–482. [CrossRef]

20. Guzmán-Rabasa, J.A.; López-Estrada, F.R.; González-Contreras, B.M.; Valencia-Palomo, G.; Chadli, M.;
Perez-Patricio, M. Actuator fault detection and isolation on a quadrotor unmanned aerial vehicle modeled
as a linear parameter-varying system. Meas. Control 2019, 52, 1228–1239. [CrossRef]

21. Kim, Y.S.; Hong, K.S.; Sul, S.K. Anti-sway control of container cranes: Inclinometer, observer, and state
feedback. Int. J. Control Autom. Syst. 2004, 2, 435–449.

http://dx.doi.org/10.3390/pr8010061
http://dx.doi.org/10.1016/j.ifacol.2018.09.624
http://dx.doi.org/10.1016/j.fss.2017.06.006
http://dx.doi.org/10.1016/j.neucom.2018.11.055
http://dx.doi.org/10.1016/j.ifacol.2019.12.355
http://dx.doi.org/10.1002/asjc.1913
http://dx.doi.org/10.1016/j.automatica.2019.108536
http://dx.doi.org/10.3233/ICA-2003-10404
http://dx.doi.org/10.3390/pr7110814
http://dx.doi.org/10.1016/j.arcontrol.2008.03.008
http://dx.doi.org/10.1016/j.cja.2014.12.006
http://dx.doi.org/10.1080/00207179.2017.1367102
http://dx.doi.org/10.1016/j.automatica.2018.09.021
http://dx.doi.org/10.1016/j.automatica.2019.06.007
http://dx.doi.org/10.1177/0020294018824764


Math. Comput. Appl. 2020, 25, 48 12 of 12

22. Shi, K.; Wang, B.; Yang, L.; Jian, S.; Bi, J. Takagi–Sugeno fuzzy generalized predictive control for a class of
nonlinear systems. Nonlinear Dyn. 2017, 89, 169–177. [CrossRef]

23. Almutairi, N.B.; Zribi, M. Sliding mode control of a three-dimensional overhead crane. J. Vib. Control 2009,
15, 1679–1730. [CrossRef]

24. Castillo, I.; Vázquez, C.; Fridman, L. Overhead crane control through LQ singular surface design MATLAB
Toolbox. In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015;
pp. 5847–5852.

25. Maghsoudi, M.J.; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H.; Ahmad, S. An improved input shaping
design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mech. Syst. Signal Process.
2017, 92, 364–378. [CrossRef]

26. Vu, N.T.T.; Thanh, P.T.; Duong, P.X.; Phuoc, N.D. Robust Adaptive Control of 3D Overhead Crane System.
In Adaptive Robust Control Systems; IntechOpen: London, UK, 2017.

27. Abdullahi, A.M.; Mohamed, Z.; Selamat, H.; Pota, H.R.; Abidin, M.Z.; Ismail, F.; Haruna, A.
Adaptive output-based command shaping for sway control of a 3D overhead crane with payload hoisting
and wind disturbance. Mech. Syst. Signal Process. 2018, 98, 157–172. [CrossRef]

28. Chen, W.; Wu, Q.; Tafazzoli, E.; Saif, M. Actuator fault diagnosis using high-order sliding mode differentiator
(HOSMD) and its application to a laboratory 3D crane. IFAC Proc. Vol. 2008, 41, 4809–4814. [CrossRef]

29. Tan, C.P.; Edwards, C. A robust sensor fault tolerant control scheme implemented on a crane. Asian J. Control
2007, 9, 340–344. [CrossRef]

30. Chen, W.; Saif, M. Actuator fault diagnosis for a class of nonlinear systems and its application to a laboratory
3D crane. Automatica 2011, 47, 1435–1442. [CrossRef]

31. Kiriakidis, K. Robust stabilization of the Takagi–Sugeno fuzzy model via bilinear matrix inequalities.
IEEE Trans. Fuzzy Syst. 2001, 9, 269–277. [CrossRef]

32. Adeli, M.; Zarabadipour, H.; Zarabadi, S.H.; Shoorehdeli, M.A. Anti-swing control for
a double-pendulum-type overhead crane via parallel distributed fuzzy LQR controller combined with
genetic fuzzy rule set selection. In Proceedings of the IEEE International Conference on Control System,
Computing and Engineering, Penang, Malaysia, 25–27 November 2011; pp. 306–311.

33. Hilhorst, G.; Pipeleers, G.; Michiels, W.; Oliveira, R.C.; Peres, P.L.D.; Swevers, J. Reduced-order H2/H∞

control of discrete-time LPV systems with experimental validation on an overhead crane test setup.
In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 125–130.

34. Zhao, L.; Li, L. Robust stabilization of T–S fuzzy discrete systems with actuator saturation via PDC and
non-PDC law. Neurocomputing 2015, 168, 418–426. [CrossRef]

35. Rabaoui, B.; Rodrigues, M.; Hamdi, H.; BenHadj Braiek, N. A model reference tracking based on an active
fault tolerant control for LPV systems. Int. J. Adapt. Control Signal Process. 2018, 32, 839–857. [CrossRef]

36. Morato, M.M.; Sename, O.; Dugard, L. LPV-MPC Fault Tolerant Control of Automotive Suspension Dampers.
IFAC-PapersOnLine 2018, 51, 31–36. [CrossRef]
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