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Abstract: Small-scale photovoltaic (PV) systems are essential for the local energy supply. The most
commonly known PV cell is configured as a large-area p–n junction made from silicon, but PV
systems today include PV cells of various manufactures and origins. The dependence relationship
between current and voltage is nonlinear, known as the current–voltage characteristic. The values
of the characteristic equation’s parameters define the working regime of the PV cell. In the present
work, the parameter values are iteratively obtained by nonlinear regression for an explicit model.
The acceleration of the convergence of these values is studied for an approximation simplifying the
iterative calculation in the case of perpendicular offsets. The new estimations of parameters allow for
a much faster estimate of the maximum power point of the PV system.
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1. Introduction

Unlike heat, electricity is an organized form of energy; thus, the storage of energy in
the form of electricity has a higher potential for exploitation compared to many other forms
of storage, including in the form of chemical energy [1]. When it flows through a circuit,
electricity produces heat and other forms of energy. This energy transfer is accompanied by
an increase in entropy, as the electrical energy is transformed into other forms of energy,
which are less organized and more disordered [2]. At the same time, the transportation
of electrical energy has seen major advances [3], with global power grids emerging as the
dominant form of energy supply today.

The ensemble of global power networks is a complex one, but it benefits from a number
of major advantages, such as the working regime of consumers (industrial and domestic)
being regularized by the diurnal cycle [4]. The diurnal cycle is also regulated by its smallest
entity, part of an electricity production network, i.e., photovoltaics (PV), which are referred
to in this work, by virtue of their light source [5].

One of the advantages of the large-scale proliferation of PV from high-power producers
to consumers—which, through the use of photovoltaic panel systems—are also small
producers, is that it brings the source closer to the consumer, thus eliminating at least some
of the transport losses [6–8]. The ideal is, of course, for each of these consumers to be able to
cover their energy needs from their own sources, and photovoltaic cell systems represent the
most appropriate solution , since, in addition to the other arguments, they offer very good
coverage of the working regime of the consumers in the immediate vicinity, i.e., during the
day. However, this is not (yet) possible for all instances; thus, the integration of small-scale
electricity production systems into global electricity networks is a priority [9–11].

One of the problems to be addressed regarding the integration of PV cells in complex
systems and networks is the estimation of their working regime—in other words, their
current vs. voltage response, also known as their characteristic equation [12–14].
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From the start, it should be stated that there are many types of PV units [15–17], and
there is not one model that is considered a universal solution. Even if there were only one
type of PV unit, the model would probably still not be universal. There are (small) intrinsic
variations in their operating parameters due to the technological process, quality (purity),
and specificity (microcomposition) of the materials used [18–21].

An analytical solution for the current flow through a diode [22] and PV [23] may
serve to derive accurate expressions for solar cell fill factors [24]. Even so, there are
a number of models that approximate the behavior of PV cells based on the behavior
of an idealized system consisting of a series of active and passive components (see the
Single Diode, Double Diode and PV Generators Models section in [25] and references therein).
Unfortunately, this model is not at all simple; it has an analytical expression, but the function
that expresses the value of voltage as a function of current is accessible only by numerical
means, only providing the value of the available current and requiring a series of repeated
numerical evaluations (the same can be said of the function that expresses the value of
current as a function of voltage). The classic approach involves the use of the Lambert
function, providing voltage as a function of current (or vice versa), which is a mathematical
formalization of the fact that the function expressing voltage as a function of current (or
vice versa) requires a series of successive approximations, which are formalized by the
same general framework defined by the equation and the associated function proposed
by Lambert, i.e., z = W(z)exp(W(z)) (for further details, see the Lambert Function section
in [25,26]). An alternate approach is to use explicit equations approximating the voltage
vs. current (or vice versa) dependence (see the Explicit equations section in [25]). Either
way, the associated problem in this context is the correct and fast identification of model
parameters—parameters that are usually constructional (depending on the construction of
the PV cell) and which may also depend on the working regime (temperature and solar
radiation spectrum).

The classic method adopted by the implementations in use is to identify the regression
parameters using a construction that fixes the experimental error on only one of the vari-
ables, namely that for which the value of the nonlinear function is expressed and which
is positioned on the vertical axis in the representation (vertical offsets). The alternative
route considers the offsets to be perpendicular, assuming that both paired observations are
affected by the error [25,27,28].

With respect to the classical approaches, particle swarm optimization is a very well-
established and powerful population-based metaheuristic for parameter estimation of PV
cells and modules; a series of studies have addressed this issue in depth [29–34].

In [25], the full approach of perpendicular offsets was employed to identify the param-
eters for two nonlinear regressions. The perpendicular offsets approach achieves correct
physical meaning by minimizing experimental errors of both a voltmeter and ammeter
against the classical vertical offsets approach, which minimizes only one series of errors,
the others being considered to correspond to true values. However, the use of perpen-
dicular offsets instead of vertical offsets creates another issue: the problem of parameter
identification is not a simple problem of nonlinear optimization anymore but an embedded
nonlinear optimization inside another nonlinear optimization (see Algorithms 1 to 3 in [25]).
In this case, a simplified approach is proposed, which accelerates the convergence to the
optimum values of the parameters. For the sake of comparison, the same data and the same
models are used. Two additional datasets reported in the literature were also subjected to
the same analysis here.

2. Materials and Methods

A data series used in this study are presented in Table 1 of [25] representing a series of
current vs. voltage paired measurements taken for a PV cell (Figure 1).
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Figure 1. PV cell representation (I and V are paired parameters).

In a plot of current (I) as a univariate function (generically written as y = f (x; c), ex-
plicitly expressing some general parameter’s (c) current as a function of voltage) of voltage
(V), vertical offsets have units of amperes (A, or multiples/submultiples thereof, as the case
may be), while horizontal offsets have units of volts (V, or multiples/submultiples thereof,
as the case may be). One is translated into another by resistance (Ω) and/or conductance
(Ω−1). Using the same units (either A or V), oblique offsets also have meaning.

The tangent is expressed as Equation (1).

y = f (zi; c) + (x− zi) f ′(zi; c), (1)

Equation (1) is the equation of the tangent to y = f (x; c) in x = zi (zi is the ordinate
position of the contact point between the tangent and the curve), and f ′(x; c) is the function
derivative ( f ′(x; c) = d f (x; c)/dx) (see Figure 2).

The directions normal to the y = f (x) curve (Figure 2) is expressed as Equation (2).

 

y = f(x; c) 
(xi, yi) 

slope: df(x)/dx 
slope: ‒ (df(x)/dx)−1 

Figure 2. Tangent and normal directions to the function.

y = f (zi; c)− (x− zi)/ f ′(zi; c) (2)

The contact point is (zi, f (zi; c)), and the normal direction intersects the observation
point (xi, yi), so (using Equation (2)):

yi = f (zi; c)− (xi − zi)/ f ′(zi; c) (3)

The numeric value of zi can be obtained from Equation (3) by root finding. With the
value of zi, the value of the perpendicular offset di is given in Equation (4).

d2
i = (zi − xi)

2 + ( f (zi; c)− yi)
2 (4)

Alternately to the root finding in Equation (3), in most cases (for smooth variations), it
is enough to find the zi for which di is minimum; this is the exact approach involving the
use of perpendicular offsets used in [25].

For each observed pair ((xi, yi) from a set of n), the vertical offset is |yi − f (xi; c)|,
while the horizontal offset is |xi − f−1(yi; c)|, such that the height (hi) of a triangle with
these two offsets as legs is expressed by Equation (5).

h2
i =

( f (xi; c)− yi)
2( f−1(yi; c)− xi)

2

( f (xi; c)− yi)2 + ( f−1(yi; c)− xi)2 (5)

This height (hi, Equation (5)) approximates (hi ≈ di, Figure 3) the length of the
perpendicular offset (di, Equation (4).



Math. Comput. Appl. 2024, 29, 4 4 of 13

In the proposed approach, I(V) (or V(I)) is expressed as a nonlinear function of the
parameters (c). Afterwards, these c values (c1, c2, . . . , cn) can be determined by optimizing
an objective function such as the sum of heights squares.

 

y = f(x; c) 

(xi, yi) 

x = xi (zi, f(zi; c)) 

y = yi 

Figure 3. An oblique offset—minimal when normal (perpendicular).

It should be noted that when the inverse of the function ( f−1 in Equation (5)) is
available and explicit, the use of Equation (5) does not require root finding (solving of
Equation (3)) or minimization (of Equation (4)). This is the main advantage of the proposed
method, and the hope is that it will dramatically reduce the number of iterations until
optimum values (accelerated convergence).

Let us set
g(c) = h2

i , (6)

with h2
i from Equation (5).

If MINIMIZE(g, c) solves an optimization problem where g is the objective function to
be minimized and c represents the unknown coefficients (to be found) on which the value
of the objective function depends, then the iteration to the optimal values is as follows:

• c← optimum values from minimizing the sums of the residuals with classical vertical
offsets (∑m

i=1(yi − f (xi; c))2);
• MINIMIZE(g, c).

Optimization works by finding the adjustable parameters (c) for which g(c) is minimum.
When compared with the previous approach (Algorithms 1 to 3 in [25]), in this case, the

optimization problem is considerably simplified; an inner-loop optimization is no longer
required. For the sake of comparison, the same software environment as that reported
in [25] was used for implementation.

Two cases were investigated as in [25] here also (Equation (7)):

f (x; c) =

{
f1(x; c), if U = U(I)
f2(x; c), if I = I(U)

(7)

with:

f1(x; c) =
−c1 + c2x− c3x2

−c4 + x
(8)

and
f2(x; c) = c1 − exp(−c2 + c3ln(x)) (9)

In Equations (8) and (9), the signs preceding the coefficients were conveniently chosen.
The number of parameters (m) is 4 for f1 and 3 for f2 (see Equations (8) and (9)).

The coefficients of f1 are derived by assigning U to the vertical axis (y← U) and I to
the horizontal axis (x ← I), while the coefficients of f2 are derived by assigning I to the
vertical axis (y← I) and U to the horizontal axis (x ← U).

3. Case Studies

Experimental data provided in [25] were used. For convenience, the dataset was
designated as Pink, and the (U(mV), I(mA)) paired measurements were as follows:
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• Pink (n = 17): (1132, 1.147), (1110, 1.187), (1080, 1.257), (1038, 1.312), (1010, 1.362), (973,
1.406), (930, 1.480), (900, 1.493), (845, 1.556), (772, 1.609), (703, 1.672), (593, 1.742), (493,
1.776), (405, 1.785), (332, 1.812), (254, 1.821), and (163, 1.834).

As in [25], the models ( f1 for V = V(I) and f2 for I = I(V)) were applied to the Pink
PV cell data.

Experimental data were extracted from [35] regarding current–voltage characteristics
(Figure 5 in [35]) of two PV cells (designated as Blue and Gray). The (U(V), I(A)) paired
measurements were as follows:

• Blue (n = 8): (0.1019, 0.1011), (0.1997, 0.1015), (0.3006, 0.1007), (0.3994, 0.0974), (0.4680,
0.0830), (0.4992, 0.0597), (0.5169, 0.0395), and (0.5294, 0.0189);

• Gray (n = 13): (0.1007, 0.5565), (0.1503, 0.5546), (0.2008, 0.5498), (0.2503, 0.5413), (0.3009,
0.5318), (0.3266, 0.5242), (0.3504, 0.5137), (0.3742, 0.4985), (0.3990, 0.4671), (0.4219,
0.4253), (0.4505, 0.3482), (0.4743, 0.2579), (0.4981, and 0.1504).

Model f2 for I = I(V) was applied to the Blue and Gray PV cell data.

4. Results and Discussion
4.1. Pink Dataset

With the modified forms of the nonlinear Equations (8) and (9), all coefficients are
positive. The classical vertical offsets approach using any modeling software may produce
the initial estimates of the coefficients. FindGraph [36] was used here. Table 1 contains
these estimates.

Table 1. Initial parameter values.

Function f1 f2

Parameters

c1 = 3346.61, c1 = 1.82577
c2 = 2688.48, c2 = 22.3764,
c3 = 475.487, c3 = 3.12554,
c4 = 1.92715

Statistics

m = 4 m = 3
r2

adj = 0.9977, r2
adj = 0.9987,

F = 2530, F = 9543,
RSS⊥ = 0.0013137 RSS⊥ = 0.0011110

RSS⊥ is the residual sum of squares in the perpendicular direction (see Figure 3).

Very good agreement between the data and the model was obtained from the begin-
ning (see Statistics in Table 1). Less than 1% of the total variation was not been explained
by either model (1− r2

adj is 2.3‰ for f1 and 1.3‰ for f2). The model provided by f2 has a
much higher statistical significance than the model provided by f1 (a simple comparison of
F values suffices as proof); the model provided by f1 is also more robust (it has only three
degrees of freedom, i.e., its parameters).

The value of RSS⊥ is a special quantity and is available only from perpendicular
offsets representing their squared sum. As the values show (see RSS⊥ in Table 1), the RSS⊥
quantity is independent of the selection of the axis in the plot. It is worth remembering
(see Equation (7)) that the coefficients of f1 were derived by assigning U to the vertical axis
(y← U) and I to the horizontal axis (x ← I), while the coefficients of f2 were derived by
assigning I to the vertical axis (y← I) and U to the horizontal axis (x ← U). Independent
of the assignment, the perpendicular offsets have the same meanings, and their values
enable comparison between the models. Again, f2 is a better choice for modeling the I vs.
U characteristic (the unexplained variance (RSS⊥) is smaller; see Table 1).

With a powerful nonlinear optimization library, such as (from personal experience)
Mathcad [37], Mathematica [38], or Matlab [39], or even open libraries (AlgLib in [25]), only
the statement of the problem in the formalism of the library must be given. As reported in
the Materials and Methods section, the algorithm is simple. It involves estimating the initial
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values of the parameters (C) from the classical Gaussian vertical offsets of the selected
model (Equation (8) or (9)) of nonlinear regression, followed by running of minimization for
Σn

i=1h2
i . The convergence is fast. The optimum values of the parameters for f1 are obtained

according the values presented in Table 1 after 1,307,759 iterations, which is, compared
with the exact method of perpendicular offsets (see §3.2. The Numerical Results in [25]), a
significant gain in speed. The convergence is accelerated even faster in the case of f2; only
958 iterations were necessary, making it roughly 1,000,000 times faster.

Table 2 presents the optimized values of the parameters.

Table 2. Final parameter values.

Function f1 f2

Parameters

c1 = 3346.60, c1 = 1.82568
c2 = 2688.50, c2 = 22.3764,
c3 = 475.444, c3 = 3.12553,
c4 = 1.92679

Statistics

m = 4 m = 3
r2

adj = 0.9977, r2
adj = 0.9987,

F = 2529, F = 9543,
RSS⊥ = 0.0013087 RSS⊥ = 0.0011110

The final values of the coefficients of f1 are nearly identical to the initial values pro-
vided by the vertical offsets. The evolution of the parameters is depicted, for convenience,
in Figures 4–7.

3346.600

3346.605

3346.610

0 200000 400000 600000 800000 1000000 1200000 1400000

 iterations 

 offsets 

c1 

| offsets 

Figure 4. The evolution of coefficient c1 of Equation (8) from vertical to perpendicular offset optimum
points (Σ17

i=1h2
i to minimum) for the Pink dataset.

2688.48

2688.49

2688.50
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c2 
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Figure 5. The evolution of coefficient c2 of Equation (8) from vertical to perpendicular offset optimum
points (Σ17

i=1h2
i to minimum) for the Pink dataset.
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Figure 6. The evolution of coefficient c3 of Equation (8) from vertical to perpendicular offset optimum
points (Σ17

i=1h2
i to minimum) for the Pink dataset.
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Figure 7. The evolution of coefficient c4 of Equation (8) from vertical to perpendicular offset optimum
points (Σ17

i=1h2
i to minimum) for the Pink dataset.

Figures 4–7 show that coefficients c1 to c4 exhibited small changes. The reason for
this behavior is that the perpendicular offsets being nearly as long as the vertical ones
and the length of the horizontal offset being much longer in comparison. Considering
the meaning of a horizontal (voltage measurement errors), vertical (current measurement
errors), and perpendicular (combined measurement errors) offset, we can assume that
experimental error produced as a result of the use of a voltmeter was much smaller than
the experimental error produced by the use of an ammeter. For convenience, the values
of the horizontal and vertical offsets for the optimum values of the coefficients are easily
extracted from the values presented in Table 3.

Table 3. Evaluations at the optimum point for f1.

n y f1(x) x f−1
1 (y)

1 1.147 1.159 1132 1139
2 1.187 1.196 1110 1115
3 1.257 1.245 1080 1073
4 1.312 1.311 1038 1037
5 1.362 1.353 1010 1004
6 1.406 1.405 973 972
7 1.48 1.462 930 915
8 1.493 1.499 900 905
9 1.556 1.559 845 848
10 1.609 1.626 772 792
11 1.672 1.676 703 709
12 1.742 1.734 593 574
13 1.776 1.77 493 474
14 1.785 1.794 405 441
15 1.812 1.809 332 314
16 1.821 1.822 254 259
17 1.834 1.834 163 162

MSE− = 190; MSE| = 7.75 × 10−5; MSE⊥ = 7.75× 10−5.



Math. Comput. Appl. 2024, 29, 4 8 of 13

The final values of the coefficients of f2 are nearly identical to the initial values
provided by vertical offsets. The evolution of the parameters is depicted, for convenience,
in Figures 8–10.

1.82568

1.82570

1.82572

1.82574

1.82576

1.82578
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 iterations 

 offsets 

c1 

| offsets 

Figure 8. The evolution of coefficient c1 of Equation (9) from vertical to perpendicular offset optimum
points (Σ17

i=1h2
i to minimum) for the Pink dataset.
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Figure 9. The evolution of coefficient c2 of Equation (9) from vertical to perpendicular offset optimum
points (Σ17

i=1h2
i to minimum) for the Pink dataset.
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Figure 10. The evolution of coefficient c3 of Equation (9) from vertical to perpendicular offset optimum
points (Σ17

i=1h2
i to minimum) for the Pink dataset.

Figures 8–10 show that only the c1 coefficient exhibited visible changes. The reason
for this behavior is that the perpendicular offsets are nearly as long as the vertical ones,
the length of the horizontal offset being much longer in comparison. For convenience,
the values of the horizontal and vertical offsets for the optimum values of the coefficients
are easily extracted from the values presented in Table 4.

Open-circuit voltage (Voc, which is V = V(I) for I → 0), short-circuit intensity (Isc,
which is I = I(V) for V → 0), internal resistance (ri), maximum power point (Pmpp, which
is max(V · I)), the current intensity (Impp ), and the electric potential (voltage) (Vxp) at
maximum power are key parameters for accurate estimation of the working regime of a PV
cell and are directly calculable from the final parameter values of the model.

For the case considered here, the changes in the values of the PV parameters are small
(Table 5).
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Table 4. Evaluations at optimum point for f2.

n x f2(y) y f−1
2 (x)

1 1132 1136 1.147 1.154
2 1110 1114 1.187 1.194
3 1080 1073 1.257 1.246
4 1038 1039 1.312 1.314
5 1010 1006 1.362 1.356
6 973 974 1.406 1.407
7 930 915 1.48 1.462
8 900 904 1.493 1.498
9 845 846 1.556 1.557
10 772 788 1.609 1.623
11 703 706 1.672 1.674
12 593 581 1.742 1.737
13 493 492 1.776 1.776
14 405 462 1.785 1.799
15 332 326 1.812 1.811
16 254 231 1.821 1.819
17 163 278 1.834 1.824

MSE− = 1046; MSE| = 6.68× 10−5; MSE⊥ = 6.68× 10−5.

Table 5. Changes in the estimated values of the PV parameters.

Function f1 f2

Initial
parameters

Isc = 1.85030 mA, Isc = 1.82568 mA
Voc = 1736.56 mV, Voc = 1559.00 mV,

Impp = 1.38706 mA, Impp = 1.38315 mA,
Vmpp = 985.638 mV, Vmpp = 990.666 mV,
Pmpp = 1.36714 mW Pmpp = 1.37024 mW

Final
parameters

Isc = 1.85009 mA, Isc = 1.82568 mA
Voc = 1736.88 mV, Voc = 1559.04 mV,

Impp = 1.38726 mA, Impp = 1.38315 mA,
Vmpp = 985.930 mV, Vmpp = 990.688 mV,
Pmpp = 1.36774 mW Pmpp = 1.37027 mW

Isc = f−1
1 (0; c) or f2(0; c); Voc = f1(0; c) or f−1

2 (0; c); (x f1(x; c))|′x=Impp
= 0; Vmpp = f1(Impp; c); Pmpp =

Impp f1(Impp; c); (x f2(x; c))|′x=Umpp
= 0; Impp = f2(Vmpp; c); Pmpp = Vmpp f2(Vmpp; c).

The model of I = I(V) with f2 provided the highest association between observed
and calculated values (F = 9543 in Table 2) and the fastest convergence when changed from
vertical to perpendicular offsets.

4.2. Blue and Gray Datasets

Results are given in Table 6.

Table 6. Changes in the estimated values of the PV parameters for Blue and Gray PV cells.

Parameter | Offsets (Initial) ⊥ Offsets (Final)
Blue PV Gray PV Blue PV Gray PV

c1 0.10100 0.55048 0.10101 0.55076
c2 −5.11120 −3.89420 −5.11113 −3.79040
c3 11.9658 6.89320 11.9659 6.76415

Isc [A] 0.10100 0.55048 0.10101 0.55076
Voc [V] 0.53862 0.52124 0.53863 0.52281
Ixp [A] 0.09321 0.48074 0.09322 0.47982
Vxp [V] 0.43479 0.38626 0.43480 0.38614
Pxp [W] 0.04053 0.18569 0.04053 0.18528
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The convergence from vertical offsets to perpendicular offsets achieved using the
proposed approach (Equation (5)) was fast. It required 23,470 evaluations of ∑8

i=1 h2
i

for the Blue cell (Figures 11–13) and 1,313,355 evaluations of ∑13
i=1 h2

i for the Gray cell
(Figures 14–16).
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c1 
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Figure 11. The evolution of coefficient c1 of Equation (9) from vertical to perpendicular offset optimum
points (Σ8

i=1h2
i to minimum) for the Blue dataset.
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Figure 12. The evolution of coefficient c2 of Equation (9) from vertical to perpendicular offset optimum
points (Σ8

i=1h2
i to minimum) for the Blue dataset.
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Figure 13. The evolution of coefficient c3 of Equation (9) from vertical to perpendicular offset optimum
points (Σ8

i=1h2
i to minimum) for the Blue dataset.
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Figure 14. The evolution of coefficient c1 of Equation (9) from vertical to perpendicular offset optimum
points (Σ13

i=1h2
i to minimum) for the Gray dataset.
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Figure 15. The evolution of coefficient c2 of Equation (9) from vertical to perpendicular offset optimum
points (Σ13

i=1h2
i to minimum) for the Gray dataset.
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Figure 16. The evolution of coefficient c3 of Equation (9) from vertical to perpendicular offset optimum
points (Σ13

i=1h2
i to minimum) for the Gray dataset.

As Figures 4–16 reveal, similar behavior is reflected by all obtained results, and the
changes in the parameters of the PV cells due to shifting from vertical to perpendicular
offsets are small. Considering the amount of calculation required, the gain may even be
seen as insignificant. The gain in approximating the perpendicular offsets with the offset
triangle heights (Equation (5)) is considerable—in one case, the convergence was 2000 faster,
while in another, it was 2,000,000 times faster. This speedup is mainly due to the elimination
of the inner non-linear optimization loop reported in [25].

Using h2
i (Equation (5)) instead of d2

i (Equation (4)) is yet another approximation in
finding the optimal values of the parameters (c) that provide the best fit of the selected
model ( f (x; c)) to the experimental data ((xi, yi), i = 1, 2, . . . , n). However, the g(c) objective
function is the sum of residuals with the same direction as the perpendicular offsets, and
its maximum is the sum of the squared perpendicular offsets. If the values proposed by
the approximated perpendicular offsets still do not fully meet accuracy requirements, then
the initial values for the exact approach of perpendicular offsets can definitely be used as a
new guess, thus accelerating the convergence of the model and PV cell parameters.

There is no uncertainty in the output—only in the input. Both the Levenberg–Marquardt
algorithm (used for backend nonlinear optimization) and the proposed implementation
are fully deterministic. Each independent run on the same data and the same model leads
to exactly the same results. However, using stochastic assignments in the software imple-
mentation may improve the convergence in certain cases, although likely not significantly,
on average.

5. Conclusions and Forthcoming Work

The perpendicular offsets approach is suited for sets of paired data. Nonlinear regres-
sion with perpendicular offsets may take a considerable amount of iterations to obtain
optimal values of the parameters. Convergence is significantly accelerated when approxi-
mate perpendicular offsets are calculated instead of exact offsets. The proposed calculation
approach may be suited for embedding into physical devices for industrial applications.
Other calculation alternatives are still open to be explored, including calculation based on
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maximization of likelihood. However, in the case considered here, mathematical optimiza-
tion performed very well.
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