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Abstract: Risk and uncertainty play a vital role in almost every significant economic decision, and
an individual’s propensity to make riskier decisions also depends on various circumstances. This
article aims to investigate the effects of social and economic covariates on an individual’s willingness
to take general risks and extends the scope of existing works by using quantitative measures of
risk-taking from the GPS and Gallup datasets (in addition to the qualitative measures used in the
literature). Based on the available observed risk-taking data for one year, this article proposes a
semi-supervised machine learning-based approach that can efficiently predict the observed risk index
for those countries/individuals for years when the observed risk-taking index was not collected. We
find that linear models are insufficient to capture certain patterns among risk-taking factors, and
non-linear models, such as random forest regression, can obtain better root mean squared values
than those reported in past literature. In addition to finding factors that agree with past studies, we
also find that subjective well-being influences risk-taking behavior.

Keywords: sociodemographic factors; financial risk preference; ordinary least-square; supervised
machine learning; social andeconomic covariates; general risks

1. Introduction

Individuals, as influential social and economic agents, shape economic and market
dynamics through their decisions. Consequently, gaining insights into the factors influenc-
ing these decisions is crucial for predicting market changes. A pivotal factor complicating
market predictions is individuals’ varying risk preferences, particularly evident during
uncertain scenarios such as the housing bubble crisis [1].

The intertwined relationship between risk, uncertainty, and economic decisions is
well-established [2]. However, the degree of willingness to take risks varies among individ-
uals, influenced by both dynamic factors such as context (social, interpersonal, etc.) and
temporally static factors such as Intelligence Quotient (IQ) [3,4].

Presently, two methods are employed to collect data on individuals’ risk preferences:
stated risk-taking preferences and observed risk-taking preferences (ORP). ORP, favored
for providing objective insights, analyzes behavioral displays across various economic
activities such as stock market transactions, gambling, insurance policy purchases, medical
risk, etc. The Global Preference Survey (GPS) 2012 dataset, for instance, obtains ORP
through quantitative and qualitative questions [5].

While existing research mainly focuses on qualitative questions and specific countries,
the GPS dataset offers a unique opportunity to explore cultural and subjective well-being
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influences on risk preferences across countries. This paper pioneers the investigation of
common determinants of risk-taking preferences across multiple countries, utilizing GPS
data from a subset of Gallup World Poll respondents for the year 2012.

The research introduces a novel approach using machine learning to predict ORP
values for the entire Gallup dataset, extending beyond 2012. Traditional methods, often
limited to linear regression, fail to capture the potential non-linear patterns in socioeconomic
variables influencing risk tolerance. By incorporating machine learning, this study aims to
unveil these non-linear patterns and identify previously overlooked independent variables
relevant to individual risk tolerance.

An overview of our approach is provided in Figures 1 and 2. Figure 1 is the overview
of the predictive regression scheme, which shows that labeled data (e.g., merged data of
D1 and D2) is used in the base learner for training. Then unlabeled data (D3) is integrated
into the model using the semi-supervised model to pair unlabeled data with predicted
ORP. Figure 2 shows the implementation of the regression module on datasets grouped by
different sets of independent variables: (i) a dataset of potential covariates by surveying past
literature or based on economic theory (and hence is considered to be the domain expert
feature set) and is denoted by DExpert, (ii) a dataset consisting of all usable features with
no or few missing values from the original dataset, denoted by DPossible, and finally (iii) a
third, where the features were chosen by the computational model (e.g., the computational
expert) and are denoted by DComEx. As shown in Figure 2, DPossible leads to DComEx.

Figure 1. An overview of the research methodology used to predict ORP values for the Gallup data.

Our findings show that the independent variables are indeed non-linearly related
to ORP and that subjective well-being variables such as health status, optimistic index,
corruption, and social network should be considered for studying individual risk tolerance.
This underscores the need for further investigation into these variables within social and
causal settings.
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Figure 2. An overview of the data usage and the contributions of this research work.

Our contributions can be summarized as follows:

• Using semi-supervised learning, we expanded the prediction of ORP (collected in
2012) to the Gallup dataset, covering the years 2006–2018.

– We further propose an evaluation step, in addition to traditional evaluation
techniques, to ensure the validity of the expansion.

• By integrating a non-linear regression model with the commonly used Ordinary Least
Squares (OLS) model, our research opens avenues for uncovering non-linear patterns
in predicting general willingness to take risks.

• Our study identifies four factors—health status, optimistic index, social network, and
corruption—that were previously overlooked but emerge as potentially significant
contributors to determining individual risk tolerance.

The rest of the paper is organized as follows: Section 2 shows the literature review,
Section 3 provides detailed methodology with different subsections for semi-supervised
methods, Section 4 presents analytical results, and Section 5 provides the conclusion.

2. Literature Review

The concept of risk-taking preferences is investigated from many different perspectives,
including financial, personal decision-making, psychological, and social activities, and
many others. Several research studies have investigated the factors that may explain the
willingness to take general and financial risks. These studies mostly used large individual
datasets of individual risk preferences and their sociodemographic, economic behavior,
and self-reported data on risk preference.

Using German socioeconomic panel (SOEP) data, ref. [6] incorporated panel fixed
effect regression and the ordered logit model. They found that an individual’s willingness
to take risks changes when changes in family structure (separation of parents, birth of
child, marriage, etc.) occur. They analyzed that positive changes in family structure (i.e.,
birth, marriage) decrease the individuals’ risk tolerance. In contrast, negative changes (i.e.,
separation of parents, providing long-term care) result in a rise in risk tolerance. Ref. [7]
found that intergenerational transmission of willingness to take risks, in general, is strong
between parent and child when that child has fewer siblings and is first born, using SOEP
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data and OLS regression. They also state that the gender of the child does not matter in the
case of intergenerational transmission of risk preference. Ref. [8] found that socialization is
important in the process of intergenerational risk transmission, using the same dataset and
data analysis model. Ref. [2] used SOEP data together with data from a field experiment
on 450 subjects and found that gender, age, height, and parental background have a
significant economic impact on the respondent’s willingness to take a general risk using
interval regression techniques. Ref. [1] showed that respondents’ outlook on favorable or
unfavorable outcomes of risky situations affects their general willingness to take a risk,
and the idea of risk is strongly linked with the individual’s optimism and a stable facet of
personality. Here, they used the data from 348 participants and OLS regression.

Ref. [9] computed the Coefficient of Relative Risk Aversion (CRRA), utilizing parame-
ters collected from 6000 observations taken from data pertaining to the US stock market.
This estimation involved using a simulation technique with 100 replications. Focusing
on insurance demand or consumption, ref. [10] conducted a review of empirical works
of literature in order to gain a better understanding of Relative Risk Aversion (RRA) in
two primary areas: first, the measurement and magnitude of risk aversion and second, the
sociodemographic variables that are associated with risk aversion.

According to [11], the stated general risk preference or willingness to take general risk
is collected by asking the respondents how willing they are to take a risk. They indicated
that emotional expressions act as cues to the individual’s willingness to take risks in five
different risk domains. These risk domains are as follows: ethical, financial, health and
safety, recreational, and social. Researchers have worked on understanding what factors
influence these risk-taking attitudes and found that various social, psychological, and
economic factors play a significant role in determining risk-taking behavior. This research
focuses mostly on the social, psychological, and economic aspects of general risk-taking
assessment. Ref. [5] found that female individuals are more risk-averse than male individu-
als in the case of both financial and general risk-taking. They also showed that there exists
a negative correlation between age and the willingness to take general risks and that the
risk-taking concept is strongly associated with patience, using the global preference survey
(GPS) data and OLS regression analysis. Ref. [12] showed that general risk preference
exhibits large variation across and within the country using GPS data. They analyzed
that this variation is due to both individual-specific characteristics (gender, age, cognitive
skills, patience, trust, etc.) and collective characteristics (cultural and biogeographical as-
pects) using regression analysis with OLS estimators. In the case of financial risk tolerance,
the study of [13] suggests that respondent’s characteristics (gender, age, marital status),
personality (economic expectation), and socioeconomic background (occupational status,
income, education, financial knowledge) can be used as a determinant of individual’s risk
preference. Using a sample of 1075 university faculty and staff, descriptive discriminant
analysis, univariate test statistics, and F test for data analysis, they found that male, older,
married, and professional respondents with a higher level of income, education, finan-
cial knowledge, and economic expectation were more risk-tolerant. Ref. [14] found that,
although race and ethnicity affect financial risk preference, it is conditional upon other vari-
ables, such as financial education. They used a survey of consumer finances (SCF) datasets,
incorporated a cumulative logit model for data analysis, and concluded that financial risk
preference varies among different groups. Ref. [15] investigated the relationship between
self-reported data on the financial risk-taking willingness and social and state “cushioning”
using Luxembourg wealth study database. This database consists of large-scale household
data for three countries with different social-safety support networks. They showed that
individual willingness to take financial risks is highly influenced by state cushioning, using
stepwise multiple linear regression.

These studies on general and financial risk preference mostly kept their investigation
limited to analyzing the association and correlation between the sociodemographic and
economic data and using the self-reported (general or financial) willingness to take the
risk. To the authors’ best knowledge, no study has used the techniques of semi-supervision
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machine learning to predict either individuals stated or observed willingness to take
general risks. This study combined both linear regression and other techniques of machine
learning (semi-supervised method) to explore the relationship between social and economic
covariates of ORP. Another contribution of this article over related studies, which uses
similar data, is that based on available risk-taking data, we are proposing an approach that
can efficiently predict ORP for those countries/individuals with missing ORP. Moreover,
unlike previous investigations, we attempt to find features that better explain ORP based
on an algorithm.

3. Methodology
3.1. Overview of the Proposed Methodology

This study’s variable of interest or target variable is the observed willingness to take
general risks or the Observed Risk-taking Preference (ORP) from the Global Preference
Survey (GPS) dataset. The Appendix A explains how the risk preference index is calculated
in the GPS data. Due to the advantages of studying risk preference using an objective,
continuous target variable (such as ORP), in this paper we focus on (i) predicting ORP to the
Gallup dataset, (ii) investigating non-linear patterns, and (iii) finding/identifying more pre-
dictors of ORP. As such, these objectives guide this paper’s methodology, experimentation
and designs.

Step 1: Merging the GPS and Gallup Datasets: The Global Preference Survey (GPS)
dataset has data from 79 countries for the year 2012, along with the variable of interest (e.g.,
ORP), whereas the Gallup dataset contains data of the same 79 countries over a period
covering from 2006 and 2018. Since the GPS data collection was an extension of the general
Gallup data collection, both datasets share a set of shared independent variables. Thus, the
two datasets were merged using the Gallup id as the primary key. The resulting dataset
has 2671 independent variables with ORP values for 2012 only, and missing ORP values
for 2006–2011 and 2013–2018. In computation, predicting missing target variable values
falls under semi-supervised machine learning (ML), leading to the development of the
predictive regression scheme (Figure 1) described in Step 2.

Step 2: Semi-Supervised Learning: An algorithm that learns from both labeled and
unlabeled data is known as semi-supervised learning [16]. In this case, any data point with
a known ORP value is considered labeled data, while any data point with a missing ORP
value is referred to as unlabeled. Generally, the semi-supervised predictive models learn to
predict ORP values for unlabeled data points using information gained from a set of labeled
data points. This usually consists of initial training an ML-supervised model, called a base
learner, on the labeled data points. The unlabeled data points are then incorporated into
the model iteratively, as described in Section 3.4.2. To incorporate the scholarly knowledge
from previous studies on risk preference, we use linear regression models (trained via
the OLS method) as our base learner for finding linear patterns, while non-linear models
such as Random Forest and SVM regression models are used as the base learner to explore
non-linear patterns. Next, to incorporate the unlabeled data, we choose self-training to
predict ORP for the Gallup dataset.

Step 3: Evaluation Scheme for the Predictive Regression Models: To the best of
our knowledge, a semi-supervised learning paradigm has yet to be applied for predicting
risks in a socioeconomic context. That is why it is important in this paper to provide a
comprehensive evaluation framework of the base leaner and models from each iteration
to ensure the validity of the proposed approach. As such, each model is evaluated first
via established traditional ML evaluation schemes and traditional regression evaluation
schemes (Figure 3). In addition, to ensure that the predicted ORP values for unlabeled data
points are following the assumptions of the semi-supervised paradigm, we propose (i) the
use of plots for visual evaluation and (ii) the use of comparative evaluation. An overview
of the evaluation can be found in Figure 3. More details are provided in Section 3.5.
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Figure 3. Overview of the evaluation schemes used to evaluate the benchmark and semi-
supervised models.

Step 4: Feature Exploration: In order to identify features that are generally not studied
in association with individual risk but might still have a significant influence on ORP, Steps
2 and 3 are repeated three times on the merged dataset from Step 1. On the first repetition,
the independent variables are based on commonly used covariates in the literature; we
refer to this dataset as DExpert. During the second, all variables from the merged dataset
that could be included (e.g., variables with less than 50% missing values) were used to
train the models; this dataset is referred to as DPossible. Finally, the models were trained on
a feature set, resulting in a dataset referred to as DComEx, that was shown to be significant
in predicting ORP based on results from the previous repetition, e.g., DComEx is a proper
subset of the features in DPossible.

3.2. Dataset Description: GPS, Gallup, Merged

Gallup’s World Poll uses random, nationally representative samples to question
citizens in more than 150 countries, representing more than 99% of the world’s adult
population. Gallup surveys 1000 people in each nation using a standard set of core questions
that have been translated into the respective country’s primary languages. Supplementary
questions are asked in some places in addition to core questions. Face-to-face interviews
last around an hour, while phone interviews last about 30 min. The survey is done once a
year in many countries, and fieldwork is typically finished in two to four weeks. Gallup
is solely responsible for the administration, design, and implementation of the Gallup
World Poll. The Gallup World Poll covers important indices relating to global development,
including law and justice, housing, creating jobs, migration, financial life, health status,
civic involvement, and overall well-being. These indicators help economic and policy
leaders grasp the country’s interests’ wider context while establishing particular links
between indexes and trailing economic results. Gallup gathers samples in metropolitan
areas or areas of special interest in various nations. In some major nations, such as China
and Russia, a representative sample of at least 2000 persons is anticipated.
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Global Preference Survey (GPS) data is an extension of Gallup questions for the year
2012, where they play games to observe the risk-taking index ORP, which is the target
variable of this study. There are 15 columns, which are the additional questions to the
Gallup World survey that were asked to the 80,337 (rows) respondents in the dataset.

Merged Dataset: Both Gallup and GPS data have been merged for 2012 by Gallup id
to get the final dataset for 2012, including the target variable ORP. The merged data consists
of 79 countries with 80,337 observations and 2672 columns.

Gallup Dataset without ORP: This is the part of the Gallup’s World Poll that does
not have the ORP label and hence, did not end up in the Merged Dataset. It contains data
from 2006 to 2011 and 2013 to 2018, and has over a million data points. However, since
we had to filter the dataset to include data points that have the features obtained from
literature and data points with low missing value count, we end up with 634 observations
from this dataset.

3.3. Data Preprocessing

Data Transformation: There are both categorical and numerical variables in the
dataset. Most of the categorical variables have two categories. That is why standardization
of other numerical variables is required to have a unique scale. Different methods of
standardization have been applied to the numerical variables, i.e., (0, 1) scaling, Z-score
scaling, dividing each value by the range, dividing each value by the standard deviation,
(1, 2) scaling, etc. Finally, (1, 2) scaling is chosen.

Additionally, data transformation is a crucial data pre-processing method that can
aid with inferential estimations. It transforms the data into clean, usable data by altering
its format, structure, or values. In this article, we experiment with different combinations
of variable transformations: four different transformations for the dependent variable
(i.e., 1

y , 1
ey , 1

y2 , and 1√
y ) and two different transformations of the independent variables

[ln(x), x2]. The transformed variable combination that maintained the general assump-
tions of OLS linear regression was kept to train the base learners in this paper. Potential
outliers were identified and accordingly trimmed using the said combination of the vari-
able transformations. As an example, all the variables from DExpert and their respective
transformations are shown in Table 1, where the chosen transformations for each variable
are bold-faced.

Table 1. The various variable transformation combinations that were used to run empirical experi-
ments to find the combination that satisfied the assumptions of OLS regression.

Variable Transformation

Willingness to take a risk (risk-taking) 1
y , 1

ey , 1
y2 , 1√

y
Age ln(x), x2

Gender Binary
Marital status Binary

Income per capita ln(x), x2

Income per capita square ln(x), x2

Education level Binary
Household size ln(x), x2

Having Child Binary
Religion Binary

Employment status Binary
Residence status Binary
Migration status Binary

Continent of respondent Binary
Remittance Binary
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3.4. Semi-Supervised Learning Using Self-Training Method

As mentioned earlier, semi-supervised learning is a well-established computational
learning paradigm that aids in predicting missing target variables (as opposed to indepen-
dent variables). Similar to linear regression, the semi-supervised paradigm operates on
some basic assumptions [17]:

• The smoothness assumption: if two instances x and x′ are close together in the input
space, their labels y and y′ should display similar proximity

• The low-density assumption: the discriminator/classifier should not pass through
high-density regions in the input space

• The manifold assumption: data points on the same low-dimensional manifold should
have the same label or similar values.

Most semi-supervised learning techniques are built on these assumptions, and they
often rely on a single or all of them being fulfilled, either explicitly or implicitly. Self-
training procedures (also known as “self-learning” methods) are the most fundamental
of pseudo-labeling procedures under a semi-supervised learning paradigm. Under the
self-training paradigm, a single supervised classifier (called the base learner) is repeatedly
taught on both labeled and pseudo-labeled data from earlier rounds of the method. As a
starting point, a supervised classifier is trained on just the labeled data at the start of the
self-training phase. This classifier is then utilized to make predictions for the unlabeled
data points. The most confident forecasts are then introduced to the labeled training set,
and the supervised classifier is re-trained using both the original labeled data and the
newly generated pseudo-labeled data. This method is usually repeated until no unlabeled
data remains.

3.4.1. Base Learners

In general, when there is an ensemble of predictive learners (e.g., independent learners)
or learners are changed over time (one learner is dependent on the next through time), the
term base learner is used to refer to either the individual independent learners or to the
learner that drives the entire cast of dependent learners. Here, we use only one supervised
machine learning model as the base learner, which is first trained on the few labeled data,
and then re-trained on the addition of pseudo-labels. Since OLS linear regression is widely
used in social studies, we use OLS linear regression model as the base learner for exploring
linear patterns. For non-linear patterns, we use non-linear regression models.

Linear Regression, LR: Linear regression is a fundamental and widely used type of
predictive model. The overall goal of regression analysis is to answer the following ques-
tions: (i) how well does a collection of predictive features (e.g., independent variables)
predict an outcome variable (e.g., target variable)? and (ii) which factors, in particular, are
significant predictors of the outcome variable, and how do they influence it (as indicated
by the size and sign of the beta estimates)? Diagnostic tests like RMSE, Breusch-Pagan
test, and Ramsay RESET test can be used to see if the model fitted well or not. The general
equation of multiple linear regression is Y = β0x0 + β1x1 + . . . + βnxn + ε. Y is the target
variable which depends on the values of some regressors x1, x2, . . . , xn with coefficients
denoted by βi, respectively. Note, x0 = 1 and hence β0 is the intercept term of the model.

Random Forest Regression, RFR: Similar to Random Forest Classifiers [18], RFR [19,20]
utilizes a collection of Decision Trees [21] to arrive at a prediction. Each tree in the “forest”
makes a prediction which is then aggregated using techniques of ensemble machine learn-
ing models [22]. Each tree learns a non-linear separation of the feature space by optimizing
feature threshold values for relevant or significant features. Since each decision tree learns
a non-linear boundary, the RFR also learns a non-linear boundary. Assume, that each
decision tree is denoted by the function hi(x, θk), where hi : x → R and θk is the set of
parameters for the model, then an RFR can be defined as: Y = (1/N)∑N

i=1 hi(x, θk), where
N is the total number of decision trees in the collection.

Support Vector Regression, SVR: The non-linear dual formulation of SVR makes use of
LaGrange multipliers and non-linear kernel functions (which can also be represented by
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semi-definitive Gram matrices) to find an optimal non-linear hypersurface to separate the
data in feature space. A detailed description of SVR dual formula derivation is outside the
scope of this paper but can be found in [23]. SVR prediction written as a function can be
expressed as: Y = ∑N

n=0 (αn − α∗n)K(xn, x), where n is the number of instances, x are the
feature vectors, K is the kernel matrix/function, αn are the Lagrange multipliers.

Gradient Boost Regression, GBR: GBR [24] is a non-linear, additive ensemble of Deci-
sion Trees. However, unlike RFR, each individual model in the GBR is trained specifi-
cally to learn to predict on data instances that were incorrectly predicted by the previous
model/learners and is, thus, described recursively. Then during the mth iteration of GBR:
Ym = Ym−1 + ρmhm(x, θk), where Ym−1 is the accumulated prediction from the previ-
ous learners, hm is the newly added decision tree, and ρm, is the associated weight for
the learner.

3.4.2. Self-Training—Iterative Training of a Base Learner

Figure 4 illustrates the recursive training and re-training of base learners in the self-
training paradigm of semi-supervised learning. Before the training begins, D3-the Gallup
data without ORP labels, is split into ten partitions or batches, such that each batch consists
of 10% of non-overlapping instances/observations from D3. This is done in preparation
for the Proposed Iterative Evaluation Scheme, which will be detailed in Section 3.5.2.
More specifically, D3 contains a total of 634 observations, resulting in 9 partitions of
63 observations and one partition of 67 observations.

During the first iteration of this training process:

• Step 1: The base learner is trained using the merged training dataset (Figure 4) from
D1 and D2, e.g., the one where Gallup data are directly associated with the ORP values
from GPS 2012 dataset. Since the 2012 dataset contains authentic ORP values, these
values are referred to as True Label ORP (TLORP).

– Using traditional ML evaluation techniques for regression models, we evalu-
ate the base learner on the test dataset (Section 3.5.1) to obtain predicted ORP
(PORPT). This involves comparing the TLORP with the PORPT values. These
predicted results are recorded for later use in the process.

• Step 2: Next, one of the ten batches from D3 is used as a query to obtain their respective
prediction, e.g., the pseudo-ORP values (e.g., PPORPQ) from the base learner.

– Traditional ML evaluation metrics (such as RMSE, etc.) cannot be used to evaluate
these predictions, since the query set does not have TLORP against which to
calculate the RMSE value. Instead, we use the Proposed Iterative Evaluation
Scheme (detailed in Section 3.5.2), a series of tests allowing us to weed out outliers
within the query set.

• Step 3: Before going on to the next iteration, the new training set is prepared. The
new training set consists of: (i) the training set used in Step 1 of this iteration and
(ii) observations in the query set from Step 2 that passed the Proposed Iterative
Evaluation Scheme. The testing set remains untouched and is kept constant during
each iteration.

These steps are repeated until data from all ten batches have been incorporated in
the training set of the base learner and have been used to predict the test dataset, which
does have TLOPR associated with it. This also forms the basis of the Proposed Iterative
Evaluation Scheme.
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Figure 4. A schematic overview of the self-training semi-supervised learning mechanism using base
learners. These base learners can be linear (e.g., find linear patterns only) or non-linear models (e.g.,
finds linear and non-linear patterns).

3.5. Evaluation Scheme

This section describes the scheme used in this paper to evaluate the semi-supervised
models trained via self-training. Since most ML studies for risk use supervised learning,
we use the performance of a similar supervised ML model as the benchmark and include
descriptions for evaluating the benchmark.

3.5.1. Traditional ML Evaluation

The purpose of training ML models is to teach a machine about a concept in the real
world. And similar to the real world, where a child is expected to apply things they learn
to their life as it is happening, it is expected that a trained ML model will be able to make
predictions based on data it has not seen during training. The child/model has properly
learned the material only if they are able to use the learned information when presented
with a previously unseen situation. Thus, to evaluate the suitability of a supervised ML
model for classification or prediction, it is imperative to divide the dataset into two, creating
the training and testing datasets. The model uses the training dataset to learn, while the
testing dataset is the exam paper they must pass to be considered suitable. The error on
the test dataset is a measure of the generalization error; the higher the error, the lower the
ability of the model to generalize and apply what it has learned, if at all. The higher the
accuracy of the model, the lower its generalization error. It is usual for the training-testing
split ratio to be 80:20 or 70:30. In this paper an 80:20 split is used to obtain and evaluate the
PORPT (Section 3.4.2, Step 1).

Establishing a Benchmark: As with all other scientific studies, to evaluate the suit-
ability of a proposed ML model for an application, the model is compared to a similar,
established model called a benchmark. This benchmark represents a model state before
applying the proposed changes. Thus, compared to the benchmark, if the experimental
model with the proposed changes obtains a better accuracy, then the proposed changes are
considered valuable. In this paper, the experimental models are semi-supervised models
trained via self-training. Thus, the benchmark used in this paper is the linear regression
(LR) model which was trained and tested using the merged Gallup and GPS for the Year
2012 only. Since the Year 2012 has the TLORP (true labels) from the dataset itself, the model
can be evaluated using standard supervised ML techniques and hence work as a benchmark
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model. Another reason to use it as a benchmark model is that this model represents the
model created in Step 1 of the supervised self-training process for the LR model. The LR
model is given priority as the benchmark because most studies in the literature use OLS
LR models for studying risk. As such, the independent variables for this model are chosen
according to past literature.

Traditional Metric Used for Evaluation of the Benchmark Model: To verify whether
the model is trained properly and whether the model generalizes well, appropriate evalua-
tion metric needs to be used on the model output (e.g., compare PORPT against TLORP).
For the benchmark LR model, the regression assumptions can be used for evaluating the
models. For checking the goodness of fit of the base learner RMSE, the Breusch-Pagan
(BP) test for heteroscedasticity and the Ramsey RESET test of model specification will
be examined.

RMSE: RMSE is defined as the square root of the mean square of all errors.
RMSE = 1

n ∑n
i=1(Yi − Oi)

2 where Oi are the observations, Yi is the predicted values
of original observations, and n is the number of observations available for the analysis.

Fitted vs. Residual Plot: In order to visualize the prediction error vs. fitted values, a
residual vs. fitted plot is essential.

Heteroscedasticity Test: The assumption that the residuals are distributed with homo-
geneity of variance at each level of the predictor variable is one of the fundamental tenets
of linear regression. Homoscedasticity is the name for this presumption. We claim that
heteroscedasticity is evident in the residuals when this presumption is broken. The Breusch-
Pagan test is a formal statistical test that may be used to detect whether heteroscedasticity
is present. The following alternative and null hypotheses are used in this test:

Null hypothesis—There is homoscedasticity (the residuals are distributed with
equal variance).

Alternative hypothesis—There is heteroscedasticity (the residuals are not distributed
with equal variance).

We reject the null hypothesis and accept that there is heteroscedasticity in the regres-
sion model if the p-value of the test is less than a certain threshold of significance (i.e.,
=0.05).

Ramsey RESET Test: A generic specification test for the linear regression model is the
Ramsey Regression Equation Specification Error Test (RESET) test. The null hypothesis
states that the model has no omitted variables since there is no link between the powers of
the fitted values and the dependent variable. The alternative to this statement is that the
model has an issue with missing variables. So, we reject the null hypothesis and conclude
that the model has an issue with missing variables if the p-value of the test is less than a
certain threshold of significance (i.e., = 0.05).

3.5.2. Proposed Iterative Evaluation Scheme

Using traditional ML evaluation techniques, such as RMSE, involves comparing the
true labels (in this case, the TLORP) with the predicted labels (in this case, the PORPT).
However, for models trained via a semi-supervised training paradigm, the predicted
pseudo-label for the query (PPORPQ) cannot be compared to the true labels because they
do not exist. Thus, to evaluate the experimental models trained via self-training, we
leverage two of the three assumptions (see Section 3.4) of semi-supervised learning: the
manifold assumption and the smoothness assumption. Suppose both these assumptions
hold for each of the models obtained during a particular iteration of self-training. In
that case, we can be confident in the pseudo labels provided by the model. The set of
observations that violate these assumptions during any iteration lowers our confidence in
the pseudo labels provided for the observation and hence are excluded from the training
set for the next iteration. Since three tests are conducted (two for smoothness assumption
and one for manifold assumption described below), the rule for exclusion is as follows:

• If the observation passes at least one of the smoothness assumption tests, then it is not
excluded; otherwise, they are excluded.
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• Next, after the completion of all iterations, if the model passes the manifold as-
sumption, no action is taken; otherwise, we step back and re-run the smoothness
assumptions with stricter conditions that if observations do not pass both smoothness
assumption tests, they are excluded.

• If the manifold assumption still fails, we conclude that the semi-supervised model
should not be trusted, and a different model should be considered.

Checking the Manifold Assumption: One way to test the manifold assumption
is to perturb the data slightly and observe how it affects model predictions. If small
perturbations result in significant changes in predictions, it might indicate that the data is
not lying on a smooth manifold e.g., a small change changes the separation manifold (or
class boundary) learned by the model. We achieve this during self-training by devising the
Iterative Error Test described below. The gist of the test is as follows: when two models
trained on slightly different training datasets (denoted by TD1 and TD2) but tested on
the same testing dataset (denoted by TT), make similar predictions, we can deduce loose
equivalency for the two training datasets from the two models (denoted by M1 and M2).
Since violation of assumption would increase error and reduce accuracy, we can extrapolate
the equivalence of the manifolds learned by the two models.

Iterative Error Test: Let’s revisit the self-training process. We begin with one model (e.g.,
M1) trained on one training dataset (e.g., TD1) and tested on one testing dataset (e.g., TT);
this is Step 1 described in Section 3.4.2. In Step 3 of the same iteration, we obtain a second
slightly larger training dataset (e.g., TD2, where TD2 = TD1 + f irst query set pseudo labels).
In the next iteration, a new model (e.g., M2) is trained on TD2 and tested on TT. Thus, if the
error of M2 (on TT) does not increase compared to M1, then TD1 is equivalent to TD2, e.g.,
the query set and the pseudo labels do not violate any assumptions or data distribution.

Checking the Smoothness Assumption: Directly studying the smoothness and low-
density assumption would require knowledge of the joint distribution of the variables, which
is computationally expensive and intractable. Thus, we use the smoothness assumption
to make an approximation. The smoothness assumption, mentioned in Section 3.4, can be
interpreted to say that for any two input observations denoted by x, x′ ∈ X, where X is
the dataset, if x is close to x′, then either their categorical target label should be same (for
classification tasks), or their associated numerical target variable values (y and y′) should be
close to one another (for regression tasks). Thus, the distance between any two x and x′ should
be proportional to the distance between their associated y and y′, e.g., if the distance between
x and x′ is “large”, then the distance between y and y′ should also be relatively “large”. Thus,
to check the smoothness assumption, we follow the algorithm described below.

Suppose, the pair U = [xi
UL, yi

Psu] ϵ Query Set is an observation from D3 (or from
a query set in Step 2 from Section 3.4.1), where xi

UL is the feature vector and yi
Psu is the

associated pseudo label. For the purpose of this paper, a feature vector can be described
as a one-dimensional vector in Rn, such that each element of the vector corresponds to
an independent variable value, where n is the number of independent variables. Then,
let the set, A =

{[
xj

L, yj
T , yj

P

]
ϵ TT

∣∣∣ 1 ≤ j ≤ N, yj
T ∈ TLORP, yj

P ∈ PORPT
}

, be a set of

labelled observations such that
{

xj
L

}N

j=1
are the N closest neighbors of U. Then, we define

the following distance terms using Euclidean distance, dis():

Average Distance Labeled X, DXL(A) =

∑N
i,j ̸=i∈A dis(xi

L , xj
L)(

N
2

)


Average Distance Labeled Y, DYL(A) =
(

1
N

)
∑N

j∈A dis(yj
T , yj

P )

Average Distance between X in A and U, DXUL(A, U) =
(

1
N

)
∑N

j∈A dis(xi
UL, xj

L)

Average Distance between Y in A and U, DYUL(A, U) =
(

1
N

)
∑N

j∈A dis(yj
T , yi

Psu )
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Scatter Plot Test: Ideally, plotting a scatter plot of DYUL(A, U) against DXUL(A, U)
would provide a perfect 45° line with a positive trend through the origin, representing a
perfect DYUL(A, U) ∝ DXUL(A, U) relationship. However, there is no evidence for use
to hypothesize that this data will follow this perfect relationship; on the contrary, since
DXUL(A, U) is the distance between vectors, DYUL(A, U) while is the difference between
scalars, we expect DYUL(A, U) ∝ α DXUL(A, U), such that 1 < α < 1. Thus, for validity,
we compare scatterPlot(DYUL(A, U), DXUL(A, U)) with scatterPlot(DYL(A), DXL(A))
using characteristic qualities (e.g., spread, threshold, etc.) of the TT observations.

RMSE Approximate: In addition to the scatter plot, we use the set A to devise a quick
nearest-neighbor prediction e.g., we assume that yi

Psu predicted for xi
UL should be similar

to the simple average of
{

yj
T | ϵ A

}
for j = 1, . . . , N. In other words, we treat this average,

yi
PsuT = 1

N ∑N
j=1 yj

T , as the pseudo truth label for U, obtaining Û = [xi
UL, yi

PsuT , yi
Psu].

Now the RMSE can be calculated for Û using yi
PsuT andyi

Psu. For each iteration, the RMSE
of the query set has a range defined by: [0.0, max(RMSE o f Training set, RMSE o f TT)].

3.6. Feature Exploration and Selection

In addition to predicting ORP values for the Gallup data, we also aim to discover
new, generally overlooked, or not commonly considered factors that may hold high value
in predicting general risk-taking behaviors. Thus, the experimental setup described in
Sections 3.4 and 3.5 is repeated three times with one major change. During the first repeti-
tion, the models are trained on a merged dataset where the independent variables are based
on past studies and denoted by DExpert. For the second repetition, models are trained on a
merged dataset, which retained all its independent variables as long as the variable had
less than 50% missing values (denoted by DPossible). Finally, for the third repetition, only
variables that were found to be important by the computational model during the second
repetition (using DPossible) were retained. The dataset, where the feature subset is chosen
by the computational model/expert, is denoted by DComEx. We expect the feature set for
DComEx to contain “novel” features such that the models trained on DComEx will perform
better or at least at the same level as the model trained on DExpert. Independent variables
in DExpert, DPossible, and DComEx are shown in Figure 5.

Figure 5. Feature sets for DExpert, DPossible, DCompEx.
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4. Results

This section provides a detailed examination of the outcomes obtained through bench-
mark evaluation using linear regression (LR) in a supervised paradigm and a subsequent
self-training evaluation utilizing a proposed iterative scheme for semi-supervised learning.
The primary objective is to predict individuals’ willingness to take general risks based on
their observed risk preference, and social, economic and demographic profiles. This inves-
tigation is conducted using the merged Gallup and GPS dataset. The section is structured
into two subsections: Benchmark Evaluation (Section 4.1) and Self-Training Evaluation
(Section 4.2). In Section 4.1, an LR model is trained, as the benchmark, on a pre-processed
dataset to identify features predicting ORP, with an emphasis on RMSE values, residual
plots, and diagnostic tests, revealing the necessity for standardization and transformation,
and highlighting potential outliers among continuous variables such as income, age, and
household size, providing an understanding of the limitations of linear regression in captur-
ing risk-related factors. Section 4.2 reports results from tests for manifold and smoothness
assumptions, and illustrates why RFR is better in handling non-linear patterns, presenting
feature sets, detailing coefficients for feature importance, and visually representing LR
and RFR models’ performance. The findings in Section 4 support the choice of using
semi-supervised learning for predicting general risk preference.

4.1. Benchmark Evaluation: LR, Supervised Paradigm

Primarily, an LR model is trained on the preprocessed dataset (see Section 3.3 and
Table 1) to see which features/covariates can predict the given values (labeled points) of
the target variable (ORP).

RMSE Value, Residual Plot: Since the raw data itself did not provide comparable
results, the data was first standardized as described in Section 3.3, which resulted in the
RMSE dropping from 0.95 to 0.22. Then based on the diagnostic Ramsey RESET test for
heteroscedasticity of the model, variables were transformed, and outliers were discarded
to obtain an RMSE value of 0.05238. Continuous variables such as “income”, “age”, and
“household size” were found as potential outliers. Figure 6 shows the residual vs. fitted plot,
RMSE, along with the Breusch-Pagan test and Ramsay RESET test p-values as the goodness
of fit. According to the p-values obtained from Heteroscedasticity and Ramsay RESET test,
it is evident that this model has no omitted variables and represents constant variance.

Figure 6. Benchmark LR Model Evaluation. Independent variables are chosen by the human expert.

4.2. Self-Training Evaluation: Proposed Iterative Scheme for Semi-Supervised Learning

As explained earlier in Section 3.4.2, during Step 1 of the first iteration of the self-
training for semi-supervised learning, the base learner is essentially the same as a model
trained on the merged labeled data via supervised learning. For example—when the
base learner is the LR model, then in Step 1, the first iteration of semi-supervised self-
training (e.g., the beginning of self-training), the base learner is essentially the same as the
benchmark model presented in Section 4.1. As described in Section 3.5.2, we perform three
tests (Manifold Assumption: Iterative Error Test, Smoothness Assumption: Scatter Plot
Test, and Smoothness Assumption: RMSE Approximate) on each model (LR, SVR, RFR,
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and GBR) to validate the predictions made by the models on the dataset from the human
expert, DExpert. This allows us to determine which is the best regression model for this
dataset. Next, since LR and RFR are the only models that can provide feature importance,
we use the best-performing model among LR and RFR to carry out the investigation with
DExpert, DPossible, and DCompEx.

Smoothness Assumption, Scatter Plot Test for the LR Self-training, One Iteration:
Two of the validation tests we perform on the semi-supervised models is to check whether
the smoothness assumption holds or not. As mentioned in Section 3.5.2, one of these
two is the scatter plot test, where we compare scatterPlot(DYUL(A, U), DXUL(A, U))
with scatterPlot(DYL(A), DXL(A)) to ensure that the distance between the feature vectors
translates to the distance between prediction labels. For both datasets, we find that both
plots show a positive trend. Based on characteristics displayed by the TT dataset in Figure 7,
we also learn that feature vectors that are anywhere between 2 to Figure 8 arbitrary distance
units from each other tend to have ORP values that are between 0.000 and 0.001 arbitrary
distance units of one another. Most of the observations in the query set also follow this
distance range pattern; however, the query also displays some outliers (those above the
orange dotted line) that violate the distance range pattern. As such, the predictive pseudo-
labels for these deviants inspire low confidence and are accordingly flagged. This process
is repeated during each iteration.

Figure 7. Scatter plot comparison for LR Self-training, first iteration, Step 1 (left) and Step 2 (right).
This particular figure uses the DExpert dataset.

Smoothness Assumption, RMSE Approximate for the LR Self-training, One Iter-
ation: The RMSE of the test and query data are calculated as described in Section 3 for
each model and dataset. For brevity, we show a sample for the LR model trained on the
DExpert.The RMSE of LR on the training data is 0.0541, and on TT is 0.0539 (Figure 6).
The calculated RMSE on the query dataset is 0.027. Since 0.027 falls in the [0.0, 0.054]
range (Figure 7), at this stage, we accept the pseudo-labels as is without adding additional
warning flags.

Manifold Assumption, Iterative Error Test, All Models: In this section, we check
for random jumps in the RMSE values of the LR, RFR, SVR, and GBR models trained on
DExpert. As seen in Figure 8, the RMSE values for most of the models remain constant
through all the iterations, illustrating that the addition of the query data points during
each iteration is not violating the manifold assumption of semi-supervised learning. Thus,
at this point in our analysis, we decided not to exclude any of the observations from the
query sets since they all passed at least one of the smoothness assumptions tests and the
manifold assumption.

Linear versus Non-linear Models, Feature Set Selection: Additionally, from Figure 8,
we observe that all the non-linear regression models outperformed the linear regression
model., with RFR achieving the best RMSE value of 0.046 and the GBR model obtaining a
slightly better RMSE of 0.0532. This allows us to conclude that there is indeed non-linearity
present in the dataset. Given that RFR achieves the lowest RMSE, we use RFR self-trained
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models for the next stage of the investigation. For comparison purposes, we also present
the results obtained from LR self-trained model. At this stage, we investigate the effect
of changing feature sets on the predictive performance of the models (Figure 9). Figure 9
shows the self-training iterations for the RFR and LR models on all three datasets, DExpert,
DPossible, DCompEx. The RFR model performs best on all three datasets achieving the best
performance with DCompEx (closely followed by DPossible). On the other hand, the iteratively
self-trained LR model performs best with the DPossible dataset, followed closely by DCompEx.
This shows that the LR model, which can only recognize linear patterns, is not well suited
to work with variables that may be important but presents a non-linear pattern in the data.

Figure 8. The RMSE values of the four ML regression models over the ten iterations of the self-training
stage plus the initially supervised base learner.

Figure 9. The performance of the LR and RFR model on the three datasets, DExpert, DPossible, DCompEx.
The best regression prediction is by RFR on DCompEx.

5. Discussion
5.1. Inference from the Supervised, Linear Model

A detailed result of the regression coefficients is depicted in Figure 10. Since 1
ey

transformation was used for the target variable, each coefficient must be interpreted as an
inverse relationship. Based on Figure 10, this LR benchmark shows that with the increase in
the household size, people’s risk-taking will also increase by 0.44%. In other words, people
will be 0.44% less risk averse, which is significant at the usual 1% tolerance. As income
increases, risk-taking also increases by 0.25% (p-value: 0.000). Also, as people get older,
they are 2.28% (p-value: 0.000) more risk-averse, which is in line with past literature [25].
Moreover, females are 0.93% (p-value: 0.000) more risk-averse than males, which is in line
with the findings of [5].

On the other hand, according to the benchmark model, unemployed are 0.80% (p-value:
0.000) more risk averse than the individuals who are employed full time, which is also
observed by Grable (2000). Compared to Asians, it is seen that Europeans are 0.88%
(p-value: 0.000) more risk averse, Africans are 0.04% (p-value: 0.532) less risk averse, North
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Americans are 0.67% (p-value: 0.000) more risk averse, South Americans are 0.68% (p-value:
0.000) less risk averse. The heterogeneity in risk preferences across countries has been
well documented in the literature, for example, refs. [12,26], although most research has
compared European countries with North American countries.

Figure 10. Benchmark LR Model coefficients for the merged data from the year 2012.

Compared to Catholics, it is seen that Protestants are 0.50% (p-value: 0.000) less risk
averse, Secular are 0.15% (p-value: 0.061) less risk averse, Muslims are 0.52% (p-value: 0.000)
less risk averse, Hinduisms are 1.14% (p-value: 0.000) more risk averse. Past research has
found mixed results on the effect of religion on risk aversion. While [27] find that Protestants
are more risk-averse or make safer financial investments than Catholics, refs. [28,29] find
the opposite. Compared to the individuals who have completed primary education (or
less), individuals who have at least some secondary education are 0.90% (p-value: 0.000)
less risk averse, and individuals with college (or higher) degrees are 1.59% (p-value: 0.000)
less risk averse. This is in line with [12], who finds that individuals with low cognitive
skills are more risk-averse.

5.2. Inference from the Semi-Supervised, Non-Linear Model

Since this paper finds that the LR model is not well suited, it refrains from interpreting
the linear coefficients; rather, it discusses the importance of the variables taking into
consideration the non-linear relationships.

The results (Figure 5) indicate that demographic characteristics are important de-
terminants of an individual’s willingness to take a risk. This paper finds age and be-
ing female are important determinants of willingness to take a risk. Past literature has
also shown that women and the old are substantially more risk-averse than men and
young people [25,29,30].

The findings in Figure 11 show that education explains about 9% of the willingness to
take a risk variation. Past research finds that people with low skills are also found to be
risk-averse [12]. But most of this research uses a continuous variable for skills or looks at
the quality of education rather than just the indicator variable as we do.

Various other studies have shown that geographic and cultural factors also explain prefer-
ences. For example, ref. [12] show that family structure, income level, and crop suitability of
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land matter at the country level. Results in Figure 11 reveal that being married explains about
3%, while the continent or region dummies explain about 8% of the variation in risk aversion.

Figure 11. Detailed coefficients of base learner based on computational expert features.

Religion dummies explain about 9% of the variation in risk preference. Protestantism
and patience or time preference have long been linked to capitalism’s rise [15,31]. More
recently, ref. [32] have shown that religiousness is an important determinant of risk aversion.
Findings suggest that religious persons are less risk-tolerant than atheists, and Muslims
are less risk tolerant than Christians in Germany. Research has also shown that there is
a substantial difference in risk preference between migrants and natives [33], with non-
economic migrants in Germany being more risk averse than natives and this gap across
employment status, gender, and skills, while economic migrants risk preference is almost
the same as native. Our results support these findings as we find that the migrants’ dummy
does not explain risk preference significantly.

Health feature explains about 3% of the variation in risk preference. The impact of
physical health-related problems on risk preference has been addressed in a few pieces
of research, which find a positive relationship between willingness to take a risk and
good health [34,35]. We also found that healthy people are also less risk averse, e.g., their
risk-taking tendency is higher than their counterparts.

Ref. [36] theoretically shows relative deprivation as a cause of risky behavior and
shows that an individual’s relative risk aversion decreases as he becomes more relatively
deprived. Subjective well-being measures, as reported by the Gallup World Poll survey,
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provide a proxy for relative deprivation felt by the individual. The third column in Figure 5
reveals the empirical importance of subjective well-being or feeling of deprivation on risk
aversion and the importance of the variables already pointed out in past literature. For
example, the optimistic feature explains about 3% of the variation in risk preference. The
categorical variable is created based on the question “Life in 5 Years”, with reactions of
respondents being answered on a Likert scale ranging from worst possible to best possible.
It is found that individuals with an optimistic view are significantly less risk-averse.

The social network feature explains about 3% of the variation in risk preference. This
binary variable is generated from the question “Count on to help”, and the responses were
affirmative or negative. It is also found that individuals with socially helpful attitudes are
significantly less risk-averse.

The corruption feature also explains about 3% of the variation in risk preference. From a
binary response type question “Corruption Within Businesses” this feature is created. It is also
found that individuals facing corruption in their business are significantly less risk averse.

6. Conclusions

Numerous studies have explored the determinants influencing individuals’ inclination
towards general and financial risks, often centering on the relationships between sociode-
mographic, economic variables, and self-reported risk attitudes. However, to the best of our
knowledge, no prior study has employed a semi-supervised machine learning algorithm
approach to predict an individual’s observed intention to accept general risks, particularly
in scenarios where the observed risk variable is absent.

This research innovatively combines a semi-supervised method with econometric
tools to forecast individuals’ willingness to undertake general risks, utilizing observed
risk preferences and their social, economic, and demographic profiles, drawing from the
merged Gallup and GPS dataset. Through this approach, we successfully predicted missing
observed risk values in the Gallup dataset for the years 2006–2011 and 2013–2018. Rigorous
evaluations, employing both traditional machine learning techniques and our proposed
iterative evaluation scheme, ensured the quality of predictions extended beyond 2012.

Our findings challenge the adequacy of linear models in studying risk and associated
factors. Notably, well-being indicators such as the optimism index, social network, good
health, and corruption index emerged as potentially influential in individuals’ risk-taking
decisions. While further investigations are warranted to establish causation and enhance
confidence in these results, our study provides compelling evidence to advocate for a more
comprehensive approach to studying risk-taking.

A limitation of our current study lies in its exclusive use of self-training semi-supervised
techniques for ORP predictions. Future endeavors aim to employ diverse machine learning
methods, including semi-supervised techniques such as wrapper methods and graph-
based methods, as well as weak-supervised techniques, to further refine and expand our
predictive capabilities.
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Abbreviations
The following abbreviations are used in this manuscript:

D1 GPS data with ORP for the year 2012
D2 Gallup data for the year 2012
D3 Gallup data without ORP for the year 2005–2011, 2013–2018
TLORP True Label ORP
PORPT Predicted ORP on labeled test set
PPORPQ Predicted Pseudo ORP from query data (PPORPQ)

Appendix A

Here we answer how the risk-preference index is calculated in GPS dataset [12]. The
risk-preference index in GPS is calculated by weighing the qualitative question by 0.527
and the quantitative questions by 0.473. The quantitative survey measure consists of a
series of five interdependent hypothetical binary choices. Choices were between a fixed
lottery, in which the individual could win x or zero, and varying sure payments, y. The
exact question is the following: Please imagine the following situation. You can choose
between a sure payment of a particular amount of money, or a draw, where you would
have an equal chance of getting the amount x or getting nothing. We will present to you
five different situations. What would you prefer: a draw with a 50. The sure payment
was increased gradually in the following questions to identify an individual’s certainty
equivalence. The sequence of questions follows as the first being, and each respondent was
asked whether they would prefer to receive EUR 160 for sure or whether they preferred a
50:50 chance of receiving EUR 300 or nothing. If the respondent opted for the safe choice
(“B”), the safe amount of money offered in the second question decreased to EUR 80. If, on
the other hand, the respondent opted for the gamble (“A”), the safe amount was increased
to EUR 240, and this continued for five turns. If the individual chooses B on each of the
terms, his willingness to take a risk is given the number 1, while the individual takes the
gamble in each of the five rounds, and his willingness to take a risk is given the number
32. The qualitative item asks for the respondents’ self-assessment of their willingness to
take risks on an 11-point scale, which is more common in the literature [8]. Thus, the risk
preference index in GPS contains more information than the self-reported binary indicator
for willingness to take risks.

As explained in Section 3.6, there are three feature sets (Figure 5):

• DExpert—this feature set is based on the subject expert’s knowledge and experience in
general risk-taking

• DPossible—this feature set includes all the features that could be included from the
merged dataset (Figure 2).

• DComEx—this feature set is a proper subset of DPossible, which consists of features that
were either found to be significantly important by the LR or given high importance by
the RFR. The resulting feature sets are provided in Figure 5, while Figure 11 provides
more details about the feature importance obtained for the DComEx dataset by the RFR
(Column 4), along with the coefficients and p-values from the LR model trained on
DComEx (Columns 2 and 3).
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