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Abstract: This paper aims to systematically assess the local radial basis function collocation method,
structured with multiquadrics (MQs) and polyharmonic splines (PHSs), for solving steady and
transient diffusion problems. The boundary value test involves a rectangle with Dirichlet, Neuman,
and Robin boundary conditions, and the initial value test is associated with the Dirichlet jump
problem on a square. The spectra of the free parameters of the method, i.e., node density, timestep,
shape parameter, etc., are analyzed in terms of the average error. It is found that the use of MQs is
less stable compared to PHSs for irregular node arrangements. For MQs, the most suitable shape
parameter is determined for multiple cases. The relationship of the shape parameter with the
total number of nodes, average error, node scattering factor, and the number of nodes in the local
subdomain is also provided. For regular node arrangements, MQs produce slightly more accurate
results, while for irregular node arrangements, PHSs provide higher accuracy than MQs. PHSs are
recommended for use in diffusion problems that require irregular node spacing.

Keywords: meshless method; polyharmonic splines; multiquadrics; augmentation; heat diffusion
equation

1. Introduction

The numerical solution of partial differential Equations (PDEs), such as the heat diffusion
equation (HDE), is extensively used in science and engineering. The phenomenon of heat
diffusion is essential in solids for understanding various material processing and engineering
problems such as phase transformations, corrosion, creep, annealing, etc. [1–3]. The devel-
opment of the finite element method (FEM) in the 1950s was a significant breakthrough in
numerical analysis. Many developed FEM packages are commercially available to solve
complicated engineering problems [4] and are widely used. However, FEM involves certain
limitations/difficulties, for example, the challenges during mesh creation [4] such as time-
consuming (re)meshing to create a polygonization on the boundary and/or its domain [5]
and the shortcomings in the evaluation of some problems like the connectivity of the mesh,
which is very complex in the case of large deformations. That is why the idea of replacing
the mesh with nodes only came into being to resolve this type of complication. The methods,
defined on the nodes only, without geometric elements between them, are nowadays known
as meshfree or meshless methods [4], depending on the level of the mesh reduction. “A mesh-
free/meshless method is a technique used to establish a system of algebraic equations for the
whole problem domain without using the predefined mesh for the domain discretization” [4].
Meshless methods have proven highly effective in solving numerical problems and have
experienced rapid growth and advancement in recent years [4,6–10].
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The radial basis function collocation method (RBFCM) was first proposed by Kansa [11,12];
that is why it is also known as Kansa’s method [5,11]. The Kansa method presented a novel
approach to solving partial differential equations using scattered data points rather than regular
grids. Kansa, in [11], utilized the well-known MQ as a radial basis function to solve parabolic,
hyperbolic, and elliptic partial differential equations, and it was proven that the MQ is not
only highly accurate but also more efficient than the finite difference scheme. This method has
been used to solve successfully different problems using MQs as RBFs. For example, some of
the notable publications concern diffusion problems [5], H-adaptive LRBFCM [13], LRBFCM
for linear thermo-elasticity in two dimensions [14], an equivalent PDE-based stabilization of
strong-form meshless methods applied to advection-dominated problems [15], the simulation
of laminar backwards-facing step flow under a magnetic field with explicit LRBFCM [16], and
multi-pass hot-rolling simulation [17]. The MQ produces good results compared to the FDM [5],
but the method is sensitive to the selection of the shape parameter [5]. Several methods have
been introduced to select a suitable shape parameter [18,19]. However, this selection increases
computational time because the process must be performed depending on the considered case.
In this research, a more comprehensive study, compared to [5], is carried out for the selection of
shape parameters for various node densities.

Orthogonal decomposition–radial basis function-generated finite difference (POD-
RBF-FD) is used in solving three nonlinear partial differential equations in biology [20],
demonstrating phenomena like blowing-up, pattern formation, and bacterial aggregations
on surfaces. RBF-FD is used in study [21] to solve the time-dependent partial differential
equations describing prostate tumor growth, demonstrating its effectiveness without re-
quiring adaptivity. The localized singular boundary method (LSBM) for solving Laplace
and Helmholtz equations in 2D arbitrary domains demonstrates improved efficiency and
accuracy compared to traditional methods through various numerical examples [22]. A
comprehensive overview of localized collocation schemes and their engineering applica-
tions is discussed in [23], showcasing their versatility in solving complex problems such as
wave propagation analysis, phononic crystals, and heat conduction issues.

In recent years, the PHS kernel [24] has become popular because it does not require
the time-consuming search for an optimal shape parameter, unlike the MQs. In RBF ap-
proaches, this feature of PHSs plays an essential role in more simple studies of convergence,
stability, and accuracy [25,26]. According to [24], the convergence rate of the method using
PHSs can be controlled with the highest order of augmentation monomials, meaning the
higher the polynomial degree, the better the convergence rate, but it will also require larger
subdomains and, as a result, more computation time. Many tests and experiments have re-
cently been performed using PHS, such as the solidification of pure materials, solidification
of binary alloys, phase-field modelling of solidification [27], an improved local radial basis
function method for solving small-strain elasto-plasticity [28], a hybrid radial basis function
finite difference method for modeling two-dimensional thermo-elasto-plasticity [29], and
its application to the metallurgical cooling bed problem [30]. An application of PHSs to
a real-world problem can be seen in the study of the reduction in discretization-induced
anisotropy in the phase-field modeling of dendritic growth via the meshless approach [31].
One of the critical features of the PHS is that it can produce a highly accurate solution
without spending time on choosing an optimal shape parameter and dealing with the
numerical issues related to poor conditioning [32]. Some significant developments of PHS
can be seen in [25] where they overcome the drawbacks of stability and accuracy due
to Runge’s phenomenon by increasing the nodes in the local subdomain two times the
number of augmentation [25]. Furthermore, adding polynomials to PHS can achieve high
convergence [24].

In this paper, we have investigated two cases, namely Case 1: the boundary value
problem and Case 2: the initial value problem structured with MQs and polyharmonic
splines (PHSs) shape functions for solving the HDE. Previously, in [5], the same case studies
were published using less dense nodes utilizing MQs as RBFs and comparing the results
with the finite difference method (FDM). In [5], a convergence study was conducted for
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different node densities and arrangements. The method was shown to have higher accuracy
than the traditional FDM and was performed through a straightforward, explicit process. In
addition to this, it can easily cope with complicated geometry [5] and is scalable to handle
large problems [33] efficiently. The method is also easy to understand and implement and
can be extended to tackle other partial differential equations.

This study extends the findings in [5] by applying PHS and MQ radial basis functions
to diffusion problems for different node arrangements and node densities, respectively.
The novelty of this paper is that we have additionally evaluated the effects of the shape
parameter, scaling factor in MQ, augmentation, scattering of the nodes, and number of
nodes in the local subdomain, which were not discussed in the previous study [5].

The rest of the paper is structured as follows: Section 2 explains the materials and
methods used in this article, representing the governing equation, solution procedure,
definition of the shape functions, implementation of the boundary conditions, stability
criterion of the explicit Euler method, and a brief introduction to the numerical examples,
with the respective analytical solutions, namely, Case 1: the boundary value problem and
Case 2: the initial value problem. Section 3 presents the results of the numerical examples
with different parametric studies, and lastly, Section 4 presents a discussion of the results
and the conclusions of this research study.

2. Materials and Methods
2.1. Governing Equation

We consider the solution of the diffusion equation in a two-dimensional (2D) domain
Ω with a boundary Γ

ρc
∂

∂t
T = k∇2T, (1)

where T is the temperature, t is the time, ρ is the density, c is the specific heat, and k is
the thermal conductivity. All material properties are considered constant. We seek the
solution to the problem for T(p, t0 + ∆t), where p = pxix + pyiy are the position vector,
ix, iy the base vectors, and px, py the coordinates of the 2D Cartesian coordinate systems. t0
represents the initial time and ∆t a positive time increment. Equation (1) is subject to the
following initial condition:

T(p, t0) = T0(p); p ∈ Ω + Γ, (2)

where T0 is the initial temperature, and the Neumann-, Dirichlet-, and Robin-type boundary
conditions at the not necessarily connected boundary segments are ΓD, ΓN , and ΓR. These
boundary conditions are defined at p ∈ Γ = ΓD ∪ ΓN ∪ ΓR with outward normal nΓ, heat
transfer coefficient h and reference temperature Tre f as

T = ΓD; p ∈ ΓD, (3)

−k
∂T
∂nΓ

= ΓN ; p ∈ ΓN , (4)

−k
∂T
∂nΓ

= h
(

T − Tre f

)
; p ∈ ΓR. (5)

2.2. Solution Procedure

The solution to the heat diffusion problem with different types of boundary conditions
is based on the strong-form local collocation meshless method with subdomains shown
schematically in Figure 1.
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Figure 1. Scheme of the domain Ω with boundary conditions weighted at ΓD, ΓR, and ΓN. The solid
and empty circles show the interior and boundary nodes, respectively. The solid circular line shows
the limits of the local sub-domain lΩ containing nine interior nodes. In contrast, a dashed circular line
represents another local sub-domain, containing a boundary node and eight interior nodes, whereas
the solid triangle shows the central node. lrmax and lrmin are the maximum and minimum distance
between any node in the subdomain l, respectively.

The forward Euler explicit formula is used to approximate the time derivative of
temperature.

∂

∂t
T ≈ T − T0

∆t
, (6)

And, Equation (1) becomes

T = T0 + ∆t
k
ρc

∇2T0. (7)

The system of equations for determining the unknown coefficients of collocation
with the RBFs of an assumed function T with known values in the subdomain l with
nodes lpn; n = 1, 2, . . . , l N at the respective subdomain lΩ, along with the polynomial
augmentation, can be written as

T(lpn) =
l N

∑
k = 1

lωk(lpn)lαk +
l Naug

∑
k = 1

l pk(lpn)lαlN+k =
l N+l Naug

∑
k = 1

lψk(lpn)lαk, (8)

with lωk standing for the shape functions, and ψ consists of the shape functions (ω) and
polynomials (p), while lαk represents the coefficients of the shape function with polynomials.
The total number of nodes is N = NΩ + NΓ, where NΩ represents the number of nodes
in the domain, and NΓ represents the nodes positioned at the boundaries, whereas l N is
the number of nodes in the subdomain l. In Equation (8), the augmented polynomials
are defined by l pk, and lp stands for the central node of the subdomain. The number of
augmentation monomials is defined as [28]

Naug =
(P + Ndim)!

P!Ndim!
, (9)

where P is the order of the augmentation monomials, and Ndim is the number of dimensions.
In this study, we are using P = 0 for MQs and P = 2 for PHSs, with Ndim = 2 which
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yields Naug = 1, 6, respectively. The polynomials for Naug = 1 are defined as l p1 = 1,
and Naug = 6 is defined as l p1 = 1, l p2 = x, l p3 = y, l p4 = x2, l p5 = xy, l p6 = y2.

The collocation matrix should be non-singular to solve a square system of linear
equations for the coefficients lαn. We can rewrite Equation (8) in a vector–matrix form
as follows:

lΨ lα = lT; lΨkn = lψk(lpn), lTn = T(lpn), (10)

Together with the augmentation, according to Equation (8), our system is



l ω1(lr1) l ω2(lr1) · · · l ωlN
(lr1) l p1(lr1) · · · l pNaug (lr1)

l ω1(lr2) l ω1(lr2) · · · l ωlN
(lr2) l p1(lr2) · · · l pNaug (lr2)

...
...

. . .
...

...
. . .

...

l ω1

(
lrlN

)
l ω2

(
lrlN

)
· · · l ωN

(
lrlN

)
l p1

(
lrlN

)
· · · l pNaug

(
lrlN

)
l p1(lr1) l p1(lr2) · · · l p1

(
lrlN

)
0 · · · 0

...
...

. . .
...

...
. . .

...

l pNaug (lr1) l pNaug (lr2) · · · l pNaug

(
lrlN

)
0 · · · 0


︸ ︷︷ ︸

l Ψ



l α1

l α2
...

l αlN

l αlN+1

...
l αlN+Naug


︸ ︷︷ ︸

lα

=



l T1

l T2
...

l TlN
0
...
0


︸ ︷︷ ︸

l T

. (11)

In Equation (11), the unknown coefficients lα can be computed by solving the system
of Equation (10).

lα = lΨ
−1

lT, (12)

By plugging the calculated coefficients lα, i.e., Equation (12), into the collocation equation,
i.e., Equation (8), for each subdomain, we can express the temperature and its first and
second derivatives as

T(p) =
l N+Naug

∑
k = 1

lψk(p)
l N

∑
n = 1

lψ
−1
kn lT0n, (13)

∂

∂pς
T(p) =

l N+Naug

∑
k = 1

∂

∂pς
lψk(p)

l N

∑
n = 1

lψ
−1
kn lT0n; ς = x, y, (14)

∂2

∂p2
ς

T(p) =
l N+Naug

∑
k = 1

∂2

∂p2
ς

lψk(p)
l N

∑
n = 1

lψ
−1
kn lT0n; ς = x, y. (15)

The explicit discretization of Equation (7) is

Tl = T0l +
∆tk
ρc

[
l N+Naug

∑
k = 1

∂2

∂p2
x

lψk(pl)
l N

∑
n = 1

lψ
−1
kn lT0n +

l N+Naug

∑
k = 1

∂2

∂p2
y

lψk(pl)
l N

∑
n = 1

lψ
−1
kn lT0n

]
. (16)

This study uses l N = 5, l N = 9, l N = 13, and l N = 25 nodes in the local
subdomain, as shown in Figure 2. However, this article does not discuss using PHS with
five nodes in the local subdomain because it does not produce any results since the number
of polynomials is more than that of the number of nodes in the local subdomain, which
will result in a singular matrix.

The schematic representation of the local subdomains for regular node distribution
(RND) is shown in Figure 2. Conversely, for quasi-uniform node distribution (QUND), the
subdomain is defined by searching for the nearest neighbors until the required number at
the nodes is set.

2.3. Definition of the Shape Functions

In this article, we have compared the scaled and unscaled MQs; the general equation
for the scaled MQ used in this study is [5]

lωk(p) =
[

lr
2
k(p) + c2

lr
2
max

]1/2
; lr

2
k = (p − lpk) · (p − lpk), (17)
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where c represents the dimensionless shape parameter. The scaling parameter lr
2
max is

used for scaling the shape parameter and is set to the maximum nodal distance in the
local subdomain.

lr
2
max = maxlr

2
m(lpn); m, n = 1, 2, . . . , l N . (18)

In Section 3.1.6, a comparison of scaled and unscaled MQs is presented, where the
unscaled MQ can be achieved by putting lrmax equal to 1.

The involved first- and second-order derivatives of the scaled MQ for Equation (17)
are given in Equations (19)–(22).

∂

∂px
lωk(p) =

px − l pkx(
lr

2
k + c2

lr
2
max
) 1

2
, (19)

∂

∂py
lωk(p) =

py − l pky(
lr

2
k + c2

lr
2
max
) 1

2
, (20)

∂2

∂p2
x

lωk(p) =

(
py − l pky

)2
+ c2

lr
2
max(

lr
2
k + c2

lr
2
max
) 3

2
, (21)

∂2

∂p2
y

lωk(p) =

(
px − l pkx

)2
+ c2

lr
2
max(

lr
2
k + c2

lr
2
max
) 3

2
, (22)

while the derivatives of the unscaled MQ can be achieved by putting lrmax equal to 1.
The general equation for the PHS is

lωk(p) =

[
lrk(p)

lr0

]n

, lrk = (p − lpk) , n = 1, 3, 5 . . . . . . , (23)

where lr0 is the scaling parameter, and the first- and second-order derivatives of the PHS
are given in Equations (24)–(27).

∂

∂px
lωk(p) =

n
[

lr
n−2

2
k (p)

(
px − l pkx

)]
lr

2n
0

, (24)

∂

∂py
lωk(p) =

n
[

lr
n−2

2
k (p)

(
py − l pky

)]
lr

2n
0

, (25)

∂2

∂p2
x

lωk(p) =
n(n − 2)

(
px − l pkx

)2
lr

1
2
k (p) + nlr

n−2
2

k (p)

lr
2n
0

, (26)

∂2

∂p2
y

lωk(p) =
n(n − 2)

(
py − l pky

)2

lr
1
2
k (p) + nlr

n−2
2

k (p)

lr
2n
0

, (27)

where n is the (odd) power of the PHS, and in this study, we have used n = 5. It has been
shown in [24] that the polynomial degree controls the convergence rate under high node
refinement, not the PHS. Still, the solvency of the interpolation for n = 5 is ensured with
the augmentation of the second-order monomials.
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The scaling parameter lr0 represents the average distance and is calculated in the
following way:

lr0 =

√√√√ l N

∑
k = 2

lr
2
k

l N − 1
, lr

2
k = (lp − lpk) · (lp − lpk), (28)

where the nodes other than the central node lp in the subdomain l is denoted as lpk.
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2.4. Implementation of the Boundary Conditions

The solution to both problems follows the following four steps.
In the first step, the derivatives at the initial temperature are calculated from the

known values of the nodes in the domain by setting the initial conditions in the domain
and boundary nodes.

In the second step, the new values for lTn are calculated at t0 + ∆t in the domain nodes
using Equation (16).

In the third step, the discretization of the involved three types of boundary conditions is

l N+Naug

∑
k = 1

lψk(lpn)lαk = lΓ
D, (29)

−k
l N+Naug

∑
k = 1

∂

∂nΓ
lψk(lpn)lαk = lΓ

N , (30)

−k
l N+Naug

∑
k = 1

∂

∂nΓ
lψk(lpn)lαk = h(lpn)

(
l N+Naug

∑
k = 1

lψk(lpn)lαk − Tre f (lpn)

)
. (31)

The boundary conditions can be applied by replacing a row of the neighboring boundary
node in Equation (11) with the respective boundary conditions prescribed in Equations (29)–(31).
The unknown values are calculated using Equation (16) with the help of the specified boundary
conditions.
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Finally, the calculated lαk from Equation (12) are then plugged into Equation (11) to
find the unknown values of lTn at the boundary where the Neuman or Robin boundary
conditions are defined.

2.5. The Stability Criterion of the Explicit Euler Method

For the explicit Euler method, it is necessary to limit the timestep size. The maximum
value for the timestep can be calculated as [34]

∆t =
m∆tr2

min
D

⇒ m∆t =
∆tD
r2

min
; D =

k
ρc

, (32)

where m∆t is the mesh Fourier number based on the timestep used in our simulations, rmin is
the minimum node distance, and D denotes thermal diffusivity. The stability of the explicit
Euler method is assured for m∆tmin ≤ 0.25 [34] in the case of the finite difference method.

2.6. Numerical Implementation

The code is written in Fortran 2008 and compiled into a 64-bit executable with Intel
Visual Fortran compiler (XE 19). The simulations are carried out using an Intel(R) Core(TM)
i7-7700HQ processor. The same code elements have also been used in [14,15,19,35,36].

2.7. Numerical Examples

We are extending the previously published findings [5] by investigating the compari-
son of MQs with PHSs as RBFs. This research extensively explains the effects of a relatively
large range of node densities, timestep, shape parameter, scaling of the MQ, number of
the nodes in the subdomain, the effects of augmentation, and the irregularity of node
arrangements in terms of the average error for a boundary value and initial value test cases.
In addition, this research also demonstrates the selection of an optimal shape parameter for
MQs to compare the best results of MQs with PHSs.

2.7.1. Case 1: Boundary Value Problem

The Case 1 problem is posed on a two-dimensional rectangular domain, as shown in
Figure 3; the boundary conditions and material properties are the same as in [5] and are
given in Figure 3 and Table 1 below, whereas the respective node distributions are shown
in Figure 4.
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Figure 4. Case 1, RND and QUND with N = 13 × 21 nodes. In regular node distribution, the lrmin
is 0.05 m and lrmax is 0.1802 m, while for QUND, lrmin is 0.0994 m, and the lrmax is 0.1839 m.

Table 1. Material properties, boundary, and initial conditions used in Case 1 studies.

Material Property Value

Density (ρ) [kg/m3] 7850
Specific heat I [J/(kg K)] 460

Thermal conductivity (k) [W/(mK)] 52
Heat transfer coefficient (h) [W/(m2K)] 750

Reference temperature (Tre f ) [◦C] 0
Dirichlet boundary temperature (ΓD) [◦C] 100

Neuman boundary condition (ΓN) [W/m2] 0

Analytical Solution

The steady-state analytical solution Tana of Case 1 [5] is

Tana
(

px, py
)
= 2hT0

∞

∑
i = 1

cos βix
[

βi cosh βi

(
p+y − py

)
+ hsinhβi

(
p+y − py

)]
cos βi p+x

[(
β2

i + h2
)

p+x + h
][(

βi cosh βi p+y + hsinhβi p+y
)] , (33)

where βi represents the positive roots of the equation

β tan
[
β
(

p+x − p−x
)]

= h, (34)

where the results of i, for boundary nodes (0.6 m, 0.1 m), (0.5 m, 1 m), (0.3 m, 0.5 m), and
(0 m, 0.9 m) are shown in Figure 5, which shows that as we approach the south from the
north, the number of terms required for a stable solution increases. Based on the results, it
is concluded that i ≥ 20 and, in this study, we have used i = 100.

In order to compare the results, the analytical solution has been calculated for each
node to find the absolute temperature error εmax and average error εavg of the numerical
solution at time t as follows [5]:

εmax(t) = max|T(pn, t)− Tana(pn)| ; n = 1, 2, . . . ., N, (35)

εavg(t) =
N

∑
n = 1

1
N
|T(pn, t)− Tana(pn)| ; n = 1, 2, . . . ., N, (36)
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where T and Tana define the numerical and the analytical solution, and T(pn, t) stands for
the steady-state solution.

The simulations are stopped when the steady state is achieved by satisfying the
criterion

max|Tn − T0n| ≤ Tste. (37)

In all computational nodes, pn; n = 1, 2, . . . , N. The parameter Tste represents the
steady-state convergence margin, which is chosen to be less than or equal to 10−6 ◦C in
all the calculations in this paper. The analysis is stopped if the steady-state criterion is
achieved or the calculation time exceeds the foreseen time of interest.

Some fixed values used throughout the simulations are given in Table 2, while the
position of local nodes is shown in Figure 2.
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Figure 5. Case 1, convergence analysis of analytical solution as a function of the terms i used in the
evaluation of Equation (33) for four different nodes, i.e., (0.6 m, 0.1 m), (0.5 m, 1 m), (0.3 m, 0.5 m),
and (0 m, 0.9 m) of the rectangular geometry.

Table 2. Fixed parameters used in the simulations of Case 1 studies.

RBF PHS MQ

∆t [s] 0.005 0.005

l N
9 9
13 13
25 25

c

- 1
- 8
- 16
- 32
- 64

Naug 6 1
Scattering factor (δ) 0.10 0.10

Tste [◦C] 10−6 10−6

Initial temperature (T0) [◦C] 100 100

Computational Parameters

In this study, the used node densities and their respective boundary and inner bound-
ary nodes are given in Table 3. The simulations have been carried out for 9, 13, and 25 nodes
in a subdomain.
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Table 3. Node densities with boundary and domain nodes used in Case 1 studies.

Node’s Arrangement Total Number of
Nodes (N)

Number of Boundary
Nodes (NΓ)

Number of Domain
Nodes (NΩ)

13 × 21 269 60 209
31 × 51 1577 156 1421
61 × 101 6157 316 5841

121 × 201 24,321 636 23,685
241 × 401 96,641 1276 95,365

It is well known that as the node density increases, the timestep should decrease for
a stable solution, and according to Equation (32), for the most dense node arrangement
(N = 241 × 401), we should choose a timestep below ∆t ≤ 1.08 × 10−2 s. In order to be
on the safe side, we have used a timestep of ∆t = 5 × 10−3 s in all cases.

The minimum and used mesh Fourier numbers for Case 1 are presented in Table 4 below.

Table 4. Minimum and used mesh Fourier number for the stable solution of Case 1.

N m∆tmin m∆t rmin [m]

241 × 401 0.25 0.116 0.002
121 × 201 0.25 0.029 0.005
61 × 101 0.25 0.00744 0.00984
31 × 51 0.25 0.00180 0.02000
13 × 21 0.25 0.00029 0.05000

Table 4 shows the minimum Fourier number values (m∆tmin) for a stable solution and
the values used for the Fourier number (m∆t) based on the timestep ∆t in our calculations.
It is clear from Table 4 that we have used a permissive value for the Fourier number in
our simulations.

2.7.2. Case 2: Initial Value Problem

The initial value problem is solved on a square geometry, with the boundary conditions
shown in Figure 6 and the material properties given in Table 5 below. The respective node
distribution is shown in Figure 7.

Table 5. Material properties used in Case 2 studies.

Material Property Value

Density (ρ) [kg/m3] 1
Specific heat (c) [J/(kg K)] 1

Thermal conductivity (k) [W/(mK)] 1
Initial temperature (T0) [◦C] 1

Analytical Solution

The analytical solution to the problem is given as [5]

Tana
(

px, py, t
)
= Tana(px, t)Tana

(
py, t

)
, (38)

with

Tana(pς, t) =
4
π

∞

∑
i = 1

−1i

2i + 1
exp

[
− k(2i + 1)2π2t

4ρc
(

p+ς − p−ς
)2

]
cos

[
(2i + 1)π(pς − 1)

2
(

p+ς − p−ς
) ]

; ς = x, y, (39)

where some values of i for two different nodes at positions (0.5 m, 0.5 m) and (0.6 m, 0.9 m)
at time 0.001, 0.1, and 1 s are given in Figure 8, and based on this, it is concluded that if
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i ≥ 30, then the analytical solution will produce stable results, and in this study, we have
used i = 50.
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Figure 8. Case 2, convergence analysis of analytical solution as a function of the terms i used in
evaluating Equation (39) for two nodes, i.e., at (0.5 m, 0.5 m) and (0.6 m, 0.9 m), of the square geometry
for time t = 0.001 s, 0.1 s, and 1 s.

Some fixed values we used throughout the simulations are given in Table 6.

Table 6. Fixed parameters used for the simulations in Case 2 studies.

RBF PHS MQ

∆t [s] 10−6 10−6

t [s]

1 1
0.1 0.1

0.01 0.01
0.001 0.001

l N

- 5
9 9

13 13
25 25

c

- 8
- 16
- 32
- 64

Naug 6 1

Computational Parameters

In this study, the used node densities and their respective boundary and inner bound-
ary nodes for Case 2 studies are given in Table 7. The simulations have been carried out for
5, 9, 13, and 25 nodes in a subdomain.

Table 7. Node densities with boundary and domain nodes used in Case 2 studies.

Node’s Arrangement Total Number of
Nodes (N)

Number of Boundary
Nodes (NΓ)

Number of Domain
Nodes (NΩ)

11 × 11 117 32 85
21 × 21 437 72 365
41 × 41 1677 152 1525

101 × 101 10197 392 9805

For Case 2 studies with the densest nodes (N = 101 × 101), the timestep should be
chosen below ∆t ≤ 2.5 × 10−3, and we have used ∆t = 5 × 10−6 s.
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The minimum and used mesh Fourier numbers for Case 2 are presented in Table 8
below.

Table 8. Minimum and used mesh Fourier number for the stable solution of Case 2.

N m∆tmin m∆t rmin [m]

11 × 11 0.25 0.00121 0.09090
21 × 21 0.25 0.00441 0.04761
41 × 41 0.25 0.01681 0.02439

101 × 101 0.25 0.102 0.00990

It is clear from Table 8 that we have used a permissive value for the Fourier number in
our simulations.

3. Results
3.1. Results and Discussion for Case 1

In this section, we discuss the results of the simulations for different parameters and
arrangements (RND and QUND) with MQs and PHSs. The simulations ran until the
steady-state criterion of Tste = 10−6 ◦C was reached.

3.1.1. Effects of Augmentation for MQ

As we know, in the case of PHS, if we increase the degree of the polynomial, the
error reduces [24], but in the case of MQs, this is not always true. To assess the effects of
augmentation on MQs, we ran test simulations by selecting different nodes in the local
subdomain (l N = 5, 9 & 13). The augmentation effects are presented in terms of the
difference in the average error based on the number of nodes in the local subdomain, as
shown in Figures 9–11. Note that due to a very small difference between the results (which
was hard to see clearly in a graph), we have decided to show the difference between two
average errors in terms of percentage on the vertical axis of each graph.
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The difference between the average errors and their percentage improvement is calcu-
lated as

∆ε% =
εavg,0 − εavg, aug

εavg, 0
100%, aug = 1, 3. (40)



Math. Comput. Appl. 2024, 29, 23 15 of 30

In Figure 9, it is shown that, for five nodes in the local subdomain, as we increase the
number of augmentations from zero to one, it significantly affects denser node arrangement
(about 40% for N = 241 × 401). At the same time, it shows a relatively small effect on the
less dense nodes, while it shows a very slight change in the results if we change the number
of augmentations from 1 to 3. Another aspect we can see from Figures 9–11 is that as we
increase the number of local nodes from 5 to 9 to 13, the percentage improvement in the
average error drops. For 9 and 13 nodes in the local subdomain, increasing the augmentation
from 0 to 3 decreases the accuracy, as described in [37,38] as well. It is also observed that
for denser nodes, augmentation always improves the accuracy; however, in some cases,
augmentation 1 gives the best results. Therefore, this article will use augmentation with a
constant polynomial using MQs as RBFs for better accuracy and less computational time.
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3.1.2. Selection of an Optimal Shape Parameter for MQs

The PHS is a method free of shape parameters [24], while the MQ is a shape parameter-
dependent method. In order to obtain a smaller average temperature error, we need to find
an optimum shape parameter for MQs.

The shape parameter plays a vital role in converging the absolute average temperature
error. That is why a suitable shape parameter selection is mandatory for MQs. In this paper,
we show the effects of different shape parameters on the results of the average temperature
error for 9, 13, and 25 nodes in the local subdomain.

Figure 12 shows the relation of the average error with different shape parameter values.
For shape parameters 1 and 8, the convergence curve is not smooth when increasing the
number of total nodes while keeping 9 nodes in the local subdomain. Figure 12 shows
a smooth converging curve for shape parameters 16, 32, and 64. Some simulations for
different shape parameters are shown in Figure 13. It is shown that the results will not
change if we choose a shape parameter equal to or greater than 50 with nine nodes in the
local subdomain for this specific case. We have used 64 as the optimal shape parameter
with nine nodes in the local subdomain. We obtain a constant value of the absolute average
temperature error with a shape parameter equal to 64, as shown in Figure 13.
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Figure 12. Case 1, MQ, εavg as a function of node distance calculated for five different shape pa-
rameters (RND, Naug = 1, l N = 9).

Increasing the number of nodes in the local subdomain requires a smaller shape
parameter to obtain accurate results. Figure 14 shows a relation between the average error
and shape parameter. It is demonstrated that by increasing the shape parameter, the error
decreases, with an increase in the node density. In contrast, this direct relation between the
shape parameter and the average error is valid up to a certain value of the shape parameter;
when the shape parameter exceeds that particular value (32 in this case), then the change
in the error is negligible by increasing the shape parameter. This can be seen clearly in
Figure 15. In the case of 13 nodes in the local subdomain, if we choose a shape parameter
equal to or greater than 32, we will reach the critical value of the shape parameter, after
which the results no longer change. Detailed research has been conducted to find the
most suitable shape parameter for more accurate results while using 13 nodes in the local
subdomain, shown in Figures 14 and 15. It is clear from Figure 15 that with 13 nodes in the
local subdomain, if we choose a shape parameter equal to 32, then we will obtain the least
absolute average temperature error.
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Increasing the number of nodes in the local subdomain makes the MQ more sensitive
to selecting the optimal shape parameter. For example, we have carried out some test
simulations and found that the MQ for 25 nodes in the local subdomain is much more
sensitive to the shape parameter. In our simulations, we could reach a maximum of
c = 2.43 value for the shape parameter, above which the results diverge. At the same time,
it shows the same trend in terms of accuracy, i.e., by increasing the shape parameter from 1
to 2.43, the average error decreases, which is similar in behavior to 9 and 13 nodes in the
local subdomain. In contrast, we obtain diverging results if we use a value greater than 2.43
for the shape parameter in the case of 25 nodes in the local subdomain for the 241 × 401
node distribution. The discussion above shows that the critical point at which the shape
parameter no longer affects the results is smaller for less dense nodes.
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3.1.3. Effects of the Number of Nodes in the Local Subdomain on the Absolute Average
Error for PHS and MQ

This section shows the effects of the number of nodes in the local subdomain for
regular nodes of PHSs and MQs separately.

Figure 16 shows the average error for PHSs using different numbers of nodes in the
local subdomain. The absolute average error decreases as we increase the number of nodes
in the local subdomain from 9 to 13. If we further increase the number of nodes in the
local subdomain to 25, then an increase in the error can be seen, as shown in Figure 16.
The average error for 13 nodes in the local subdomain is the smallest, and thus, it is
recommended that for RNDs, a selection of 13 nodes in the local subdomain would be a
good choice when PHSs are used for solving complex problems.
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The selection of an optimum shape parameter is the most critical and challenging
task for MQs, which is already discussed in Section 3.1.2. Figure 17 shows the average
error for MQs using optimal shape parameters and different numbers of nodes in the
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local subdomain. This figure shows that we obtain more accurate results by increasing the
number of nodes in the local subdomain. Therefore, if we use a shape parameter equal to
32 and 13 nodes in the local subdomain, then the value for the average error for the highest
denser nodes will be the smallest, while for the case of 25 nodes in the local subdomain,
selecting an optimum shape parameter is very limited. We could choose a maximum of
2.43 as a shape parameter for 25 nodes in the local subdomain. Any value for a shape
parameter greater than 2.43 for 25 nodes in the local subdomain will give diverging results
using the same timestep.
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3.1.4. Comparison of MQs and PHSs Based on the Average Error

In this section, we present the accuracy of PHSs and MQs based on the smallest
average error, as shown in Figure 18. It has been shown in the text earlier that both PHSs
and MQs produce more accurate results for high denser nodes while using l N = 13. We
compare the best results for both PHSs and MQs (in terms of the number of nodes in the
local subdomain), and it can be concluded that PHSs and MQs show the same accuracy for
a small number of total nodes. In contrast, in the case of a larger number of total nodes,
MQs with 13 nodes in the local subdomain would be a good choice for higher accuracy,
considering that an optimal shape parameter should be selected for MQs.

3.1.5. Effects of Non-Uniformity of the Nodes

This section explores the maximum limit, up to which the results are converging, for
the non-uniformity of the nodes based on the average error. Figure 4 shows the irregular
node arrangements with N = 13 × 21 node density; the QUNDs are generated in the
domain by transforming the regular nodes in the following manner:

pnς(nonuniform) = pnς(uniform) + (2crandom − 1)δpnς(uniform); ς = x, y, (41)

where crandom represents a random number −1 ≤ crandom ≤ +1, δ represents a scattering
factor. Simulations with 9, 13, and 25 nodes in the local subdomain have been carried out
to find a constant value of the scattering factor for all cases with different shape parameters
on which the convergence can be achieved for the given problem, as shown in Figure 19.
It has been shown that the range of selection for the scattering factor in the case of PHSs
is longer than that of MQs. All values shown in Figure 19 are the possible range for the
selection of the scattering factor for the present case; any value greater than those shown in
Figure 19 will result in the divergence of the results. Figure 19 also shows that increasing
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the shape parameter for the MQ increases the accuracy but eventually decreases the range
for selecting the scattering factor. Another aspect of Figure 19 is that increasing the number
of nodes in the local subdomain also increases the range for selecting the scattering factor
because of the wide range of subdomains. The PHS deals better with the scattering factor.
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Figure 18. Case 1, εavg as a function of node distance (RND, MQ with Naug = 1, and PHS with
Naug = 6).
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Figure 19. Case 1, εavg as a function of the scattering factor (δ) (QUND, N = 241 × 401).

In the rest of the simulations, we fixed the scattering factor equal to 0.10 for both PHSs
and MQs because, with this value, all the present study cases converge and produce good
results. As shown in Figure 19, we conducted multiple tests to find the optimal shape
parameters for QUND using MQs with different nodes in the local subdomain. All the
simulations in this section use the optimal shape parameters. A comparison of the average
temperature error with a different number of nodes in the local subdomain for PHSs can
be seen in Figure 20; it is clear that 13 nodes in the local subdomain should be selected for
better accuracy and smooth convergence.
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Figure 20. Case 1, PHS, εavg error as a function of the node distance for different l N (QUND, δ = 0.10,
Naug = 6).

The average temperature error for MQs is shown in Figure 21. From this figure, we can
say that with a scattering factor of 0.10, we should select nine nodes in the local subdomain
and seven as the shape parameter. It should also be noted here that as we increase the
number of nodes in the local subdomain, the range for the selection of the shape parameter
decreases, while the range for the selection of the scattering factor increases.
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Figure 21. Case 1, MQ, εavg as a function of the node distance for different l N (QUND,
δ = 0.10 Naug = 1).

A comparison of the results for PHSs and MQs is shown in Figure 22; we can see
that the MQ is a good choice for less dense nodes. However, as the total number of nodes
increases, the PHS becomes an appropriate choice for calculating the average temperature
error. The PHS has an advantage over the MQ by having an extensive range for selecting
the scattering factor and no need for shape parameter selection. PHSs is a good choice for
modeling a real-world problem with complex geometries.
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3.1.6. Effects of Scaling Factor on MQs

So far, we have produced all the results using scaled MQ RBFs, as shown in Equation
(17). To see the effects of the scaling factor, we have carried out some simulations without
the scaling factor for 9 and 13 nodes in the local subdomain for regular node arrangements
(N = 241 × 401), as shown in Figures 23 and 24. Figure 23 shows the effects of the shape
parameter over the average error for scaled and unscaled MQs using the RND. The scaled
MQ possesses a wide range for selecting shape parameters, and the average error decreases
as we increase the shape parameter value, as explained earlier in Section 3.1.2. On the other
hand, the unscaled MQ is sensitive to the shape parameter, and as we increase the shape
parameter’s value, the average error rises abruptly. For local nodes l N = 9, a wide range
is available for selecting the shape parameter, but the average error increases as we increase
the shape parameter’s value, and the results diverge as we reach a value of 40 for the shape
parameter. If the local nodes are expanded to l N = 13, then the range for selecting the
shape parameter gets limited to a maximum value of two, and the average error overshoots
as we increase the shape parameter from one to two.
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Figure 24. Case 1, εavg as a function of the scattering factor (δ) for scaled and unscaled MQs (QUND,
N = 241 × 401).

Figure 24 shows that the scattering factor impacts the unscaled MQ much more than
the scaled MQ. For the unscaled MQ, a shape parameter equal to 1 leads to a divergence of
the results, even with a scattering factor as low as 0.001. Based on the outcomes of Figure 23,
we used the shape parameter equal to 0.08 in the simulations for the unscaled MQ with
QUNDs in Figure 24. It is evident from Figure 24 that the scaled MQ provides stable results
for a much larger scattering factor than the unscaled MQ. In addition, we have used shape
parameters 7 and 2 with local nodes 9 and 13, respectively, because from Figure 19, we
know that the scaled MQ with 9 and 13 local nodes has the smallest range for selecting the
scattering factor with shape parameters 7 and 2, respectively.

3.2. Results and Discussion for Case 2
3.2.1. Analysis of MQs for Different Parameters and Total Time [s]

The detailed results of the average temperature error using MQs are shown graphically
in Figures 25–27.
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Figure 27. Case 2, MQ, εavg as a function of node distance for four different l N with optimal shape
parameters (RND, Naug = 1, t = 1 s).

Figure 25 shows the average temperature error [◦C] as a function of the node distance
[m], demonstrating the impact of gradually increasing the total time. As the total time
progresses from t = 0.001 [s], t = 0.01 [s], t = 0.1 [s], to t = 1 [s], it is evident that the average
temperature error consistently decreases. This trend holds true while keeping the shape
parameter and the number of nodes in the local subdomain constant. This behavior is due to
the fact that, as the total time increases, the numerical simulation undergoes more timesteps,
allowing for better stabilization and a reduction in transient effects. Consequently, the
solution tends towards a steady state that is flat everywhere, resulting in increasingly minor
average temperature errors.

Figure 26 shows that the accuracy of the results improves by increasing the number
of nodes in the local subdomain by keeping the same shape parameter and total time as
long as the results converge. In the case of 25 nodes in the local subdomain, the results
diverge if we use a large shape parameter (8, 16, 32). That is why the results are not shown
in Figure 26 for the case with 25 nodes in the local subdomain.
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While we have already carried out a detailed analysis for finding the optimal shape
parameter with different nodes in the local subdomain in Section 3.1.2, to compare the
results for the time-dependent case, we show the results for all the optimal shape parameters
with the respective number of nodes in the local subdomain in Figure 27. From Figure 27,
we can conclude that the accuracy of the results increases by increasing the number of
nodes in the local subdomain and using the optimal shape parameter (c).

3.2.2. Analysis of PHSs for Different Parameters and Total Time [s]

A similar trend to the MQs can be seen while using PHSs with different maximum
times; if we increase the total time, then the accuracy of the results improves, provided the
number of nodes in the local subdomain remains constant, as shown in Figure 28 (l N = 9),
Figure 29 (l N = 13), and Figure 30 (l N = 25) respectively. This improvement is a
logical consequence of the fact that the analytical and numerical solutions tend to a flat
constant value.
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The only exception in PHS simulations arises when employing five nodes in the local
subdomain. In this case, a singular matrix is encountered, leading to the termination of
the simulation. Also, according to [24], to obtain stable results, the number of nodes in the
local subdomain should be at least double the number of augmentation, i.e., in our case, as
we used Naug = 6, so if we use l N greater than or equal to 12, then we will obtain stable
and converging results. Therefore, PHSs will never work while using five nodes in the
local subdomain with Naug = 6 because when l N ≤ Naug, then the matrix will become
singular due to the appearance of one whole row equal to zero.

From Figure 31, it can be concluded again that the results are more accurate for PHSs
if we increase the number of nodes in the local subdomain.

Figure 32 compares MQs and PHSs based on the average temperature error as a function
of node distance. We can see that using MQs produce more accurate results than PHSs.
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4. Discussion

This paper compares LRBFCMs, structured with MQs and PHSs’ shape functions, for
solving the HDE. The present research represents a follow-up of our previous pioneering
publication on LRBFCM [5], based only on MQs, by comparing MQs and PHSs with a
detailed assessment of how the factors such as node density, timestep, shape parameter,
scaling of the MQ, number of nodes in the local subdomain, augmentation, and irregular
node arrangements affect the average error in the discussed boundary value and initial
value test cases.

In Case 1 studies, we can see that using augmentation leads to improved accuracy,
as shown in Figure 10. In addition, this study shows that using a constant or a linear
polynomial as the augmentation for MQs produces the same average temperature error, as
shown in Figure 11. In addition to this, a comprehensive investigation was carried out to
determine the optimal shape parameter for the MQs using various numbers of nodes within
the local subdomain (Figures 12 and 14) as well as various node densities (Figures 13 and 15).
We have conducted our simulations for a range of shape parameters (c = 1, 8, 16, 32, 64)
and assessed the accuracy of the results based on the average temperature error.

In Case 1 of this study, for the scaled MQ, we found that the number of nodes in the
local subdomain affects the selection of the shape parameter (explained in 3.1.2). When
fewer nodes are in the local subdomain, we have a wide range of choices for the shape
parameter. In this situation, using a larger shape parameter can help to improve accuracy
as long as the results stay stable. Conversely, with more nodes in the local subdomain,
our range of choices for the shape parameter becomes smaller to ensure the stability of
the simulation. Therefore, picking a suitable shape parameter for MQs is crucial. The
sensitivity analysis of MQs based on the scaling factor was also studied. It was shown
that a MQ without scaling is extremely sensitive to the shape parameter (Figure 23) and
scattering factor (Figure 24). Therefore, it is recommended to use a scaled MQ for better
stability and accuracy.

PHS and MQ exhibit converging behavior with increasing node density (as shown
in Figures 16 and 17, respectively). We conducted a comparative analysis to assess the
accuracy of both MQs and PHSs using the RND (as depicted in Figure 18). The highest
accuracy for both MQs and PHSs was achieved with 13 nodes in the local subdomain. The
findings indicate that MQs and PHSss delivered similar accuracy at lower node densities.
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Nevertheless, MQs demonstrated superior accuracy at higher node densities compared
to PHSs.

In PHSs, node irregularity has a smaller impact on the results, enabling QUNDs more
widely than MQs (as shown in Figure 19). For both PHSs and MQs, the selection of the
number of nodes in the local subdomain is significantly affected by the scattering of the
nodes. If the number of nodes in the local subdomain is small, then the maximum value
for the scattering factor (δ) should be small too for stable results. The available range for
the possible values of the scattering factor is inversely related to the shape parameter. A
small shape parameter provides a wide range for choosing the scattering factor and vice
versa. The MQ shows higher accuracy for less dense QUNDs; however, PHSs produce
more accurate results if the nodes are denser. A higher convergence rate is observed for
PHSs than MQs with scattered node arrangements, as shown in Figure 22. For comparison
with QUND, we selected the most accurate results (from Figures 20 and 21) for both MQs
and PHSs based on the number of nodes in the local subdomain. The conclusion was that
MQs performs better with a lower node density, while PHSs provide better accuracy when
the node density is high (Figure 22).

The results of Case 2 for both MQs and PHSs are studied based on the number of nodes
in the local subdomain (l N = 5, 9, 13, 25), total computational time (t[s] = 0.001, 0.01, 0.1, 1),
and different node densities with optimal shape parameters using RNDs. The comparative
analysis of PHSs and MQs was repeated using a different number of nodes in the local
subdomain as the basis (Figure 32). The results reconfirmed that the MQ demonstrates
higher accuracy than PHSs, as previously observed in the Case 1 study. MQs and PHSs
individually produce more accurate results with the increasing number of nodes in the
local subdomain. It is also observed that for PHSs, the number of nodes in the local sub-
domain should be at least greater than or equal to twice the number of the augmentation.
Meanwhile, the MQ does not require any such conditions. The simulation results indicate
that implementing an 11 × 11 node arrangement and 25 nodes in the local subdomain is
unsuccessful due to the inadequate number of nodes (Figure 30).

In conclusion, the case study analysis indicates that the MQ exhibits slightly improved
accuracy for regular node arrangements compared to PHSs. On the other hand, when
node arrangements are scattered, the PHS tends to produce more accurate results. PHS is
more beneficial for problems that require non-uniform node arrangements. In Case 1 of
our study, we found that when comparing the best results achieved using QUND, with a
scattering factor of 0.10 (as depicted in Figure 22) and RND (shown in Figure 18) for PHSs
and MQs, the average accuracy difference (considering all the node arrangements used in
this study) for PHS is only 0.41%. However, for MQ, this difference is considerably larger
at 11.24%. Additionally, the PHS does not require finding an optimal shape parameter,
making it more practical and efficient than MQ for solving real-world problems. In the
future, we recommend using PHSs for practical purposes and longer robustness in QUND.
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