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Abstract: This study investigates the influence of high-order twisting phases on polarization states
and optical angular momentum of a vector light field with locally linear polarization and a hybrid
state of polarization (SoP). The twisted vector optical field (TVOF) is experimentally generated
based on the orthogonal polarization bases with high-order twisting phases. The initial SoP of a
TVOF modulated by the high-order twisting phase possesses various symmetric distributions. The
propagation properties of a high-order TVOF with locally linear polarization and hybrid SoP are
explored, including the intensity compression, expansion, and conversion between the linear and
circular polarization components. In particular, orbital angular momentum (OAM) appears in a
high-order TVOF during propagation where no OAM exists in the initial field. The variation of
OAM distribution in cross-section becomes more frequent with the increase of the twisting phase
order. In addition, a non-symmetric OAM distribution appears in a non-isotropic TVOF, leading to
the rotation of the beam around the propagation axis during propagation. The optical energy flow
distribution of a high-order TVOF provides a more profound understanding of the propagation dy-
namics of high-order TVOF. These results provide a new approach for optical field manipulation in a
high-order TVOF.

Keywords: high-order twisting phases; state of polarization; vector optical fields; orbital
angular momentum

1. Introduction

In recent years, vector optical fields have attracted significant attention due to their
unique properties and wide-ranging applications in various areas, including optical com-
munications [1], imaging [2], and beam manipulation. These vector fields can possess
characteristics such as complex spatial structures, nonuniform polarization distribution [3],
and novel phase distributions [4], providing a new way to precisely manipulate light [5].
The concept of phase modulation in vector optical fields originates from the study of wave
optics and optical phase engineering. Early investigations focused on controlling the spatial
phase distribution [6,7] of light waves, leading to the development of techniques such as
spatial light modulators (SLMs) [8] and holography [9,10]. These methods allowed for the
precise manipulation of phase profiles, enabling the generation of structured light beams
with tailored phase distributions [11]. Building upon these foundational works, researchers
began to explore the effect of spatial phase modulation on the scalar beam and the vector
optical fields. Many novel properties have been demonstrated with the impact of different
phase distributions on a vector optical field [12–15].

In 1993, Simon and Mukunda discovered an inseparable quadratic phase [16], termed
the twist phase, while searching for rotationally invariant partially coherent light fields.
This in turn led to the study of the effect of this phase on different light fields in different
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media [17–19]. This twist phase can induce beam rotation during transmission [20]. Re-
search indicated that the twist phase can only exist in partially coherent light fields due to
constraints imposed by non-negative-definiteness conditions [21]. In 2019, a new separable
twisting phase was proposed [22], introducing the twist phase into fully coherent beams.
This provided a new method for generating and measuring scalar vortex beams. In 2021, a
high-order twisting phase (cross-phase) was introduced into Bessel–Gaussian beams [23],
offering a novel approach to shaping perfect optical vortices. Recently, we introduced the
twisting phase into vector beams, revealing that vector vortex beams can be dynamically
manipulated using the twisting phase [24]. Nevertheless, to date, the investigation of the
effect of high-order twisting phases on a vector light field still needs to be explored.

In this study, we investigated the properties of vector optical fields with high-order
twisting phases. The twisted vector optical field (TVOF) is experimentally generated with
high-order twisting phases. The effect of a high-order twisting phase on the initial polariza-
tion distribution of vector beams was analyzed. In particular, the evolution of polarization
and orbital angular momentum in vector optical fields with high-order twisting phases
during propagation is demonstrated. The optical energy flow distribution of a high-order
TVOF provides a more profound understanding of the propagation dynamics of high-order
TVOF. These results also contribute to the deeper understanding and utilization of twisted
vector optical fields and shed light on the origin and development of the corresponding
research area, such as optical trapping, high-capacity optical communications, and the
generation of structured light for advanced imaging and manipulation techniques.

2. Experiment Generation of a High-Order TVOF

The form of the general twisting phase δ (x, y) in Cartesian coordinates (x, y) is

δ(x, y) = uxpyq (1)

where u is the twisted strength of the twisting phase. The exponents p and q are both
positive integers. The sum p + q is referred to as the order of the twisted phase. When both
exponents are equal to 1 (resulting in a sum of 2), it is termed a low-order twisting phase, as
shown in Figure 1a. Conversely, when the sum is greater than 2 (i.e., p + q > 2), it is referred
to as a high-order twisting phase, as shown in Figure 1b,c.
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The TVOF at the source plane with a twisting phase can be expressed as follows:

E(x, y) = exp
(
−x2/σ2

x

)
exp

(
−y2/σ2

y

)
·[exp(iδ)·e1 + exp (−iδ)·e2] (2)
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where σx and σy are the waist radius of the beam in x- and y-directions, respectively.
e1 =

(
ex − exp(i∆θ)ey

)
, e2 =

(
ex + exp(i∆θ)ey

)
. ex and ey are the unit vectors in the x- and

y-directions, respectively.
The experimental setup for generating a high-order TVOF is shown in Figure 2. The

laser beam with a wavelength of 532 nm is expanded after passing through a telescope
composed of two lenses (L1, L2), and then reflects off of a reflective spatial light modulator
(SLM). The transmission function of the computational holographic grating (CHG) loaded
into the SLM is defined as T (x0, y0) = 0.5 + γ [cos(2πf 0x0 + δ)]/2, where γ represents the
modulation depth, f0 is the spatial frequency of the CHG, and δ represents the twisting
phase distribution of the CHG. The first-order diffraction of the beam is selected using
an aperture (AP) to avoid other stray light. The beams are then transformed into left
and right circular polarizations (or orthogonal linear polarizations) using a λ/4 (or λ/2)
waveplate (WP). The ±1 order diffraction beams’ spots are recombined at the focal plane
of L5 using a Ronchi grating (RG) to generate the desired TVOF. The generated TVOF with
p = 1, q = 1, u = 12 × 106, and ∆θ = π/2 and p = 1, q = 2, u = 12 × 109, and ∆θ = 0 are
shown in Figure 3, represented by the Stokes parameters S0 (total intensity), S1 (the linear
polarization components in the horizontal and vertical direction), S2 (the linear polarization
components of 45◦and 135◦), and S3 (the left and right circular polarization components).
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aperture; WP: (λ/4 or λ/2) wave plate; RG: Ronchi grating; P: polarizer; CCD: charged-coupled
device camera.
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Figure 3. The Stokes parameters of the wisted vector optical field (TVOF) obtained in the experiment,
σx = σy = 0.9 mm. (a) p = 1, q = 1, u = 12 × 106, ∆θ = π/2; (b) p = 1, q = 2, u = 12 × 109, ∆θ = 0.
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When ∆θ = 0, different spatial positions on the cross-section exhibit various states
of polarization (SoP), including linear, circular, and elliptical polarization. If ∆θ = π/2,
different polarization directions of locally linear polarization can be observed at different
positions on the initial wavefront. The initial SoP for high-order twisted vector beams
with locally linear polarization (∆θ =π/2) and hybrid polarization (∆θ = 0) are depicted in
Figure 4. By comparing the differences in SoP between locally linear polarization (as shown
in Figure 4a) and hybrid SoP (as shown in Figure 4b), it can be observed that their S2 and S3
parameters are mutually interchangeable, i.e., the S2 (or S3) of a high-order twisted vector
beam with locally linear polarization is similar to the S3 (or S2) of the high-order twisted
vector beam with locally linear polarization. The SoP distributions of the initial fields are
modulated by the twisting phases, as shown in Figure 4. As recognized from Equation
(1), E (x, y) = exp(−x2/σx

2) exp(−y2/σy
2) · [exp(iδ) e1 + exp(−iδ) e2] = exp(−x2/σx

2)
exp(−y2/σy

2) · [cosδ·ex + exp(i(∆θ + π/2))sinδ·ey]. As the position approaches the origin
(x and y values tend to be zero), the y-direction polarization component goes to zero to
form an x-polarized linear polarization. With the increase of twisting phase orders, the
region with x-linear polarization in the beam center becomes broader, as evident from
the distribution of S1 in Figure 4. If ∆θ = π/2, when the order of twisting phase p (or q)
is odd, it results in a symmetrical amplitude modulation to the SoP about the x-axis, but
an antisymmetrical amplitude modulation about the y-axis. For ∆θ = 0, the odd order
of twisting phase p (or q) leads to a symmetrical phase modulation to the SoP about the
x-axis, but an antisymmetrical phase modulation about the y-axis. However, if the order of
twisting phase p (or q) is even, the modulations of the high-order twisting phase to the SoP
in the initial cross-section are symmetrical about the x (or y)-axis at either ∆θ = 0 or π/2, as
shown in the first column in Figure 4.

For the twisted vector optical field with a high-order twisting phase, the distribu-
tions of SoP (represented by the Stokes parameters) exhibit the following properties. The
distributions of S0 and S1 always appear symmetric about the x- or y-axis, denoting the
symmetric distributions of total intensity, and x- or y-component intensity, as shown in
Figure 4. In the case of locally linear polarized optical fields (see Figure 4a), when both
p and q are odd, the S2 distributions show symmetry about the origin but antisymmetry
about the x- and y-axes, representing that the directions of polarization are symmetric about
the origin but antisymmetric about x- and y-axes, as shown in the first column in Figure 4a
for p = 1 and q = 1. If p (or q) is odd but q (or p) is even, the S2 is symmetric about the y
(or x) axis but antisymmetric about the x (or y) axis. This corresponds to the directions of
polarization that are symmetric about the x (or y) axis but antisymmetric about the y (or x)
axis, as shown in the second and fourth columns in Figure 4a for p = 1 and q = 2. For the
hybrid SoP (p = 0), the variation in initial SoP distributions with the high-order twisting
phase modulations is represented by S3 (replaced with S2 for locally linear polarization in
Figure 4a), as shown in Figure 4b, denoting the polarization direction changes of circular
polarizations resulting from the modulation of high-order twisting phases. It is seen that the
fundamental physical properties resulting from the twisted phase are similar to that of the
locally linear polarization described above. Nevertheless, the initial SoP modulated with a
high-order twisting phase possesses a unique distribution, different from a lower-order
TVOF or other phase modulation. In addition, the theoretical and experimental results are
consistent by comparing Figures 3 and 4. Therefore, subsequent analysis mainly focuses on
the theoretical results.
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Figure 4. The Stokes parameters of twisted vector beams under different modulation parameters. The
parameters in the figure from columns 1 to 4 are, sequentially: p = 1, q = 1, u = 12 × 106; p = 1, q = 2,
u = 12× 109; p = 2, q = 4, u = 12× 1018; p = 1, q = 2, u = 12× 109. Plots in columns 1–3 represent isotropic
beams with σx = σy = 0.9 mm, while column 4 represents a non-isotropic beam with 2σx = σy = 1.8 mm.
(a) Locally linear polarized light field; (b) hybrid polarized light field. The state of polarization (SoP)
distributions are also represented by the arrows in S0 plots (black lines denote linear polarizations). The
green and red ellipses denote left- and right-circular polarization, respectively.
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3. Evolution of Polarization State in a High-Order Twisted Vector Optical Field

Under the paraxial approximation conditions, the vector-twisted optical beam propa-
gating in free space can be expressed in the following form using the Rayleigh–Sommerfeld
diffraction integral formula:

Ex(x, y, z) = − iz
λ

ikz

z2

∞∫
−∞

∞∫
−∞

Ex0·exp
(
− x2

σ2
x

)
exp

(
− y2

σ2
y

)
exp

(
ik x2

0+y2
0−2xx0−2yy0

2z

)
x0y0,

Ey(x, y, z) = − iz
λ

ikz

z2

∞∫
−∞

∞∫
−∞

Ey0·exp
(
− x2

σ2
x

)
exp

(
− y2

σ2
y

)
exp

(
ik x2

0+y2
0−2xx0−2yy0

2z

)
x0y0.

(3)

Similar to scalar-twisted light fields [25,26], the vector light fields carrying a twisting
phase experience gradual compression and expansion during propagation in free space.
During propagation, conversations between linear and circular polarizations in a twisted
vector light field occur. When the initial light field is locally linearly polarized, the con-
version to circular polarization from linear polarization during propagation leads to S3
no longer being entirely zero, as shown in Figure 5a. The 45◦ and 135◦ linear polarization
components appear for the hybrid polarized twisted vector beam as the variation of S2
values in Figure 5b. All polarization components and the whole field gradually compress
and expand during propagation. For the non-isotropic beams with σx 6= σy [22,23], the
influence of the high-order twisting phase on the SoP is similar to that of isotropic beams
with σx = σy. However, the intensity distribution of non-isotropic beams is elliptical, unlike
the circular shape of isotropic beams. Moreover, the non-isotropic twisted vector beam
experiences rotation during propagation, as depicted in Figure 5c. Therefore, the effect of a
high-order twisting phase can provide a diversified manipulation in a structured optical
field evolution and conversions between linear and circular polarization. In particular, to
our best knowledge, asymmetric compression and expansion in a high-order TVOF reshape
(p 6= q, see Figure 5) during propagation has not been reported, providing a new approach to
manipulate a complex structured optical field. Meanwhile, the conversions between linear
and circular polarizations during propagation can be manipulated by various high-order
twisting phases.

Photonics 2023, 10, x FOR PEER REVIEW 6 of 13 
 

 

3. Evolution of Polarization State in a High-Order Twisted Vector Optical Field 

Under the paraxial approximation conditions, the vector-twisted optical beam prop-

agating in free space can be expressed in the following form using the Rayleigh–Sommer-

feld diffraction integral formula: 

��(�, �, �) = −
��

�

����

��
� � ��� · exp �−

��

��
�

� exp �−
��

��
�

�

�

��

�

��

exp ���
��

� + ��
� − 2��� − 2���

2�
� ��� ���, 

��(�, �, �) = −
��

�

����

��
� � ��� · exp �−

��

��
�

� exp �−
��

��
�

�

�

��

�

��

exp ���
��

� + ��
� − 2��� − 2���

2�
� ��� ���. 

(3)

Similar to scalar-twisted light fields [25,26], the vector light fields carrying a twisting 

phase experience gradual compression and expansion during propagation in free space. 

During propagation, conversations between linear and circular polarizations in a twisted 

vector light field occur. When the initial light field is locally linearly polarized, the con-

version to circular polarization from linear polarization during propagation leads to S3 no 

longer being entirely zero, as shown in Figure 5a. The 45° and 135° linear polarization 

components appear for the hybrid polarized twisted vector beam as the variation of S2 

values in Figure 5b. All polarization components and the whole field gradually compress 

and expand during propagation. For the non-isotropic beams with �� ≠ �� [22,23], the in-

fluence of the high-order twisting phase on the SoP is similar to that of isotropic beams 

with �� = ��. However, the intensity distribution of non-isotropic beams is elliptical, unlike 

the circular shape of isotropic beams. Moreover, the non-isotropic twisted vector beam 

experiences rotation during propagation, as depicted in Figure 5c. Therefore, the effect of 

a high-order twisting phase can provide a diversified manipulation in a structured optical 

field evolution and conversions between linear and circular polarization. In particular, to 

our best knowledge, asymmetric compression and expansion in a high-order TVOF re-

shape (p ≠ q, see Figure 5) during propagation has not been reported, providing a new 

approach to manipulate a complex structured optical field. Meanwhile, the conversions 

between linear and circular polarizations during propagation can be manipulated by var-

ious high-order twisting phases. 

 

Figure 5. The Stokes parameters of various TVOF during transmission: (a) isotropic
(σx = σy = 0.9 mm) locally linearly polarized twisted vector optical beam, p = 1, q = 1, u = 12 × 106;



Photonics 2023, 10, 1099 7 of 12

(b) isotropic (σx = σy = 0.9 mm) hybrid-polarized twisted vector optical beam, p = 1, q = 2,
u = 12 × 109; (c) non-isotropic (2σx = σy = 1.8 mm) locally linearly polarized twisted vector op-
tical beam, p = 2, q = 2, u = 12 × 1012. The SoP distributions are also presented by the arrows
in S0 plots (black lines denote linear polarizations). The green and red ellipses denote left- and
right-circular polarization, respectively.

4. Effect of a High-Order Twisting Phase on the Optical Angular Momentum and
Optical Energy Flow of TVOF

Polarization conversions between linear and circular, and the manipulation of optical
angular momentum in structured light fields are essential topics in optical field manipula-
tion, with significant fundamental research interest and practical applications. The spin
angular momentum (SAM) relies on circular polarization [27–29] (referred to as the S3 in
Figure 4), while the OAM is related to the gradient phase distribution [30]. The SAM and
OAM densities of structured beams in the focal region can be calculated as follows:

S ∝ Im[E∗ × E],L ∝ Im [r× (E∗ · (∇)E)], (4)

where Im [.] denotes the imaginary part, and the asterisk represents the complex conju-
gation. S and L describe the SAM and OAM densities, respectively. The linear/circular
polarization conversion during propagation leads to the SAM appearance even if there is
no SAM in the initial field for the locally linear twisted vector optical field, represented by
S3, as shown in Figure 5a. The evolutions of SAM in a twisted vector optical field (TVOF)
and conversions between linear and circular polarizations for both locally linear polarized
and hybrid SoP during propagation are sensitively dependent on the twisting phase orders
p and q, as shown in Figure 5.

Distinct from the spin angular momentum associated with circular polarization, the
OAM characteristics are related to the gradient phase distribution. There are no OAM
distributions in the initial TVOF. However, different (positive and negative) OAM distribu-
tions in the cross-section will appear because of the twisting phase during propagation, as
shown in Figure 6. The effect of a low-order twisting phase is similar to that of cylindrical
lenses [17], leading to the generation of OAM [31]. With the increase of the twisting phase
order, the variation of OAM distribution becomes more frequent, leading to more (positive
or negative) extreme values of OAM distribution in the cross-section. In particular, a
nonsymmetric OAM distribution appears due to the unequal field distributions in the x-
and y-directions for a non-isotropic TVOF. This leads to the beam rotation during propa-
gation, as shown in Figure 6c for 2σx = σy = 1.8 mm. These results offer a new approach
to manipulating the SoP and OAM in a high-order TVOF. The introduction of high-order
twisted phases induces non-uniform OAM distributions that can be manipulated by the
high-order twisted phases.

The optical energy flow (the time-averaged Poynting vector) in the transverse plane
to the propagation direction has attracted considerable research interest because of its
potential applications in optical micro-manipulation [27–29,32]. The optical energy flow
is given by < S >= Re [E×H]/2 = Im

[
E×

(
∇× E*

)]
/2µ0ω, where Re [.] and Im [.]

denote the real and imaginary parts, respectively, and the asterisk corresponds to their
complex conjugations. µ0 and ω are the vacuum permeability and angular frequency,
respectively. The optical energy flows of TVOF with various order twisting phases in
different propagation distances are shown in Figure 7. The optical energy flow of a TVOF
is closely related to the order of the twisting phase (p and q) and beam shape. When
p = q, the directions of optical energy flow point to the diagonal and anti-diagonal in
the initial propagation, and the beam intensity compresses along the diagonal and anti-
diagonal directions. Then, the beam expands after the compression, as shown in the first
and third rows in Figure 7a,b. If p 6= q, the directions of the optical energy flow are not
centrosymmetric, leading to the intensity compression deflected from the diagonal and
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anti-diagonal directions, as shown in the second rows in Figure 7a,b. For a non-isotropic
TVOF (σx 6= σy), the asymmetrical reshapes of the beam play a role in the directions of
an optical energy flow, bringing about the rotation of the beam in cross-section during
propagation [24], as shown in Figure 7c. The optical energy flow distributions of TVOF
provide an intuitive understanding of the propagation dynamics and evolution of the OAM
of TVOF.
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5. Effect of a High-Order Twisting Phase on a Vector Beam

The TVOF analyzed above is based on the orthogonal polarization bases with high-
order twisting phases. For a traditional vector beam, the effect of a low-order twisting
phase on a vector beam has been reported [31]. Different from the low-order twisting phase,
the effect of a high-order twisting phase on the vector beam will generate novel properties
due to its unique phase distributions.

The vector optical field with a high-order twisting phase on the source plane can be rep-
resented as E2(x, y) = exp

(
−x2/σ2

x
)
exp
(
−y2/σ2

y

)
·[exp(iδ + imϕ) · e1 + exp (−iδ− imϕ)·e2].

Firstly, the initial SoP of the vector optical field modulated with various high-order twisting
phases features unique distributions, as shown in the first column in Figure 8. During propaga-
tion, the evolution of beam shape closely depends on the orders of the twist phase, resulting in
elliptical, triangular, and quadrilateral intensity distributions, respectively. Meanwhile, the con-
version between linear and circular polarizations during propagation is sensitively dependent
on different order twisting phases, as shown in the second and third columns in Figure 8. These
results provide a more profound understanding of the manipulation of complex spatial optical
fields, and it can find potential applications in micro-particle manipulation, optical information
processing, and manipulation of complex optical fields.
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6. Discussion

As a novel phase, the effect of a high-order twisting phase on TVOF with locally
linear polarization and a hybrid SoP results in novel SoP distributions and propagation
dynamics. Similar to the low-order twisting phase with p = 1 and q = 1, the TVOF with high-
order twisting phases also performs the intensity compression and expansion, conversion
between the linear and circular polarizations, and the appearance of OAM during propaga-
tion. However, these phenomena occur earlier with the order increase of the high-order
twisting phase.

Unlike the effect of a low-order twisting phase [24], the vector effect of a high-order
twisting phase generates novel properties due to its unique phase distributions. Firstly,
the initial SoP of a TVOF modulated with various high-order twisting phases possesses
unique distributions. During propagation, the evolution of beam shape, and the conversion
between linear and circular polarizations are closely dependent on the orders of the twist
phase. Asymmetric compression and expansion in a high-order TVOF reshape when
p 6= q (see Figure 5 for p = 1, q = 2) occur during propagation, providing a new approach
to manipulate a complex structured optical field. In addition, the variation of OAM
distribution becomes more frequent with the increasing orders of the twisting phase during
propagation. Nonsymmetric OAM distributions appear in non-isotropic TVOF ( σx 6= σy

)
,

which are closely related to the orders of twisting phases, leading to the rotation of the
beam around the propagation axis. The optical energy flow distribution of a high-order
TVOF provides a more profound understanding of the propagation dynamics of high-order
TVOF and can find potential applications in corresponding fields such as micro-particle
manipulation, optical information processing, and manipulation of complex optical fields.

The effect of a high-order twisting phase on the vector beams is also analyzed. The
evolution of a vector optical field closely depends on the orders of the twist phase, resulting
in elliptical, triangular, and quadrilateral intensity distributions, respectively. These results
offer valuable insights into the properties and behavior of vector optical fields with modu-
lation of a high-order twisting phase, providing a foundation for further advancements in
optical field manipulation and potential applications in corresponding fields.

7. Conclusions

In summary, the TVOF is experimentally generated and analyzed based on the orthog-
onal polarization bases with high-order twisting phases. The influence of the high-order
twisting phase on polarization states and the optical angular momentum of a vector light
field is investigated in this work. The initial SoP of a TVOF is modulated by the high-order
twisting phases, leading to novel SoP distributions with various symmetries. The prop-
agation properties of high-order TVOF with locally linear polarization and hybrid SoP
are explored, including the intensity compression and expansion, conversion between the
linear and circular polarization components, and appearance of OAM during propagation.
These phenomena occur earlier with the increasing order of the twisting phase. In addition,
a nonsymmetric OAM distribution appears in a non-isotropic TVOF, leading to beam rota-
tion around the propagation axis during propagation. The optical energy flow distribution
of a high-order TVOF provides a more profound understanding of the propagation dynam-
ics of high-order TVOF and can find potential applications in micro-particle manipulation,
optical information processing, and manipulation of complex optical fields. The effect of a
high-order twisting phase on the vector beams is also analyzed. These results offer a new
approach to complex optical field manipulation and may find potential applications in the
corresponding field.
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