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Abstract: Raman spectroscopy is a type of inelastic scattering that provides rich information about a
substance based on the coupling of the energy levels of their vibrational and rotational modes with
an incident light. It has been applied extensively in many fields. As there is an increasing need for the
remote detection of chemicals in planetary exploration and anti-terrorism, it is urgent to develop a
compact, easily transportable, and fully automated remote Raman detection system for trace detection
and identification of information, with high-level confidence about the target’s composition and
conformation in real-time and for real field scenarios. Here, we present an unmanned vehicle-based
remote Raman system, which includes a 266 nm air-cooling passive Q-switched nanosecond pulsed
laser of high-repetition frequency, a gated ICMOS, and an unmanned vehicle. This system provides
good spectral signals from remote distances ranging from 3 m to 10 m for simulating realistic scenarios,
such as aluminum plate, woodblock, paperboard, black cloth, and leaves, and even for detected
amounts as low as 0.1 mg. Furthermore, a convolutional neural network (CNN)-based algorithm
is implemented and packaged into the recognition software to achieve faster and more accurate
detection and identification. This prototype offers a proof-of-concept for an unmanned vehicle with
accurate remote substance detection in real-time, which can be helpful for remote detection and
identification of hazardous gas, explosives, their precursors, and so forth.

Keywords: remote Raman; time-gated; trace detection and identification

1. Introduction

The remote detection of chemicals using laser-based techniques is highly desirable
due to increasing planetary exploration activities and anti-terrorism government programs
for detecting hazardous chemicals [1–4]. Remote Raman systems, consisting of an active
pulsed laser and a gated detector provide rapid and reliable detection and identification of
chemicals, via gating the pulsed Raman echoes. The ability to maintain a distance from the
target, while acquiring the spectra, provides good protection for operators or equipment
from the potential damage and contaminations, or alterations in the composition of the
target. Raman spectroscopy can be performed remotely and provides a very high level of
confidence when detecting chemicals through vibrational or rotational modes, which also
offers benefits for art, heritage, and restorative biomedicine applications [5,6].

Time-gated remote Raman spectroscopy achieves excellent results, especially com-
pared to a conventional continuous wave (CW) Raman technique, such as the feasibility
of daytime measurement, improved immunity to strong fluorescence, and suppression of
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back-scattering and thermal radiation. Misra et al. demonstrated a remote Raman system
utilizing a 35 mJ, 532 nm pulsed laser and a gated intensified charged couple device (ICCD)
detector, that realized the capability of measuring the Raman spectra of minerals located at
distances in the range of 10–65 m from the telescope. It demonstrated good performance, in
comparison to the continuous mode of operation, in reducing the background signal and
eliminating the long-lived fluorescence signals from the calcite Raman spectra [7]. Maeda
et al. showed good-quality Raman spectra for KNO3 and NH4NO3 from a 430 m standoff
distance during daylight, within a detection time of 1–10 s, with a frequency-doubled
Nd:YAG pulsed laser and ICCD [8]. Anupam et al. reported on a time-gated Raman system
for fast remote detection of various solid and liquid chemicals from a distance of 1752 m
during the afternoon on a sunny day. They also demonstrated the feasibility of developing
future mid-size remote Raman systems, suitable for long-range chemical detection using
helicopters and light airplanes [9]. Gueutue et al. created an optimized time-resolved
Raman system, based on a gated detection and a nanosecond pulsed laser excitation, which
demonstrated the contactless Raman measurements of some materials (such as zirconia
and yttria) at very high temperatures, i.e., up to 2100 ◦C [10].

Although gated Raman techniques have achieved great success, such systems can have
limitations due to their relatively large volume, heavy weight, and the power consumption
of the low repetition frequency high-energy pulsed laser (especially for the required water
cooler), which is not suitable for portable and unmanned vehicle requirements. Moreover,
because of the continued worldwide rise of terrorist activities, it is urgent to develop
compact, easily transportable, and fully automated remote Raman detection systems for
the trace detection and identification of information with high-level confidence about the
target’s composition and conformation in real-time and for real field scenarios [2].

Although there remains a great number of standard spectrum databases for identifying
chemicals, it is still a challenge to extract discriminative Raman features accurately and
rapidly from a large dataset in real-field scenarios for real-time requirements. Thanks
to the development of the recognition algorithms for the Raman spectrum, the efficient
classification and identification of substances is feasible [11,12]. Among these algorithms,
the convolutional neural network (CNN) acts as one of the state-of-the-art deep learning
algorithms, which has been observed to outperform other methods, due to a simpler
machine identification system and higher accuracy [13–16]. Sang et al. developed a 1D-
deep CNN for classifying and recognizing hundreds of classes, which attained a higher
recognition accuracy and improved performance; it has better applicability to datasets with
thousands of classes and imbalanced class distribution [15].

To solve the previously mentioned problems, we first designed a remote Raman
spectroscopy scheme with a 266 nm air-cooling passive Q-switched nanosecond pulsed
laser with a high-repetition frequency of 3 KHz, which was reasonably miniaturized
compared to the low repetition frequency active Q-switched laser. Next, we developed
an unmanned vehicle based on a remote Raman detection system via systematic design
and integration. We demonstrated that this system could attain a good spectral signal
from the tested samples in remote distances ranging from 3 m to 10 m, even for detected
amounts as low as 0.1 mg, for the different substrate backgrounds of aluminum plate,
woodblock, paperboard, black cloth, or leaves, which simulate realistic scenarios. For
real-time identification, a CNN-based algorithm was implemented and packaged into the
recognition software, which effectively reduced the acquisition and recognition time. This
prototype provides a proof-of-concept for an unmanned vehicle with real-time remote
and accurate substance detection, which can be helpful for the remote detection and
identification of hazardous gas, explosives, their precursors, and so forth.

2. Methods and Experiment

To attain compactness and effective integration, we designed a remote time-gated
Raman system, as shown in Figure 1a, which consists of a 266 nm passive Q-switched
nanosecond pulsed laser (CNI, EO-266-N, ~20 µJ per pulse, and pulse width of 9.6 ns at a
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repetition rate of 3 kHz), a telescope optical system (homemade Cassegrain telescope with
primary mirror (radius of curvature 498.596 mm and diameter 130 mm) and secondary
mirror (radius of curvature 69.597 mm and diameter 16 mm), and working distance be-
tween 2 m and 12 m), a fiber, a photodetector (Thorlabs, Newton, NJ, USA, DET10A2),
a spectrometer (homemade CT structure with 3600 lp/mm and <10 cm−1 resolution), a
solar-blind ultraviolet ICMOS (Photonis, Roden, The Netherlands, INocturn-U3), a gating
module, and a synchronization module. These latter three components constitute a com-
plete time-gated ICMOS, with the ability of gain, gating, and synchronization analogous
to commercial ICCD, in which the gating module has a fixed gating width of ~4.8 ns and
a synchronization module with an adjustable time range from 0 ns–10 s with minimum
steps of about 10 ps. As the pulse is delivered, a small portion of the beam is sampled and
delivered to the photodetector, whose rising edge triggers the synchronization and gating
modules [17]. The main laser beam is collimated by a beam expansion and reflected by
the dichroic filter (Semrock, Rochester, NY, USA, Di01-R266) to the secondary and primary
mirrors of the telescope, then converges on the sample. During the Raman pulse echo
generation, the telescope collects and delivers the light through a dichroic filter and a
long-pass edge filter (Semrock, Rochester, NY, USA, LP02-266RU) to clean up the Rayleigh
scattering. Next, the collected light is focused onto the fiber by an off-axis parabolic mirror
(Thorlabs, Newton, NJ, USA, MPD119-F01) and is dispersed and detected by the spec-
trometer and ICMOS camera. In addition, the 266 nm laser has benefits including higher
eye-safe characteristics, enhanced Raman signals, and reduced wavelength overlap of the
Raman and fluorescence spectra. In time-gated Raman spectroscopy, the temporal interval
between the laser pulse and Raman echo is the time-of-flight (TOF) of the light, as shown in
Figure 1b, which represents the round-trip optical path between the laser and the detector.
The predetermined short-time window of the gated ICMOS is ‘gate on’ only as the Raman
echo arrives; the temporal synchronization is achieved by a 30 m silica fiber to compensate
for the inherent delay time of the gated ICMOS. The gating response of the gated ICMOS,
which is controlled by the applied voltage to the photoelectric cathode, operates at the
same frequency as the pulsed laser. Next, gated pulsed signals accumulate for a single
frame exposure, which occurs because the pulsed laser repetition rate is higher than the
frame frequency [17,18]. In this work, we set the frame rate of the ICMOS as 50 fps, and the
frames accumulation as 1000 for single data acquisition. Afterwards, the system operates in
burst mode to accumulate 60 pulses on average for every single frame exposure. Finally, we
introduced a tracked unmanned vehicle for transportable and convenient remote detection.
The proposed unmanned vehicle-based remote Raman system also incorporates a rotating
stage, motion handle, and a tablet computer—as shown in Figure 1c. A photograph of the
designed unmanned vehicle-based remote Raman system is displayed in Figure 1d.
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Figure 1. (a) Schematic of time-gated remote Raman spectroscopy, in which the blue lines from the 
laser to the sample indicate the light’s direction before sample excitation and the green lines from 
the sample to the fiber indicate the direction for the light collection. The initials NF denote the nar-
row-band filter, LC signifies the laser collimator, DF is the dichroic filter, SM is the secondary mirror, 
PM is the primary mirror, LF is the long-pass edge filter, SyncM is the synchronization module, GM 
is the gating module and OPM is the off-axis parabolic mirror. The blue light indicates the excited 
laser, and the green line indicates Raman signals. (b) Temporal sequence for the laser pulse, pulsed-
Raman echo, gating sequence, and single frame exposure of the ICMOS. (c) Structure composition 
diagram of the proposed unmanned vehicle-based remote Raman system. (d) Photograph of the 
designed unmanned vehicle-based remote Raman system, where a 600 mm steel ruler is used as a 
reference. 

3. Results and Discussion 
For initial demonstration verification, we first prepared 1 mg of potassium chlorate 

(KClO3) on an aluminum plate to acquire the Raman signal from the distant targets. Since 
the signal background fluctuation is relatively high for long-term acquisition, especially 
the noise from the thermal electron gain of the intensifier of the ICMOS when a high volt-
age is applied onto the microchannel plate (leading to difficulties for the spectral feature 
recognition with the weak signal measurement), we recorded the mean data value from 
the 10 acquisitions of the presentation. As shown in Figure 2a, high-quality Raman spectra 
for 1 mg of KClO3 on an aluminum plate at distances of 3 m, 5 m, 6 m, 8 m, and 10 m were 
achieved. The most intense Raman peaks are clearly visible for the wavenumber 939 cm−1 
(i.e., corresponding to a Cl–O full symmetric stretching vibration) and 982 cm−1 (a Cl–O 
anti-symmetric stretching vibration). The other two spectral characteristic peak positions 
are located at 493 cm−1 and 621 cm−1, which belong to the Cl–O bending vibration and the 
Cl–O umbrella vibration, respectively [19]. The samples of the KClO3 with the amounts of 

Figure 1. (a) Schematic of time-gated remote Raman spectroscopy, in which the blue lines from the
laser to the sample indicate the light’s direction before sample excitation and the green lines from the
sample to the fiber indicate the direction for the light collection. The initials NF denote the narrow-
band filter, LC signifies the laser collimator, DF is the dichroic filter, SM is the secondary mirror, PM
is the primary mirror, LF is the long-pass edge filter, SyncM is the synchronization module, GM is the
gating module and OPM is the off-axis parabolic mirror. The blue light indicates the excited laser,
and the green line indicates Raman signals. (b) Temporal sequence for the laser pulse, pulsed-Raman
echo, gating sequence, and single frame exposure of the ICMOS. (c) Structure composition diagram
of the proposed unmanned vehicle-based remote Raman system. (d) Photograph of the designed
unmanned vehicle-based remote Raman system, where a 600 mm steel ruler is used as a reference.

3. Results and Discussion

For initial demonstration verification, we first prepared 1 mg of potassium chlorate
(KClO3) on an aluminum plate to acquire the Raman signal from the distant targets. Since the
signal background fluctuation is relatively high for long-term acquisition, especially the noise
from the thermal electron gain of the intensifier of the ICMOS when a high voltage is applied
onto the microchannel plate (leading to difficulties for the spectral feature recognition with
the weak signal measurement), we recorded the mean data value from the 10 acquisitions of
the presentation. As shown in Figure 2a, high-quality Raman spectra for 1 mg of KClO3 on
an aluminum plate at distances of 3 m, 5 m, 6 m, 8 m, and 10 m were achieved. The most
intense Raman peaks are clearly visible for the wavenumber 939 cm−1 (i.e., corresponding to
a Cl–O full symmetric stretching vibration) and 982 cm−1 (a Cl–O anti-symmetric stretching
vibration). The other two spectral characteristic peak positions are located at 493 cm−1 and
621 cm−1, which belong to the Cl–O bending vibration and the Cl–O umbrella vibration,
respectively [19]. The samples of the KClO3 with the amounts of 0.1 mg, 0.3 mg, and 0.5 mg
are also detected for a 10 m remote distance, as shown in Figure 2b.
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Figure 2. (a) Mean Raman spectra for 1 mg of KClO3 on an aluminum plate at distances of 3 m (black
line), 5 m (red), 8 m (green), and 10 m (blue). (b) Mean Raman spectra for 0.1 mg (black), 0.3 mg (red),
0.5 mg (green), and 1 mg (blue) of KClO3 on an aluminum plate at a distance of 10 m.

To simulate realistic encounters in a possible scenario, we prepared different amounts
of potassium chlorate (KClO3), sodium nitrate (NaNO3), calcium carbonate (CaCO3), and
ammonium sulfate (NH4)2SO4) samples on woodblock, paperboard, black cloth, and
leaf, the photographs of which are shown in Figure S1 of the Supplementary Materials
section. Here, we present the remote Raman spectra for 0.1 mg of these samples on different
substrates at a distance of 10 m, as shown in Figure 3a–d. The four distinct Raman vibrations
of KClO3 remain intact, as is observable from Figure 3a. The N–O symmetric stretching
vibration (located at 1070 cm−1) and the N–O anti-symmetric stretching vibration (seen
at 1391 cm−1) for NaNO3 are clearly distinguishable in Figure 3b [20]. As displayed in
Figure 3c, the C–O bending vibration of CaCO3 at 1092 cm−1 is a good indicator for its
identification, but the C–O symmetric stretching vibration at 720 cm−1 and the C–O anti-
symmetric stretching vibration at 1442 cm−1 of CaCO3 are not observed for the amount of
0.1 mg [21]. The discriminative Raman features can easily be extracted from the Raman
spectra of (NH4)2SO4. For the latter, as seen in Figure 3d, the strongest intensity vibration
at 979 cm−1 belongs to the S–O symmetric stretching vibration, and 456 cm−1 (the S–
O bending vibration), 620 cm−1 (the S–O rocking vibration), and 1093 cm−1 (the S–O
anti-symmetric stretching vibration) are also recognizable, as depicted in Figure 3d [22].
Additionally, we present mean Raman spectra for 0.3 mg, 0.5 mg, and 1 mg of KClO3
(Figure S2), NaNO3 (Figure S3), CaCO3 (Figure S4) and (NH4)2SO4 (Figure S5) on different
substrates in the Supplementary Materials section.

As mentioned previously, due to noise occurring at the ICMOS detector, there were
fluctuations in the various measurements, especially for traces at remote distances. The
latter is shown in Figure 4a, which depicts Raman spectra for 0.1 mg (NH4)2SO4 on
paperboard substrate with a 10 m distance, in which the difficulty when precisely manually
discriminating the chemicals can be seen. The denoised data for a single acquisition is
shown in Figure 4b, represented as a red line, which appears to be more accurate than the
mean data. However, false peaks appear (i.e., at 908 cm−1, 1092 cm−1, 1144 cm−1, and
1296 cm−1), as denoted by the red arrows in Figure 4b, which may mislead the operator’s
determination of the chemicals.
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a paperboard substrate at a distance of 10 m.
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To achieve real-time detection and exact identification, a CNN-based method, using
software developed with the Python language, was integrated and packaged onto the tablet
computer. The input layer of the relevant neural network was a vector with a size of 1280;
the hidden layer consisted of 5 convolutional blocks. The training and optimization of the
CNN depends on the Adam algorithm, which is an extension of gradient descent. The
Adam algorithm is an adaptive learning rate optimization algorithm that can adaptively
adjust the learning rate based on the gradient of different parameters, thereby improving
the training efficiency and model performance. In this work, the predictions were compared
with the true values by means of an error function. In our model, the cross-entropy loss
function was used to determine the difference between the true and predicted distributions,
and the learning rate was set to 0.001, with a batch size of 128 used. The final output map
was fed into the fully connected layers to learn non-linear combinations for the extracted
features. Next, the output layer obtained the features learnt by the model to calculate the
input’s classification scores for each possible category. The Raman spectral data of the
tested samples were acquired by our designed remote Raman system; the initial database
included 3200 spectra (four (substance types) × five (substrate types) × four (distances) ×
four (amounts) × ten (times of the measurement)). The measured dataset was randomly
shuffled and then divided into a training set, a test set, and a validation set, according to
a ratio of 8:1:1. Examining the single acquisition of Figure 4a, for example, the matched
accuracy is around 98.16% for the developed CNN model. The real-time recognition
software interface based on CNN, for the detection of 0.1 mg (NH4)2SO4 on paperboard
substrate at a 10 m distance, is shown in Figure 4c.

4. Conclusions

In conclusion, we have systematically designed and optimized a form of unmanned
vehicle-based remote Raman system, which consists of a 266 nm passive Q-switched pulsed
laser, a telescope optical system, a fiber, a photodetector, a homemade spectrometer, a solar-
blind ultraviolet ICMOS, a gating module, and a synchronization module. The remote
Raman-pulsed echo signal was acquired by synchronizing the time sequence between the PD
triggered by the laser and the gated ICMOS through a 30 m fiber delay line. We have presented
the Raman spectra for trace substances on an aluminum plate, woodblock, paperboard, black
cloth, and leaf at remote distances. There still remains excellent spectral discriminability,
even for detected amounts as low as 0.1 mg at a distance of 10 m. Furthermore, a CNN-
based method that uses software developed using the Python language was integrated and
packaged onto the tablet computer to create real-time detection and exact identification. The
proposed prototype provides a proof-of-concept for an unmanned vehicle with accurate re-
mote substance detection in real-time, for which important potential applications are planetary
exploration, anti-terrorism government programs, heritage, and so forth.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/photonics10111230/s1. Figure S1: photographs of the samples; Figure S2:
mean Raman spectra for 0.3 mg, 0.5 mg, and 1 mg of KClO3 on different substrates; Figure S3: mean
Raman spectra for 0.3 mg, 0.5 mg, and 1 mg of NaNO3 on different substrates; Figure S4: mean Raman
spectra for 0.3 mg, 0.5 mg, and 1 mg of CaCO3 on different substrates; Figure S5: mean Raman spectra
for 0.3 mg, 0.5 mg, and 1 mg of (NH4)2SO4 on different substrates.
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