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Abstract: Thanks to the advantage of balancing nonlinear effects and transverse mode instability, vary
core diameter active fiber (VCAF) has been widely used in high power ytterbium-doped fiber lasers
in recent years. Up to now, VCAF has developed from the basic form of the original tapered fiber to
the spindle-shaped and saddle-shaped fiber with different characteristics and has been applied in
conventional fiber lasers, oscillating–amplifying integrated fiber lasers, and quasi-continuous wave
fiber lasers and successfully improved the performance of these lasers. In the present study, a 6110 W
fiber laser amplifier is realized based on a tapered fiber. The maximum output power of a fiber
laser amplifier based on spindle-shaped fibers is 6020 W with a beam quality of M2~1.86. In this
paper, we first introduce the basic concept of VCAF and summarize its main fabrication methods and
advantages in high-power fiber laser applications. Then, we will present the recent research results
of high-power fiber laser employing VCAF in our group and clarify the outstanding advantages of
VCAF compared with the constant core diameter active fiber (CCAF).

Keywords: high-power fiber laser; vary core diameter active fiber; nonlinear effect; transverse
mode instability

1. Introduction

High-power ytterbium-doped fiber lasers are widely used in industrial processing
and other fields [1,2]. With the rapid development of double-cladding fiber, laser diode
(LD) pumps, and fiber devices, the output power of fiber laser has been continuously
improved, and fiber laser technology with an output power of several kilowatts or even
10 kilowatts has been relatively mature [3–7]. The special structure of fiber makes it easy to
produce strong nonlinear effects under high-power conditions. Before 2010, the effective
method to suppress nonlinear effects was to increase the core diameter of the fiber to reduce
the laser power density in the core. At the same time, the control of the core diameter
within a certain range will not have too much adverse impact on the laser beam quality. In
2010, the transverse mode instability (TMI) in large mode area fiber was first found and
reported, which made it difficult to increase the output power by simply increasing the core
diameter [8,9]. The development of high-power fiber lasers faces the problem of balancing
nonlinear effects such as Stimulated Raman Scattering (SRS) and TMI [10,11]. In order to
suppress the nonlinear effect or TMI, a lot of theoretical and experimental work has been
carried out, including the optimization of pump wavelength, pump configuration, seed
power, and the characteristics of active fiber [12–24].

The optimization of the structure of active fiber can be roughly divided into two aspects.
One is to focus on the optimization of the transverse structure, such as the optimization
of core diameter, core/cladding geometry, core-doping distribution, core refractive index
distribution, etc. Typical examples are confined-doped fiber, chirally coupled-core (3C)
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fiber, and GTWave fiber [25–30]. The other direction is to focus on the optimization of the
longitudinal structure, which is represented by the tapered fiber (TF). Conventional TF can
be divided into short TF and long TF. The length of the short TF is basically in the order of
centimeters, and this length is generally realized by stretching the constant core diameter
fiber into a taper. The active TF that can be used in high-power fiber lasers is usually a
long TF, and the length of the tapered section is usually several meters or more. The fiber
laser based on TF can be traced back to 2008, when researchers from Tampere University
of Technology in Finland first realized the TF-based laser oscillator with an 84 W laser
output [31]. Benefiting from the good stimulated Brillouin scattering (SBS) suppression
capability, TF is widely used in single frequency or narrow linewidth fiber lasers [32–38].
In 2020, the output power of single frequency fiber laser based on TF reached 550 W [37].
Among the reported single frequency or narrow linewidth fiber lasers, the fiber lengths in
most studies are only several meters, except that the fiber lengths in Refs. [31,32] are more
than 10 m; and the shortest is only 1.27 m. Most lasers can maintain near diffraction limit
laser output.

Pulsed fiber laser is the most widely used field of TF by far, which is due to its
good ability to suppress nonlinear effects and maintain beam quality [39–63]. In the
existing reports, the center wavelength of the output laser of the Yb-doped TF-based
pulsed fiber laser is usually 1030–1065 nm. The peak power of femtosecond pulse laser,
picosecond pulse laser, and nanosecond pulse laser has reached 97 MW, 22 MW, and
375 kW, respectively [47,60,63]. The fiber length of TF used for pulsed fiber lasers is usually
short, even less than 1 m. The core diameter of the small core diameter section of the fiber
is usually about 10 µm, and the core diameter of the large core diameter section is generally
more than 50 µm, or even 100 µm. However, the beam quality of the output laser can still
maintain a near diffraction limit with a M2 factor value of below 1.2. In addition, TF is also
widely used in wide-linewidth, continuous-wave high-power fiber lasers. From 2008 to
2010, the researchers of the Tampere University of Technology reported on high-power
fiber lasers based on TF, with the output power increasing from 84 W to 750 W [31,64–67].
In 2020, researchers of Huazhong University of Science and Technology realized 364 W
laser output based on TF with a constant cladding diameter [68]. By 2022, they increased
the output power of the same type of fiber to 2.7 kW, and the beam quality was about
M2 = 2.16 [69].

According to the structure of the fiber core along the longitudinal dimension, the
commonly used tapered fiber can be regarded as a vary core diameter active fiber (VCAF)
with a monotonically growing core diameter. In 2020, our group proposed VCAF repre-
sented by spindle-shaped fiber (SPF) and saddle-shaped fiber (SAF) and realized 3 kW and
1.3 kW all-fiber laser oscillators, respectively [70,71]. After that, VCAF, which is represented
by SPF and TF, has received more and more attention in research. Based on VCAF with
a constant core-to-cladding ratio, VCAF with constant cladding diameter has also been
developed [72,73]. So far, there have been several publicly reported fiber lasers based on
SPF with an output power of several kW, and the maximum output power has exceeded
6 kW [74–77]. Table 1 lists the main results of publicly reported VCAF-based fiber lasers. It
can be seen that the high-average power fiber laser based on VCAF has developed rapidly
in recent years.

From Table 1, we know that the VCAF were widely used in both continuous wave
(CW) and pulsed fiber laser. In pulsed laser, peak power as high as 97 MW after compres-
sion was demonstrated in 2021. In the CW range, average power of up to 6020 W was
demonstrated in 2022. In this paper, we will mainly introduce our latest work on VCAF.
Firstly, the main advantages and fabrication methods of VCAF are briefly introduced.
Then, our research in conventional fiber lasers based on VCAF is introduced. Finally,
the applications of VCAF in new-type fiber lasers such as quasi-continuous wave (QCW)
fiber laser, oscillating-amplifying integrated fiber laser (OAIFL), and bidirectional-output
fiber laser are introduced. It is worth noting that all VCAF used in our experiment are
double-cladding ytterbium-doped fibers.
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Table 1. Summary of main results of fiber laser based on VCAF (SPF: spindle-shaped fiber; SAF:
saddle-shaped fiber).

Year Fiber Type Core/Cladding Diameter Fiber Length Power
(Average/Peak Power) Affiliation * Reference

2008 TF 5.6/174–27/834 µm 10.5 m 84 W @average TUT [31]

2008 TF 6.5/200–27/834 µm 12 m 212 W @average TUT [64]

2009 TF 10.8/145–65/835 µm 24 m 600 W @average TUT [65]

2010 TF 15/160–83/880 µm 6.3 m 24.3 kW TUT [40]

2010 TF 17.7/320–51.6/930 µm 23.5 m 750 W @average TUT [67]

2012 TF 7.5/120–44µm/700 µm 18 m 110 W @average TUT [78]

2013 TF 7.5/120–44/700 µm 18 m 160 W @average RAS [32]

2014 TF 9/145–50/800 µm 4 m 60 W/0.4 MW TUT [40]

2015 TF 10/80–45/430 µm 2.1 m 2.5 MW RAS [41]

2016 TF 10/237.1–46.9/579.9 µm 7 m 53 W @average NUDT [33]

2016 TF 25/250–60/600 µm 2 m 10.2 W/340 kW The Aerospace
Corporation [42]

2016 TF 13–100 µm (core diameter) 6 m 5 MW TUT [79]

2017 TF 35/250–56/400 µm 2.8 m 1.5 MW INO [43]

2017 TF 6.9/29–45/190 µm 68 cm 11.4 W/167 kW IPHT [44]

2017 TF 6.5/53–56/460 µm 60 cm 10 W/230 kW IPHT [45]

2017 TF 10/72.5–62/450 µm 2 m 0.76 MW
22 MW after compression RAS [48]

2017 TF 18/145–100/800 µm 4 m 5 MW Ampliconyx Ltd. [48]

2017 TF 20–67 µm (core diameter) 2.2 m 1.5 MW RAS [49]

2017 TF 13.2/110–96/792 µm 70 W @average Ampliconyx Ltd. [50]

2017 TF 9–22 µm (core diameter) 2.5 m 120 W @average ALPhANOV [34]

2017 TF 35/250 to 56/400 µm 2.8 m 100 W @average INO [43]

2017 TF 21.2/417.3–30.4/609.6 µm 33 m 1470 W @average NUDT [80]

2018 TF 20/400–30/600 µm 33 m 260 W @average NUDT [81]

2018 TF 13.3/110–96/792 µm 3.6 m 28 W/292 kW TUT [51]

2018 TF 20/237.1–46.9/579.9 µm 7.2 m 260 W @average NUDT [36]

2018 TF 22.5/90–86/350 µm 2.5 m 19 W/107 kW MIPT [52]

2018 TF 12/53–45/200 µm 50 cm 15.5 W/375 kW IPHT [63]

2019 TF 36/250–58/560 µm 0.74 m 8.8 W/30 kW NUDT [54]

2019 TF 8.6/73–65/550 µm 2.7 m 44 W/550 kW RAS [55]

2019 TF 22/75–75/256 µm 3.2 m 10 MW after compression RAS [56]

2019 TF 7.2/57–43/344 µm 3 m 71 W/820 kW RAS [57]

2019 TF 35/280–100/800 µm 3.4 m 55 W @average Ampliconyx Ltd. [56]

2019 TF 17/170–49/490 µm 1.2 m 2.2 kW @PM, 4 kW @NPM TU [82]

2019 TF 36/250–58/560 µm 0.74 m 8.8 W/30 kW NUDT [83]

2019 TF 20/400–30/600 µm 33 m 1700 W @average NUDT [84]

2019 TF 20/400–30/600 µm 22 m 2170 W @average NUDT [85]

2020 TF 15/120–35/285 µm 2.8 m 72.5 W @average TU [86]

2020 TF 10/100–50/100 µm 2.5 m 7.5 W/1.26 MW SPbPU [59]

2020 TF 8.5/35.7–52/226.8 µm 4 cm 2.3 MW IPHT [58]

2020 SPF 20/400–30/600–20/400 µm 31 m 1836 W @average NUDT [87]



Photonics 2023, 10, 147 4 of 38

Table 1. Cont.

Year Fiber Type Core/Cladding Diameter Fiber Length Power
(Average/Peak Power) Affiliation * Reference

2020 SPF 24.08/400–31/
400–23.36/400 µm 25 m 2023 W @average NUDT [88]

2020 SPF 24.08/400–31/
400–23.36/400 µm 25 m 3420 W @average NUDT [72]

2020 SPF 20/400–30/600–20/400 µm 30.5 m 3004 W @average NUDT [70]

2020 SAF 30.77/400–23.28/
400–30.77/400 µm 22.8 m 1300 W @average NUDT [71]

2021 TF 31.2/400–52.5/400 µm 7 m 364 W @average HUST [68]

2021 TF 10/80–45/435 µm 2.6 m 97 MW after compression Lumibird [60]

2021 TF 10/70–59/432 µm 2.5 m 170 kW CEA [61]

2021 TF 10/100–50/500 µm 3 m 150 W/170 kW SPbPU [62]

2021 TF 15/120–35/285 µm 3 m 50 W/47 kW TU [89]

2021 TF 8/90–44/486 µm 6.7 m 64 W @average TU [90]

2021 TF 9.5/68–46/330 µm 2.45 m 150 W/0.74 MW RAS [91]

2021 SPF 22/413–32/600–22/413 µm 21 m 4000 W @average NUDT [74]

2021 SPF 27/410–39.5/410–27/410 µm 21 m 5008 W @average NUDT [92]

2022 TF 36.1/249.3–57.8/397.3 µm 1.27 m 141 W/1.3 MW NUDT [93]

2022 SPF 20/400–30/600–20/400 µm 19 m 4180 W @average NUDT [75]

2022 TF 35/250–56.2/400 µm 3.8 m 694 W @average NUDT [94]

2022 SPF 25/400–37.5/600–25/400 µm 27 m 4180 W @average HUST [76]

2022 TF 24/400–31/400 µm 16 m 2704 W @average HUST [69]

2022 TF 20/400–30/600 µm 17 m 4089 W @average NUDT [95]

2022 SPF 20.8/600–36/600–20.3/600 µm 28.5 m 2494 W @average NUDT [73]

2022 SPF 25/400–37.5/600–25/400 µm 24 m 6.4 kW QCW NUDT [96]

2022 SPF 25/400–37.5/600–25/400 µm 24 m 7.3 kW QCW NUDT [97]

2022 SPF 25/400–37.5/600–25/400 µm 21 m 6020 W @average NUDT [77]

* TUT: Tampere University of Technology; RAS: Russian Academy of Sciences; NUDT: National University of
Defense Technology; IPHT: Leibniz Institute of Photonic Technology; TU: Tampere University; MIPT: Moscow
Institute of Physics and Technology; SPbPU: Peter the Great Saint-Petersburg Polytechnic University; CEA:
Commissariat à l’Energie Atomique et aux Energies Alternatives; HUST: Huazhong University Of Science
And Technology.

2. Basic Concept of Vary Core Diameter Ytterbium-Doped Fiber
2.1. Classification of Vary Core Diameter Ytterbium-Doped Fiber

In high-power fiber lasers, a double-cladding Yb-doped fiber with a cross-section
divided into three parts—core, inner cladding, and coating layer (outer cladding)—is
generally used. The main feature of the VCAF that differs from conventional fibers is the
gradual change in core diameter along the longitudinal direction. VCAF can be divided
into three categories according to the form of fiber core diameter variation: tapered fiber
(TF), spindle-shaped fiber (SPF), and saddle-shaped fiber (SAF), the structures of which
are shown in Figure 1a–c, respectively. According to the fiber diameter distribution along
the longitudinal direction, the VCAF can usually be divided into several sections. Among
them, the TF includes the small core diameter section (S section), the gradient tapered
section (T section), and the large core diameter section (L section), as shown in Figure 1a.
The SPF includes two small core diameter sections, the S1 section and the S2 section, at both
ends; a large core diameter section, the L section, in the middle; and the gradient-tapered
sections, the T1 section and the T2 section, which connect the S1 section and the L section
and connect the S2 section and the L section, as shown in Figure 1b. The SAF includes
two large core diameter sections, the L1 section and the L2 section, at both ends; a small
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core diameter section, the S section, in the middle; and the gradient-tapered sections, the
T1 section and the T2 section, which connect the L1 section and the S section and connect
the L2 section and the S section, as shown in Figure 1c. In practical applications, T sections
are often present in various fibers, whereas the L section or the S section can be removed as
required. Based on core diameter variation, the inner cladding diameter of the VCAF can
be kept constant or changing synchronously with the core at a constant core-to-cladding
ratio. Both different types of VCAF can be widely used in high-power fiber lasers.
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Figure 1. Scheme of the VCAF. (a) Tapered fiber (TF); (b) spindle-shaped fiber (SPF); (c) saddle-shaped
fiber (SAF).

2.2. Advantages of VCAF
2.2.1. High Nonlinear Effect Threshold

VCAF can improve the nonlinear effect characteristics of the fiber laser benefit from
the T-section as well as the L-section in the fiber. For single-frequency lasers, the changing
core diameter reduces the changing of the Brillouin frequency shift and then broadens the
SBS gain spectrum, which is helpful to increase the power of single-frequency lasers [98].
For wide-bandwidth continuous-wave fiber lasers, VCAF have a larger equivalent core
diameter, which can reduce the laser power density in the core and suppress nonlinear
effects such as SRS.

2.2.2. Good Mode Control Ability

In addition to good nonlinear effect characteristics, VCAF also has good mode control
capability, which is reflected mainly in the following aspects. First, the presence of one or
more S sections along the longitudinal direction, which supports fewer modes, combined
with effective mode control methods such as fiber coiling can further suppress higher-order
modes and effectively suppress TMI. Secondly, the T section of the fiber has a length of
several meters, which is essentially a mode field adapter (MFA) with good beam-quality
retention. Finally, the variation of core diameter along the longitudinal direction leads to
a gradual variation of the difference between the propagation constants of fundamental
and higher-order modes along the longitudinal direction of the fiber, which can reduce the
interference between different transverse modes of the laser transmitted in the fiber and
maintain a good beam quality.

2.2.3. Excellent ASE Inhibition

The presence of the T section in the VCAF allows ASE to leak from the core to the
cladding during transmission, which can effectively suppress ASE. Taking the TF-based
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amplifier as an example, under normal conditions, the laser is transmitted and amplified
from the S section to the L section, whereas the ASE is transmitted mainly backwards, that
is, from the L section to the S section. The spontaneous emission in the T section near the
L section initially occurs at an angle α (NA/T < α < NA, where T is the fiber core cone
ratio and NA is the numerical aperture of the fiber), and the ASE leaks from the core into
the cladding after a short transmission distance from the L section. Therefore, VCAF can
effectively suppress ASE, which is particularly beneficial for pulsed laser generation with
low repetition frequency. With this type of fiber, researchers achieved a Q-switched pulsed
laser output with a repetition frequency of 5 Hz. The peak power of the pulse is 24.3 kW
with a pulse width and energy of 64 ns and 1.6 mJ [99].

2.3. Fabrication Process of VCAF

Traditional TF has a short T section, which is achieved by stretching the fiber with
a constant core diameter by a taper machine, and the stroke of the equipment is usually
below 1 m. Unlike short TF, it is difficult for VCAF to meet the requirements of general
taper-pulling equipment due to the long length of the T section, and their fabrication is
generally accomplished by fiber preform or fiber drawing. The specific fabrication methods
include the preform form control method, the variable-speed drawing method, and the
combination of the preform form control method and the variable-speed drawing method.

2.3.1. Preform Form Control Method

The preform form control method can be used for manufacturing VCAF with a con-
stant cladding diameter [68]. The main steps of the method are shown in Figure 2. In the
first step, conventional fiber preforms with a constant core diameter are fabricated using
conventional preform fabrication methods (including modified chemical vapor deposition
(MCVD), surface plasma chemical vapor deposition (SPCVD), etc.), as shown in Figure 2a.
In the second step, the prepared preform is pre-tapered to obtain preform with multiple
taper sections, as shown in Figure 2b. In the third step, the surface of the preform is ground
and polished to obtain a constant distribution of the inner cladding diameter, as shown in
Figure 2c. In the fourth step, the polished preform is cased to obtain a fiber preform with
a suitable core-to-cladding ratio, as shown in Figure 2d, which completes the fabrication
of the preform with different lengths and different T sections. Finally, the fiber preform
is drawn at a constant speed using the drawing tower, and the fiber is coated during the
drawing process to obtain the VCAF shown in Figure 2e.

2.3.2. Variable-Speed Drawing Method

Variable-speed drawing method is the simplest and most effective way to achieve
VCAF with simultaneous variation of core and cladding diameters. With a defined core
and cladding diameter of the preform, the cladding diameter (d) of the fiber is inversely
related to the drawing speed as follows.

d(z, t) =
K

νT(z, t)
(1)

where K is the scale factor associated with the drawing tower, z is the length of the drawn
fiber, and t is the drawing time. The process of the variable-speed drawing method
can be simply represented as in Figure 3. In the first step, preforms are manufactured
using conventional processes based on designed fiber parameters such as doping and
core/cladding diameter. In the second step, the preform is placed on the drawing tower,
and the fiber core and cladding diameter are controlled by controlling the drawing speed.
Taking the SPF shown in Figure 3 as an example, its five sections are used with different
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drawing speeds, where the speed of the S section is v1, the speed of the L section is v3, and
the speed of the T section is v(1–3)(t) and v(3–1)(t), satisfying Equation (2):

ν1
ν3

= dL3
dS1

v(1−3)(0) = v1, v(1−3)(T1) = v3
v(3−1)(0) = v3, v(3−1)(T2) = v1

(2)

where dS1 and dL3 are the diameters of the S section and the L section, respectively. T1, T2 is
the length of the 2 T sections. In the third step, the fiber is coated during the drawing process
to obtain a VCAF with a constant core-to-cladding ratio. In general coating equipment,
because the coating diameter cannot be changed online, the coating thickness at different
positions of the fiber is different, so the outer diameter of the fiber is basically the same
throughout the fiber length.
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2.3.3. Combination of Preform Form Control and Variable-Speed Drawing Method

In fact, both the preform form control method and the variable-speed drawing method
need to go through two processes: preform fabrication and fiber drawing. The fabrication
of more different forms of VCAF can be achieved by combining the two methods. As
shown in Figure 4, in the first step, common preforms are manufactured using conventional
processes. The second step is to polish the preform after casing to obtain a preform with
constant core diameter and variable cladding. The third step is to perform variable-speed
drawing on the preform. During this process, the cladding diameter is ensured to be
constant by speed control, and the final fiber core naturally changes gradually. The fourth
step is to coat the fiber during the drawing process to obtain a VCAF with a constant
cladding diameter. If a constant speed is used for drawing in the second step, it is also
possible to obtain fibers with constant core diameter and variable cladding diameter.
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3. Simulation of SRS and TMI Characteristics of VCAF

In 2019, we conducted a theoretical study of SRS in TF-based fiber laser amplifiers
for different morphologies (concave, linear, and convex) of TF, and the results showed
that the convex TF has the best suppression of SRS thanks to the larger equivalent core
diameter [100]. In fact, the S section in VCAF is helpful for the mitigation of TMI, whereas
the L section can suppress the SRS. Therefore, the VCAF can balance SRS and TMI. Here, the
balance function for TMI and SRS of VCAF will be briefly explained from the perspective
of numerical simulation.
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3.1. SRS in VCAF- and CCAF-Based Fiber Laser Oscillator

The rate equations of fiber lasers have become very mature theoretical tools. On this
basis, our group has developed the fiber laser simulation software named SeeFiberLaser,
which can be used to guide the theoretical research and experimental design of fiber
lasers [101]. Taking the SPF as an example, we have conducted a theoretical study of SRS
in fiber laser oscillators based on SPF and constant core diameter active fiber (CCAF) with
different diameters, respectively, by using rate equations model of fiber lasers [100]. The
structural parameters of the four fibers for simulation are shown in Table 2. Among them,
fiber1–3 are CCAFs, fiber4 is an SPF, and the other simulated parameters are identical.
In the simulation, three pumping configurations (forward pump (FP), backward pump
(BP), and bidirectional pump (BIP)) are applied for different fibers. Table 3 lists the main
parameters involved in the simulation and corresponding values. In the subsequent results,
FP represents the application of forward pump configuration, BP represents the application
of backward pump configuration, and BIP represents the application of bidirectional
pump configuration.

Table 2. Parameters of several fibers used in simulation.

Fiber Core Diameter/µm Cladding Diameter/µm Length/m

fiber1 20 400 11

fiber2 25 500 11

fiber3 30 600 11

fiber4 20–30–20 400–600–400 11

Table 3. Main parameters and values involved in theoretical simulation.

Parameter Value Parameter Value

Signal center wavelength 1080 nm Pump wavelength 976 nm

Length of passive fiber 10 m Doping concentration 1.26 × 1026 m−3

Signal range 1050 nm–1150 nm Raman range 1116 nm–1150 nm

Raman power 1150nm
∑

λ = 1116nm
P(λ)dλ (P(λ) indicates signal power)

Raman ratio (Raman power)/
1150nm

∑
λ = 1050nm

P(λ)dλ

Pump configuration and pump power
FP, 5000 W
BP, 5000 W

BIP, 2500 W for FP and 2500 W for BP

The equivalent core diameter of the SPF used is 24 µm, according to the calculation
of the equivalent core diameter in ref. [72]. The simulation results of the fiber oscillator
based on different fibers under different pump configurations are shown in Figure 5 and
Table 4. Under the same conditions, the suppression ability of fiber4 (SPF) for the SRS is
between fiber1 and fiber3 and is comparable to fiber2, the diameter of which is close to its
equivalent core diameter. Consistent conclusions were also drawn on the spectra from the
output lasers of the active and passive fibers.
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Figure 5. Simulation results of fiber laser oscillators based on different fibers. (a) The distribution
of Raman power and Raman ratio along the fiber length in different fibers under different pump
configurations. (b) The spectra of the output laser from the active and passive fibers.

Table 4. SRS simulation results in different fibers.

Fiber
Raman Power (W) Raman Ratio (×10−5)

FP BP BIP FP BP BIP

fiber1 2.87 0.368 0.673 59.58 7.80 14.17

fiber2 0.20 0.051 0.089 4.09 1.08 1.89

fiber3 0.05 0.025 0.03 1.09 0.521 0.74

fiber4 0.45 0.107 0.16 9.23 2.28 3.35

3.2. Theoretical Comparison of TMI in Fiber Laser Amplifier Based on VCAF and CCAF

Here, the theory study of TMI effect employing three different fibers will be compared
in a fiber amplifier. The first fiber is CCAF with a core/cladding diameter of 25/500 µm
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(CCAF, 25/500). The second fiber is TF with a gradual core and cladding diameter change
from 20/400 µm to 30/600 µm; the TF is a constant core-to-cladding ratio taper (TF-CCCR,
TF1, 20/400–30/600). The third fiber is TF with a gradual core and cladding diameter
change from 20/500 µm to 30/500 µm; the TF is tapered in core while constant in cladding,
also called vary core-to-cladding ratio TF (TF-VCCR, TF2, 20/500–30/500).

Figure 6a,b shows the nonlinear coupling coefficients and the maximum coupling
frequency shifts of the three fibers at 1000 W pump power in the fiber amplifier. It can be
found that the nonlinear coupling coefficients within the three fibers decrease significantly
and rapidly in the first 1 m of the fiber. It is also noted that the nonlinear coupling coefficient
is smallest for the TF1, followed by the CCAF, and the largest for the TF2. The maximum
coupling frequency shifts of the three fibers along the fiber length are shown in Figure 6b,
which shows that for the two TF, the maximum coupling frequency shifts also change
gradually with the fiber position as the fiber core diameter changes gradually along the
fiber longitudinal position, and the maximum coupling frequency shifts decrease as the core
diameter increases. The nonlinear coupling coefficient is multiplied with the fundamental
mode power and integrated along the longitudinal direction of the fiber to obtain the
equivalent coupling coefficient curves of the fiber under different frequency shifts, as
shown in Figure 6c. The results in the figure show that the equivalent gain curve of the
TF1 is significantly lower than that of both the TF2 and the CCAF, indicating that the
TF2 is more favorable for suppressing mode coupling. In fact, in TF2, the TMI coupling
coefficient is reduced because of the gradually increased absorption coefficient, which
results in a smaller pump absorption in the first half of the fiber than in the second half,
thus transferring the overall gain of the signal to the output end of the fiber and balancing
the thermal load of the whole fiber. Figure 6d shows the evolution of the higher-order
mode power ratio at the fiber output as the output power increases for the three fibers. It
can be seen from the figure that under the forward pump configuration, the TF2 has the
highest TMI threshold, followed by the TF1, and the CCAF fiber is the worst. Compared
with the CCAF, the TMI thresholds of the TF2 and TF1 are improved by 40.6% and 5.97%,
respectively, indicating that the TF has a great advantage in improving the TMI threshold
under the same conditions.
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The above simulation results can illustrate the ability of VCAF to balance SRS and TMI
in fiber lasers. The VCAF-based fiber laser has a similar ability to suppress SRS as a uniform
fiber with the same equivalent core diameter. However, the TMI threshold of fiber laser
based on VCAF is higher than that of uniform fiber with the same equivalent core diameter.
The above simulation results only show typical comparison results. In fact, the structural
parameters of VCAF, such as the core diameter and length of different sections, will affect
the TMI and SRS of the laser. In practical applications, it can be optimized according to the
actual needs to achieve higher power output.

4. Experimental Study on High-Power CW Fiber Laser Based on VCAF
4.1. Fiber Laser Based on TF with Constant Core-to-Cladding Ratio (TF-CCCR)

TF with a constant core-to-cladding ratio (TF-CCCR) is the most readily available of
the VCAF and was the first to be used in experiments. Prior to 2019, most publicly reported
TF-based fiber lasers focused on the field of pulsed lasers, and in the few studies of CW
fiber lasers based on TF, the maximum laser output power was only 750 W, which was
reported in 2010, when TMI in high-power fiber lasers had just been discovered [67].

4.1.1. High-Power Fiber Laser Oscillator Based on TF-CCCR

Starting from the balanced characteristics of TF for SRS and TMI, we conducted a
TF-CCCR-based fiber laser oscillator in 2019 and achieved a 1.7 kW laser output [84]. The
structure of the laser is shown in Figure 7. The total length of the TF used is about 33 m, and
its core/cladding diameter gradually transitions from 20/400 µm to 30/600 µm, without
the S section and the L section. A high-reflectivity fiber Bragg grating (HR FBG) with a
core/cladding diameter of 20/400 µm and an output coupler fiber Bragg grating (OC FBG)
with a core/cladding diameter of 30/400 µm are used to match the active fiber. The TMI
thresholds of the lasers were 860 W and 1350 W when pumped by LDs with a central
wavelength of 976 nm and 915 nm, respectively; these values were lower than those of a
CCAF with a core/cladding diameter of 20/400 µm under the same conditions. A laser
output of 1.7 kW was achieved when pumped with 915 nm LDs, as shown in Figure 8a.
However, due to the immaturity of the fiber manufacturing process and the mismatch
between the devices, the beam quality of the output laser at the maximum output power is
about M2 = 2.1, as shown in Figure 8b.
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4.1.2. High-Power Fiber Laser Amplifier Based on TF-CCCR

(1) Comparison study of the fiber laser amplifier employing TF-CCCR and CCAF
The results in the fiber laser oscillator show that the TMI threshold of a TF-based

fiber laser is lower than that of a CCAF with a core diameter consistent with its S section.
However, for a more reasonable comparison of the TMI thresholds of CCAF and TF, an
active fiber with the same doping and equivalent core diameter should be selected. In
2019, we conducted experiments comparing the output characteristic of CCAF and TF-
CCCR-based fiber laser amplifiers [85]. The structure of the laser is shown in Figure 9.
The total length of the TF used is 22 m. The core/cladding diameter gradually transitions
from 20/400 µm to 30/600 µm with the core/cladding NA of 0.065/0.46, respectively. The
CCAF used for comparison has a core/cladding diameter of 25/400 µm, and its doping
status and core/cladding NA remain the same as that of the TF-CCCR. A comparison of
the experimental results is given in Figure 10 and Table 5. The maximum output power of
the TF-CCCR-based amplifier is 2170 W, corresponding to an efficiency and beam quality
(M2 factor) of 79.1% and 2.2, respectively. The results successfully verified that the TMI
threshold of TF-CCCR is higher than that of CCAF with the same equivalent core diameter.
At the same time, it has better beam quality.
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Figure 10. Comparison of experimental results of fiber laser amplifiers based on CCAF and TF.
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Table 5. Comparison of results between TF-CCCR- and CCAF-based fiber laser amplifier [85].

Fiber TMI Threshold Efficiency M2

TF-CCCR >2170 W 79.1% 2.2

CCAF (25/400 µm) 1046 W 80.3% 3.2

(2) Four-kilowatt near-single-mode fiber laser amplifier employing TF-CCCR
In 2022, we conducted experiments on bidirectionally pumped TF-CCCR-based laser

amplifiers by combining a backward pump/signal combiner, which has a pump output
fiber with a core/cladding diameter of 30/600 µm [95]. The experimental structure is shown
in Figure 11. The total length of the TF-CCCR used is 17 m, and its core/cladding diameter
gradually transitions from 20/400 µm to 30/600 µm. Distinct from the TF-CCCR used
in the previous experiments, the distribution of the core diameter along the longitudinal
direction of this TF-CCCR is approximately parabolic (concave), as shown in Figure 11b.
According to the Ref. [102], such a structure has better mode control capability, which
is advantageous for TMI suppression as well as beam quality enhancement. Due to the
special characteristics of the fiber structure, the TMI threshold of the laser under co-pump
configuration is higher than that in the counter-pump configuration. By reducing the coiling
diameter of the L section of the fiber in the experiment, the efficiency is slightly reduced,
and the beam quality is improved. A near-single-mode laser output of 4.09 kW with a slope
efficiency of 84.1% and a beam quality of M2~1.46 was achieved under bidirectional pump
configuration at a coiling diameter of 12 cm for the large-size end, as shown in Figure 12.
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(3) Six-kilowatt counter-pumped fiber laser amplifier employing TF-CCCR
Based on previous experiments, we optimized the structural parameters of the TF-

CCCR and obtained a TF-CCCR with a total length of about 35.4 m (including 30 m in
the T section and 5.4 m in the L section). The core/cladding diameters at both ends of the
fiber are 20/400 µm and 30/600 µm, respectively. A counter-pumped fiber laser amplifier
is constructed with 36 wavelength-stabilized 981 nm LDs and a (36 + 1) × 1 backward
pump/signal combiner of which the core/cladding diameter is 30/600 µm for the signal
input fiber [14]. As shown in Figure 13, the maximum output power of the laser is about
6110 W, corresponding to a slope efficiency of about 81.3%. No SRS appears in the spectrum
at the maximum power, and the beam quality of the laser degrades to ~2.57. In fact, during
the experiment, when the output power reaches about 5 kW, the time domain signal shows
that the TMI has appeared in the laser, but the output power can continue to increase. As
far as we know, this is the maximum power of the direct LD pumped fiber laser amplifier
employing TF.
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4.1.3. Summary

From the existing results, the advantages and potential of TF applied to high-power
fiber lasers have been verified experimentally. From the perspective of laser structure, the
experimental research of a TF-based fiber laser oscillator is relatively limited in comparison
to that of the fiber laser amplifier at present. In 2019, the output power of the laser oscillator
was only less than 2 kW, and there is no updated progress so far. In the fiber laser amplifier,
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the output power has exceeded 6 kW, and the power of near single-mode laser has also
exceeded 4 kW. All TF used in our experiment are TF with a constant core-to-core ratio. In
ref. [69], the amplifier based on TF with a constant cladding diameter (TF-CCD) was carried
out, and good results were also obtained. According to the theoretical research of Section 3,
TF-CCD may have greater potential. At present, the manufacturing processes of VCAF
and fiber devices are relatively mature, and the high-power fiber laser oscillator based
on TF is worth further research. The aim of the next development of a high-power fiber
laser amplifier based on TF is to achieve higher power and better beam quality. These are
achieved by optimizing the fiber and laser structure parameters (such as pump wavelength,
fiber coiling, etc.).

4.2. Fiber Laser Based on SAF
4.2.1. Fiber Laser Oscillator Based on SAF with Tapered Core and Constant Cladding

Compared with the TF, the SAF has a more versatile longitudinal structure and also
has the ability to accommodate both SRS and TMI. In 2020, we demonstrated the first
experiment of an SAF-based fiber laser oscillator with an output power of more than
1 kW [71]. Different from the typical SAFs that can be divided into five sections along
the longitudinal direction, this SAF, with a total length of 27 m, can be divided into three
sections: two L sections (L1 and L2) at both ends and a saddle-shaped section (SA section)
in the middle. The longitudinal core diameter distribution and main structural parameters
of this SAF are shown in Figure 14 and Table 6. The results are shown in Figure 15. The
TMI threshold of the laser is about 702 W when the pump wavelength is 976 nm, whereas
it is higher than 1312 W when the pump wavelength is 915 nm. Due to the lack of maturity
of the production process, the fiber has a more serious eccentricity (>7 µm), which leads to
poor beam quality of the output laser (~2.0 @1312 W), low optical conversion efficiency
(46%) and more serious melting-point heating phenomenon, which also has a greater
impact on the TMI threshold and ultimately limits the further increase of the output power.
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Figure 15. Experimental results of SAF-based laser oscillator. (a) The output power and efficiency at
different pump powers when pumped by LDs with different wavelength. (b) The beam quality at
output power of 1312 W [71].

4.2.2. Fiber Laser Amplifier Based on SAF with Tapered Core and Constant Cladding

In 2022, a high-power fiber laser amplifier were conducted based on a newly designed
and fabricated SAF which aims for good beam quality [103]. The core diameter distribution
of this fiber is similar to that of the fiber in Figure 14, and the corresponding parameters are
shown in Table 7.

Table 7. Fiber parameters in different section of SAF used for fiber laser amplifier.

Section Core Diameter/µm Cladding Diameter/µm Length/m

L1 30.0 600 1.0

SA 30.0-20.8-30.0 600 32.0

L2 30.0 600 1.0

The output characteristics of the laser are tested under the conditions of co- and
counter-pump configurations with non-wavelength-stabilized 976 nm LDs. The experimen-
tal results are shown in Figure 16. The maximum power of the amplifier under co- and
counter-pump configuration is ~1.8 kW and ~1.5 kW, respectively, and the corresponding
TMI threshold is ~1797 W and ~1484 W. It is noteworthy that the output laser beam qual-
ity of the current laser is greatly improved compared to the aforementioned SAF-based
laser oscillator (M2~2.0). The beam quality of the output laser remained essentially below
1.4 before the advent of TMI. The results of this experiment show that the optimized design
of the SAF can ensure good output laser beam quality while suppressing SRS in the laser.
Currently, the TMI of the SAF-based fiber laser is the main limiting factor for power en-
hancement, and subsequent studies can improve the performance of the fiber from pump,
fiber coiling, and fiber design.
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measurements at an output of 1813 W under co-pump configuration [103].

4.2.3. Summary

The experimental research of fiber laser based on SAF is the most limited among
several VCAF at present. At present, only a 1.3 kW fiber laser oscillator and a 1.8 kW
fiber laser amplifier have been realized. In the 1.3 kW SAF-based fiber laser oscillator,
the im-mature fiber technology leads to the poor beam quality of the output laser and
the difficulty of fiber-fusion processing. These factors limit the improvement of output
power and laser beam quality. In the 1.8 kW fiber laser amplifier, the problems of fiber
technology have been basically solved, and the laser has the potential to achieve more than
3 kW laser output by bidirectional pump. Therefore, an SAF-based fiber laser has been
able to achieve high efficiency and high beam quality laser output. Combined with the
optimization of fiber parameters (core diameter distribution, cladding diameter, length
distribution, doping, etc.), several kW fiber laser amplifiers and oscillators with high beam
quality can be realized in the future. In addition, the current research involves SAF with
tapered core and constant cladding, and the realization of high-power laser output based
on SAF with a constant core-to-cladding ratio is also worth further exploration.
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4.3. Fiber Laser Based on SPF
4.3.1. Fiber Laser Employing SPF with Constant Core-to-Cladding Ratio (SPF-CCCR)

(1) Fiber laser (3–5 kW) employing SPF-CCCR
Different from SAF, the S1 section and the S2 section at the two ends of the SPF have

better mode control capability, which is more advantageous for achieving high beam quality
fiber lasers. In 2020, we conducted the first experiments with a fiber laser oscillator based on
a self-designed SPF-CCCR [70]. The total length of the fiber is 30.9 m, and its longitudinal
structure is shown in Figure 17. The fiber is fabricated using the variable-speed drawing
method described in Section 2.3.2 with a constant core-to-cladding ratio, and the cladding
pump absorption coefficient is comparable to the commercial 20/400 µm CCAF. Under
the condition of a bidirectional pump with wavelength-stabilized 976 nm LDs, we finally
achieved a 3 kW near-single-mode laser output with beam quality M2~1.3 and an optical-
to-optical conversion efficiency of 78.4%. Figure 18 shows the output spectrum and beam
quality of the laser. Compared with lasers based on CCAF with core/cladding diameters
of 21/400 µm (see Table 8), this laser has better SRS suppression while maintaining good
beam quality [104].
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Figure 18. Experimental results of the SPF-based fiber laser oscillator. (a) The measured spectra
at different output powers. (b) The measured M2 at the maximum output power. Inset: a beam
profile of the output laser. Reprinted with permission from Ref. [70], copyright 2020, Optical Society
of America.

Table 8. Comparison of the main results of 3 kW near single-mode fiber laser oscillator based on
SPF [70] and CCAF [104].

Fiber Type Pump Wavelength/Configuration Maximum Power TMI Fiber Length SRS Efficiency M2

21/400 µm CCAF 976 nm /bidirectional 3050 W >3050 W 18 m −29 dB 73% ~1.3

SPF 976 nm /bidirectional 3004 W >3004 W 30.9 m −34 dB 78% ~1.3
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In the above fiber laser oscillator, due to the long fiber length, a significant SRS is
already present in the spectrum at the maximum output power and limits the further
power scaling. To suppress SRS, a strategy can be adopted to design SPF with larger core
diameters. In 2021, we designed an SPF-CCCR with core/cladding diameter distribution
of 25/400 µm–37.5/600 µm–25/400 µm, based on the above SPF-CCCR. As shown in
Figure 19, the fiber was applied to a fiber laser amplifier, and a laser output of 5 kW was
finally achieved, which has good SRS suppression [92]. However, the output laser beam
quality of this laser is about 1.9 because of fiber fusion as well as devices.
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(2) 6 kW fiber amplifier employing SPF-CCCR
In 2022, we increased the output power of a fiber laser amplifier based on an SPF-

CCCR to 6 kW. The self-designed and fabricated SPF-CCCR has a total length of 30 m. The
core diameter distribution is 25/400 µm–37.5/600 µm–25/400 µm, which is the same as
that of the SPF-CCCR in the 5 kW fiber laser amplifier described above. The pump source of
the amplifier is a series of wavelength-stabilized LDs with a central wavelength of 981 nm,
and the pump absorption coefficient of the SPF-CCCR is 0.81 dB/m @981 nm. When the
unidirectional pump configuration is applied, the maximum output power achieved in the
co- and counter-pump configurations is 2780 W and 4307 W, respectively. Moreover, neither
TMI nor SRS is present at the maximum power, and the power scaling under unidirectional
pump is limited by the pump power. When applying bidirectional pump configuration, an
output power of 6020 W was obtained at a co- and counter-pump power of 2417 W and
5263 W, respectively. No TMI was observed at the maximum output power, and the SRS
intensity was about 26.7 dB lower than the signal. The beam quality measurements and
beam profile at the maximum output power are shown in Figure 20d, with the value of
M2

x = 1.87, M2
y = 1.85.

4.3.2. Fiber Laser Based on SPF with Constant Cladding Diameter (SPF-CCD)

From the process of fabrication, SPF-CCCR is made mainly by a variable-speed draw-
ing method. The production process of preform is simple, but the drawing speed is not easy
to control precisely, and the fiber coating is more difficult, especially when the diameter
difference between the L section and the S section is relatively large. The preform form
control method can be used to manufacture VCAF with a constant cladding diameter. The
coating process of such fibers is relatively easy, and the drawing speed of the manufac-
turing process does not need to be changed. In addition, the cladding pump absorption
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coefficient of a VCAF with a constant cladding diameter gradually changes, resulting in a
more uniform heat distribution in the fiber, which is more conducive to TMI suppression
(as shown in the simulation results in Section 2).
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Figure 20. Experimental results of 6 kW SPF-CCCR based fiber laser amplifier. (a) Output laser
power and efficiency at different pump powers. (b) Output spectra at different output powers. (c) PD
signal at the maximum output power and its corresponding FFT results. (d) Beam quality results at
the maximum output power (inset: the beam profile of the laser).

In 2021, we conducted the first high-power fiber laser oscillator based on an SPF-
CCD [72]. The refractive index distribution within the cross-section of the fiber and the
distribution curve of the core diameter along the longitudinal direction are shown in
Figure 21. The total length of the fiber is 25 m. In contrast to the structure of a typical
SPF, as shown in Figure 1b, there is no S section at either end. The core diameter in the
middle L section is 31 µm, and the length is 4.8 m; the minimum core diameter of the two T
sections at both ends is 24.1 µm and 23.4 µm, respectively, and the length is 10.1 m. The
core NA along the longitudinal direction remains constant at ~0.065. According to the
theoretical results, the core diameter variation curve in the T section of the fiber is designed
as a concave function, approximating a parabola, for the best mode control ability and TMI
suppression. The output spectrum and beam quality of the laser are shown in Figure 22.
The fiber laser oscillator with bidirectional pump structure was measured to have a TMI
threshold of ~3.12 kW, and the maximum output power of the laser was 3420 W. No SRS
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appeared on the spectrum, and before the appearance of TMI, the beam quality of the laser
was about 1.7.
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Figure 22. Output results of an oscillator based on an SPF-CCD. (a) The spectra at different output
powers. (b) The beam quality of the laser at a power of 3 kW [72].

4.3.3. Comparison of SRS of Fiber Laser Amplifier Based on SPF-CCCR and CCAF

Based on the aforementioned 6 kW amplifier in 4.3.1, the SPF-CCCR in the amplifier
stage is replaced by a CCAF with a core/cladding diameter of 25/400 µm. This fiber is
made from the same fiber preform as the adopted SPF-CCCR with identical core doping
and NA parameters. Comparing the results, there is no TMI in both unidirectional and
bidirectional pump conditions when two fibers are used. At an output power of 6 kW, the
beam quality of the two is basically at the same level. However, the beam quality values
are slightly worse for the SPF-CCCR due to the fiber matching, as shown in Figure 23a,b.
Significant SRS is observed with the CCAF, whereas SRS is ~3 dB better suppressed with
the SPF-CCCR, as shown in Figure 23c.
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Figure 23. Comparison of experimental results between SPF-CCCR and 25/400 µm CCAF under
the same conditions. (a) The beam quality of the output laser with CCAF. (b) The beam quality of
the output laser with SPF-CCCR. (c) Comparison of the spectra of the two fibers at the same output
power (6 kW).

4.3.4. Comparison of TMI of Fiber Laser Amplifier Based on SPF-CCD and CCAF

Theoretical analysis shows that SPF are capable of accommodating both SRS and TMI
in fibers. The theoretical study in Section 3 shows that the suppression of SRS is close to
that of a conventional fiber with the same equivalent core diameter, but the VCAF has a
higher TMI threshold. In 2022, we experimentally and rigorously compared TMI in CCAF
and SPF-based amplifiers [73]. The SPF-CCD (named CCTC fiber in ref. [73]) and CCAF
used for comparison are both from the same preform, which can avoid experimental errors
due to differences in fiber properties. The SPF-CCD is similar to the VCAF in [72]. The core
and cladding diameters of the CCAF are 28 µm and 600 µm, respectively, corresponding
to the equivalent core and cladding diameters of the SPF-CCD. The key parameters of the
two fibers are shown in Table 9. All experimental conditions, including pump source, fiber
devices, and fiber coiling diameter, were kept consistent.

The results are shown in Figure 24, the TMI thresholds of CCAF-based fiber laser
amplifier in both the co- and counter-pump are 1135 W and 2056 W. However, the TMI
thresholds of the SPF-CCD-based fiber laser amplifier in both the co- and counter-pump
are 1324 W and 2494 W. The results show that the SPF-CCD-based fiber laser amplifier
has a higher TMI threshold in both co- and counter-pump configurations. Throughout
the experiment, the beam quality of the SPF-CCD-based fiber laser amplifier remains
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near 1.3, whereas the beam quality of the uniform size fiber is always above 1.4 and
degrades gradually.

Table 9. Fiber parameters of SPF-CCD and CCAF. Adapted with permission from Ref. [73], copyright
2022, Optica Publishing Group.

Fiber Type Core/Cladding Diameter Core NA Average Absorption Coefficient Length

SPF-CCD 20-36-20/600 µm 0.065 0.78 dB/m 28.5 m
(11.1 m-6 m-11.4 m)

CCAF 28/600 µm 0.065 0.80 dB/m 27.8 m
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Figure 24. (a) The STD of the normalized PD-signal of the SPF-CCD (CCTC) fiber amplifier under co-
pump and counter-pump schemes. (b) The STD of the normalized PD-signal of the CCAF amplifier
under co-pump and counter-pump schemes. (c) The beam quality evolution during the power
scaling of both fiber amplifiers. Reprinted with permission from Ref. [73], copyright 2022, Optica
Publishing Group.

4.3.5. Summary

In general, because the fiber laser based on SPF is the first VCAF to realize several kilo-
watts of near-single-mode laser output, it has received more attention and been subjected to
more research. The work described above is based on the wide-linewidth CW high-power
fiber laser developed by SPF. At present, the maximum output power of the oscillator has
reached 3420 W, and the output power of the fiber laser amplifier has exceeded 6 kW. The
balance advantage of SPF for SRS and TMI has also been verified experimentally. The next
research direction is to achieve higher power laser output and improve beam quality by
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optimizing fiber parameters and laser structure. In addition to the above results, SPF has
also been applied to narrow linewidth fiber lasers at present, and 4.18 kW near-single-mode
narrow linewidth laser output has been achieved. The combination of SPF and confined-
doped, low NA and other measures shows the great potential of VCAF in the field of
high-power fiber lasers.

5. Application of VCAF in Novel Fiber Lasers
5.1. Quasi-Continuous Wave Fiber Laser Based on TF and SPF

In addition to the conventional CW fiber lasers mentioned above, VCAF have great
potential in QCW fiber lasers, which have repetition frequencies in the range of kHz and
exhibit a pulsed state with low average power and high peak power. As a result, QCW
fiber lasers tend to be limited by nonlinear effects rather than TMI, especially SRS. The
application of VCAF to QCW fiber lasers can fully utilize its good beam quality retention
and SRS suppression capability.

5.1.1. Peak Power of 6.4 kW for QCW Fiber Laser Based on TF-CCCR

Firstly, QCW fiber lasers based on TF-CCCR have also been conducted. The total
length of the fiber is 17 m, and the core/cladding diameter varies linearly from 20/400 µm
to 30/600 µm. Moreover, the absorption coefficient is ~0.4 dB@915 nm. The structure of
the optical part of the laser is shown in Figure 25. Combined with a (36 + 1) × 1 backward
pump/signal combiner with better performance, the laser is purely counter-pumped, which
ensures the best SRS suppression. The combiner is placed inside the resonant cavity to
achieve the best fiber matching. At a total average pump power of 915 W, a laser output
with an average power of 646 W with a conversion efficiency of 70.6% was obtained,
corresponding to a peak power of 6.42 kW. The spectrum and beam quality of the output
laser are shown in Figure 26c,d, with the beam quality M2~1.60. The SRS intensity is 19.8 dB
lower than the signal.
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Figure 25. Schematic diagram of the optical part of a QCW fiber laser based on a TF-CCCR.

5.1.2. Peak Power of 7.3 kW for QCW Fiber Laser Based on SPF-CCCR

Then, in order to improve the beam quality and output power, we used an SPF-CCCR in
the QCW fiber laser, and a peak power of 7.3 kW was achieved [97]. As shown in Figure 27,
the core diameter distribution of the SPF-CCCR used is 25/400 µm–37.5/600 µm–25/400 µm,
with a total length of 24 m and a length distribution of 2 m–6 m–8 m–6 m–2 m, and the
equivalent core diameter of the fiber is 32.6 µm. Based on this fiber, combined with the
optimization of the OCFBG, a QCW with a peak power of 7.3 kW was achieved at a
co-/counter-pump power ratio of 1:9.2 and a total average pump power of 853 W. The
efficiency of the laser was about 67%, the beam quality M2 factor is about 1.43, and the
intensity of SRS is 26 dB lower than the signal. The spectra in Figure 28a show that a small
amount of co-pump power leads to a rapid increase in SRS in the output laser, but the
control system of the pump source is limited by the inability to achieve a further increase
in the proportion of backward pumping.
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Figure 26. Output results of QCW fiber laser based on TF-CCCR. (a) The average output power
and efficiency at different average pump powers. (b) The time-domain pulse profile at peak power
of 6423 W. (c) The beam quality and beam profile at the maximum output power. (d) The output
spectrum at the maximum power.
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Figure 27. Schematic diagram of the structure of a QCW fiber laser based on SPF-CCCR (a) and the
longitudinal structure of the SPF-CCCR (b) [96].
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Figure 28. The main output results of the QCW fiber laser. (a) The output spectrum at the maximum
power under different pump configurations. (b) The beam quality and beam profile at the maximum
output power. (c) The time-domain pulse profile at peak power of 7398 W [97].

The recently main results of QCW fiber laser oscillators based on CCAF and VCAF are
listed in Table 10 [105]. It can be found that the significant advantage of VCAF is the good
mode control capability for achieving near single-mode QCW fiber laser, but the current
VCAF is either too long or the equivalent core diameter is small, which does not fully
exploit its advantages. Considering that the TMI threshold is much higher than the SRS
threshold in QCW fiber lasers, VCAF for QCW fiber lasers should have a larger equivalent
core diameter and a shorter fiber length.

Table 10. Comparison of the main results of QCW fiber lasers based on CCAF and VCAF [96,97,105].

Fiber Type Fiber Length Equivalent Core
Diameter

Bandwidth
(HR/OC) Pump Configuration Peak Power Efficiency SRS M2

30/400 CCAF 15 m 30 µm 4.05/2.05 nm Bidirectional 9713 W 61.6% >24 dB 2.40

TF-CCCR 17 m 25 µm 3.05/1.98 nm Counter 6420 W 70.6% 19.8 dB 1.60

SPF-CCCR 24 m 32.6 µm 4.09/1.01 nm Bidirectional (1:9.2) 7398 W 67.0% 26 dB 1.43
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5.2. Optimization of Output Characteristics of Oscillating–Amplifying Integrated Fiber Laser
Employing SPF-CCCR

The oscillating–amplifying integrated fiber laser (OAIFL) is a new structure fiber
laser that is distinct from the traditional fiber laser amplifier and the fiber laser oscillator.
The OAIFL can combine the advantages of the latter two, including high efficiency, good
anti-reflection capability, simple pump control logic, and compact structure. In 2021,
we achieved for the first time an OAIFL at 5 kW power level based on a CCAF with a
core/cladding diameter of 25/400 µm. In that study, severe SRS was observed when the
output power exceeded 5 kW, whereas the laser operating state was already close to the
TMI threshold, and the beam quality of the output laser showed rapid degradation [106].

In 2022, we applied our self-designed SPF-CCCR to an OAIFL for the first time and
improved its output characteristics [77]. The structure of the laser and the SPF-CCCR
used is shown in Figure 29a,b and the results are shown in Figure 30. The laser adopts a
bidirectional pump structure, and the active fiber of its oscillating section is a 22/400 µm
CCAF with a length of 4.32 m. The SPF-CCCR in the amplifying section has a core/cladding
diameter distribution of 25/400 µm–37.5/600 µm–25/400 µm and length distribution of
each section of 2 m–6 m–2 m–5 m–6 m. In order to better balance SRS and TMI, the fiber has
a low absorption design with a pump absorption coefficient ~0.471 dB/m@915 nm. Based
on this structure, the maximum output power of the laser was measured to be 2710 W under
co-pump configuration, because it was limited by SRS, and 4755 W under counter-pump
configuration, because it was limited by available pump power. A maximum laser output
of 6060 W was obtained when bidirectional pump configuration was applied. When the
output power was 6020 W, the beam quality (M2 factor) of the output laser was ~1.77, and
the SRS intensity was about 18.2 dB lower than the signal. To the best of our knowledge,
this is the highest output power of OAIFL with good beam quality at present.
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Figure 30. Experimental results of OAIFL based on SPF. (a) The spectrum when the output power is
6020 W (b) The beam quality at 6020 W [77].

The main experimental results from using SPF-CCCR and 25/400 µm CCAF are
presented in Table 11 [106]. The comparison shows that in terms of power enhancement
capability, the low-absorption design of the SPF-CCCR has a higher TMI threshold under
unidirectional pump conditions, which can better support the high-power laser output
by applying bidirectional pump. Despite the longer length of the SPF-CCCR, the larger
equivalent core diameter gives it better SRS suppression. In this set of experiments, the
SPF was perfectly used to balance SRS and TMI, achieving a 6 kW laser output with high
beam quality.

Table 11. Comparison of the main results of applying SPF-CCCR and CCAF [77,106].

Fiber Parameters
Power SRS TMI M2

OS AS

Ref. [106] 22/400 µm
7.2 m

25/400 µm
13.5 m 5009 W 14.7 dB >5009 W 2.83

This work 22/400 µm
4.32 m

SPF
21.0 m 6020 W 18.2 dB >6060 W 1.77

5.3. Bidirectional-Output Fiber Laser Oscillator (2 × 3 kW) Based on SPF-CCCR

For the conventional structure of the fiber laser oscillator, due to the insufficient
reflectivity of the HRFBG, it often produces part of the signal output from the other end
of the HRFBG, and it is difficult to utilize this part of the power. In 2022, our group
proposed a linear cavity, bidirectional-output fiber laser oscillator by replacing the HRFBG
in the traditional fiber laser oscillator with the OCFBG [107]. This structure combines the
bidirectional-output capability and the high-power output capability of conventional fiber
lasers. In the previous work, wavelength-stabilized 976 nm LDs were used to pump CCAF
with core/cladding diameter of 20/400 µm, and a bidirectional 2 kW laser output, which
was limited by the pump power and SRS, was achieved. Using VCAF combined with other
optimization measures is expected to improve the output power of bidirectional-output
fiber lasers.

The laser structure of the bidirectional-output fiber laser oscillator based on the SPF-
CCCR and the longitudinal structure of the fiber are shown in Figure 31. The pump source
of the laser is non-wavelength-stabilized 976 nm LDs. In order to improve the pump ability
of the laser, the pump light of 36 LDs with output power of about 250 W is coupled into
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the active fiber through two (18 + 1) ×1 backward pump/signal combiners. The SPF used
is the same batch as the SPF used in Section 5.2. The diameter distribution of the fiber
core/cladding and the pump absorption coefficient are consistent. The length distribution
of each longitudinal section is 3 m–4 m–5 m–7 m–5 m, and the total length is 24 m. For
better SRS suppression, the laser adopts a pair of OCFBGs with 3 dB bandwidth of 3 nm,
and the reflectivity is ~10%.
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The final experimental results are shown in Figure 32. At the maximum output power,
the output power at the two ends is 3256 W and 2840 W, respectively, with the total power
and efficiency of 6096 W and 73.2%. No TMI appears, and the beam quality of the output
laser at both ends is M2

xA = 2.06, M2
yA = 1.90 and M2

xB = 2.36, M2
yB = 2.40, respectively.
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Figure 32. Results of the bidirectional-output oscillator in the bidirectional pump configuration.
(a) Output power and efficiency at different pump powers. (b) Output spectra of A-end and B-
end at the maximum output power. (c) Beam quality results of A-end and B-end at the maximum
output power.

Figure 33 shows the comparison of the results of bidirectional-output fiber lasers based
on SPF-CCCR and 25/400 µm CCAF. The 25/400 µm CCAF used for comparison has a total
length of 28 m and a low absorption design (1.07 dB/ m@976 nm) to ensure a sufficiently
high TMI threshold. Figure 33a,b show that under the unidirectional pump configuration,
the total power when TMI occurs in the 25/400 µm CCAF-based laser is 2451 W (A-end
pump) and 3156 W (B-end pump), respectively, which will limit the performance of the
laser when applying the bidirectional pump configuration. Figure 33c shows the output
spectra of both ends at their respective maximum output power when two kinds of fibers
are applied. It can be found that when CCAF is applied, obvious SRS has appeared at lower
output power. Therefore, whether from the perspective of TMI or SRS, the laser based on a
uniform 25/400 µm fiber has limited power enhancement capability. Moreover, the results
show that replacing the CCAF with SPF-CCCR can greatly increase the TMI threshold and
effectively suppress SRS, thus ensuring the ability to achieve higher output power in the
bidirectional pump configuration. However, the beam quality of the output laser becomes
significantly worse, which may be caused by the offset of the fusion melting point or the
larger coiling diameter of the SPF-CCCR.

5.4. Summary

From the results, the application of VCAF to QCW fiber lasers and OAIFL has achieved
good results, and the output power and beam quality have been maintained well. Further
optimization can further improve the output characteristics of the laser. It should be noted
that due to the distinct natures of different lasers, QCW fiber lasers need to focus on the
maintenance of beam quality and SRS suppression. OAIFL needs to pay more attention to
the balance between SRS and TMI while controlling the beam quality. Compared with these
two kinds of lasers, the current SPF-based bidirectional-output fiber laser oscillator has
reached the power level of 2 × 3 kW, but the beam quality of the output laser is not ideal.
The next step of optimization is to ensure the output power and improve the beam quality.
Through the optimization of fiber design and fiber coiling, the output of near-single-mode
laser with a bidirectional power of more than 3 kW can be predicted and realized.
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under bidirectional pump. (d) Beam quality comparison of output laser at A-end.

6. Conclusions

Table 12 shows the maximum output power of various lasers based on different types
of VCAF and the related results. At present, 6 kW continuous wave lasers are realized
based on TF and SPF. In the experiment, the laser based on SPF and TF is compared with the
laser based on CCAF under the same conditions. The results show that VCAF has greater
advantages in improving the TMI threshold and suppressing SRS. In bidirectional-output
fiber lasers, it is difficult to achieve high power (more than 3 kW in both directions) output
based on CCAF, but higher power output can be easily achieved with SPF. In the above
work, except that a few lasers are limited by the available pump power, TMI and SRS
are still the limiting factors for further power scaling of VCAF-based fiber lasers and can
be suppressed through further optimization of the fiber. In general, the enriched and
developed VCAFs have shown great practical potential. Many comparative experiments
show that the VCAF has a very good ability to balance nonlinear effect and TMI, which is
an ideal scheme to achieve high-power fiber laser with excellent beam quality. In addition
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to the QCW and CW fiber lasers described above, the application of VCAF in pulsed fiber
lasers is also worth anticipating.

Table 12. The maximum output power of different VCAFs in different laser types.

Fiber Type Laser Type Maximum
Power/W

Threshold of
TMI/W M2 SRS/dB

TF CW Amplifier 6110 ~5000 2.57 >45

SPF

CW Amplifier 6020 >6020 1.86 26.7

OAIFL 6060 >6060 1.78 18.2

Bidirectional-output Fiber Laser Oscillator 6096(3256 + 2840) >6096 1.98/2.38 >40

SAF
CW Oscillator 1312 >1312 2.01 >40

CW Amplifier 1816 1797 1.50 >40

At present, the main difficulty in the research of VCAF is the accurate fabrication of
fiber. The fabrication method described in Section 2 can meet all the fabrication require-
ments of active fiber with a variable core diameter in various forms. In fact, the gradient
form of VCAF is not limited to tapered, spindle, or saddle-shaped, and its cladding diameter
variation mode is not limited to constant cladding diameter and a constant core-to-cladding
ratio. However, the change of the core diameter in the length of several meters or even
longer fiber is only in the order of micrometers. For the variable-speed drawing method, the
accurate control of speed is particularly important. For the preform form control method, it
is also a difficult point to make preforms according to the design values of the fiber. The
inaccuracy of the VCAF fabrication may cause problems such as fiber mismatch, large
transmission loss, and poor beam quality retention. As mentioned above, the structure
parameters of the fiber also have an impact on the TMI and SRS of the laser. Current fabri-
cating process cannot fabricate the fiber completely according to the design parameters,
and it is almost impossible to ensure the consistency of the fiber parameters. The resulting
performance differences are difficult to eliminate. However, we believe that the precise
manufacturing technology of VCAF can be realized soon.

With the development of technology, VCAF will shine in various fields of fiber laser.
In addition to the application in fiber laser with conventional structure and conventional
wavelength, the operation wavelength of VCAF-based fiber lasers can be extended to
the special wavelength, the laser polarization characteristics can be extended from the
nonlinear polarization to the linear polarization, and so on. Moreover, not only in active
fiber, but also vary core fiber can be used for laser delivery passive fiber in high-power laser.
Due to the progress of technology and the traction of high-power laser demand, VCAF for
single-frequency, polarization-maintaining, high peak power, especially CW high-power
demand, has gradually moved from the laboratory to the market in recent years, greatly
promoting the development of high-power fiber laser. Based on VCAF, combined with new
pump source and other technology, it is expected to achieve industrial class near single-
mode (M2 < 1.5) fiber laser with output power greater than 10 kW and stable operation for
a long time in the future.
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