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Abstract: The emergence of diversified applications of laser-induced breakdown spectroscopy in the
biomedical field, electronics, space physics, and material processing necessitates a comprehensive
understanding of plasma parameters. The present work delineates the structure and evolution of
copper plasma under different ambient pressures (0.01 mbar to 100 mbar) along with other plasma
parameters. The study reveals the role of ambient pressure in the increase of plasma temperature
(Te), electron density (Ne), number of particles in the Debye sphere, plasma frequency, inverse
bremsstrahlung absorption coefficient, electron thermal velocity, electron–ion collision frequency and
in the decrease of Debye length (λD) and plasma skin depth (PSD). The experimental techniques
and the theoretical explanations for the variation of plasma parameters and their applications are
also detailed. As the ambient pressure increases, the motion of plasma species becomes restricted,
resulting in the increase of Te, calculated using the Boltzmann plot. From the values of λD, PSD,
and Ne, it is understood that the copper plasma under investigation is thermally non-relativistic and
satisfies McWhirter’s criterion, thus, revealing the local thermodynamic equilibrium condition of
plasma. The effects of Debye shielding and stark broadening on the spectral lines are also investigated.
Thus, the study helps bring newfangled dimensions to the application of plasma by exploring the
possibility of tailoring plasma parameters.

Keywords: LIBS; laser-induced plasma; plasma parameters; copper plasma

1. Introduction

The advent of ultrashort pulsed laser and detection systems triggered research in
the field of laser-induced breakdown spectroscopy (LIBS) [1]. LIBS is an atomic emission
spectroscopic technique that uses highly energetic laser pulses to ablate and excite elements
from the surface of materials—solid, liquid, and gas–resulting in plasma formation. Aside
from the various analytical techniques based on atomic emission and absorption (atomic
emission spectroscopy and atomic absorption spectroscopy), LIBS stands unique in terms
of its excellent detection limit, accuracy, minimal sample requirement and preparation,
and speedy analysis [2]. The adaptability of LIBS in the study of various classes of solids,
liquids, and gases makes it a promising tool in elemental analysis. Today, we observe
the far-reaching applications of LIBS in various fields such as pharmaceutics, medicine,
cosmochemistry, mineralogy, meteoritics geochemistry, archaeology, foodomics, agronomy,
pollution studies, and the nuclear industry [3–6].

Studies on plasma parameters of metals/alloys are one of the emerging research
areas in plasma physics since they play an influential role in applications such as laser
material processing and thin film deposition [7–10]. In LIBS, the excited ions and atoms
in the plasma give out a unique set of spectral lines that are its characteristic spectral
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signatures [11]. A proper analysis of the LIBS spectra can throw light into the composition
of the material, which helps in the analysis of biological, gaseous, and archaeological
samples for trace detection.

The need for high-quality thin films for diversified applications in semiconductor
physics necessitates the development of precise thin film deposition techniques. The pulsed
laser deposition technique (PLD) offers greater control in tailoring the morphology and
characteristics of thin films through plasma engineering. The fast temporal and spatial
changes in plasma lead to inhomogeneity, transient nature, and thermal nonequilibrium,
which challenge the extensive study of plasma parameters [12,13]. The literature reports
that the plasma characteristics are markedly influenced by laser fluence, pulse repeti-
tion rate, duration of film deposition, substrate temperature, and ambient pressure and
medium [9,14,15]. The important characteristic features of plasma are electron temperature,
density, Debye length, number of particles in the Debye sphere, electron plasma frequency,
skin depth, inverse Bremsstrahlung absorption, electron thermal velocity, electron-ion
collision frequency, and electron thermal de-Broglie wavelength. The quality of the film
deposited depends on these parameters. Hence, precise measurement of these parameters
is essential in preparing thin films by the PLD technique.

Several plasma diagnostic studies show the possibility of plasma parameter charac-
terization with a single event from one pulse or repetition of pulses using high-power
lasers [16–19]. From all these studies, the physical picture of laser-induced plasma (LIP) is
not yet conclusively understood due to the complexity of laser ablation mechanisms, such
as the plasma–target interaction, laser–plasma shielding, and plasma plume expansion.
Numerous LIBS diagnostic techniques have been developed for element detection and
quantification from the characteristic features of plasma [20,21]. The temporal and spatial
inhomogeneity in the plasma composition and temperature suggests the possibility of
exploring the plasma parameters mentioned above for the practical application of the LIBS
technique. The present work gives a comprehensive investigation of the parameters of LIP
from the copper target, as an example, under different ambient pressure.

2. Materials and Methods
2.1. Instrumentation

The experimental arrangement shown in Figure 1 comprises a frequency-doubled Q-
switched Nd: YAG laser (Quanta Ray-INDI Series-Spectra Physics) of 532 nm wavelength,
seven nanosecond pulse width, and 10 Hz pulse repetition rate. The beam is focused
onto the copper target (dimension 50 mm × 20 mm × 3 mm) using a convex lens (L1)
of focal length 40 cm, at 45◦ to the target surface. The energy fluence of the laser beam
is kept at 80 mJ, and the beam spot size at the target is 0.2 cm. The target is fixed on a
rotating target holder placed inside the multiport plasma chamber, and the pressure inside
is varied with the help of a turbomolecular pump and a rotary pump. Laser irradiation
vaporizes the material generating a plasma of the target in a direction vertical to the sample
surface, irrespective of the angle of the interaction of the laser beam. The size of the plume
varies with the chamber pressure. The plasma emission is focused, with a plano-convex
lens (L2) of focal length 10 cm, imaged and recorded using the Andor Shamrock 500i
(500 mm focal length, motorized) Czerny-Turner Spectrograph equipped with Andor iStar
sCMOS of 50 frames/s high-speed acquisition rate. For recording the plasma spectrum,
the spectrograph with a grating of 300 lines/mm blazed at 500 nm is set perpendicular
to the target surface, keeping the entrance slit width at 20 µm and grating. The spectrum
is visualized using Andor Solis software. The spectral data are recorded (i) at a vacuum
level of 0.01 mbar, (ii) from 0.2 mbar to 1 mbar with an interval of 0.2 mbar, and (iii) at
∼100 mbar.
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Figure 1. Schematic of LIBS experimental setup.

2.2. Plasma Parameters

LIP plume can be characterized by its fundamental parameters—the plasma electron
temperature and density. Within the plume expansion, the plasma condition changes
with space and time, where the global thermodynamic laws are not applicable to validate
the behavior of the plasma parameters. Therefore, a localized evaluation is relevant to
measure these parameters, where, for different particle species, the plasma parameters
are maintained constant. This condition is called the local thermodynamic equilibrium
(LTE) [22,23]. At LTE, where all population and depopulation processes are in equilibrium,
the relative population of states with atom or ion is given by the Boltzmann distribution:

Ni
Nj

=
gi
gj

exp
(−∆Eij

kBTe

)
, (1)

where Te is the plasma electron temperature, kB is Boltzmann’s constant, and gi and gj
are the degeneracy of excited i and ground j state. The minimum electron density (Ne)
necessary for the LTE between two states separated in energy by ∆E (in eV) is a function of
Te(K) and is given by the McWhirter criterion (Equation (2)) [24]. Under the LTE condition,
the Te is calculated from the intensities (Equation (3)) of spectral lines using the Boltzmann
plot method [22,25,26].

Ne

(
cm−3

)
≥ 1.6× 1012[Te(K)]1/2[∆E(eV)]3, (2)

I =
CF
λ

Aijgi

U(T)
exp
(
− Ei

kBTe

)
, (3)

Taking the natural logarithm of Equation (3), we get,

ln
Iλ

Aijgi
= − 1

kBTe
Ei + ln

CF
U(T)

, (4)

where I—intensity of the spectral line of wavelength λ, U(T)—partition function, Aij—trans-
ition probability, Ei—excited level energy of the upper state i, F—experimental factor, and
C—the species concentration. From the slope of the plot of ln Iλ

Aijgi
vs. Ei, the electron

temperature Te can be deduced.
From the full width half maximum (FWHM), ∆λ1/2, of the spectral lines, Ne can be

calculated using Equation (5) [27–29]. The ∆λ1/2 of a well-isolated Stark-broadened line
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arises due to the contribution from electron impact and ion impact (first and second term
of the Equation (5), respectively) [30].

∆λ 1
2
= 2ω

(
Ne

1016

)
+ 3.5 SI

(
Ne

1016

)1/4

×
[

1− 3
4

N−1/3
D

]
ω

(
Ne

1016

)
, (5)

where ω is the electron impact parameter, SI is the ion-broadening parameter, and ND is
the number of particles in Debye Length. By neglecting the contribution of ion impact
broadening, being small, Equation (5) can be expressed as [22,31]

∆λ 1
2
= 2ω

(
Ne

1016

)
, (6)

The measured values of the fundamental parameters (Ne and Te) can be used to
calculate the other essential plasma parameters. To reduce the effect of the local electric
field and to maintain the quasi-neutrality characteristics inside the plasma, the charged
particles respond to give a shielding called Debye Shielding. The shielding length is
referred to as the Debye length (λD), also called the Debye radius. The λD and the number
of particles inside it, ND, can be obtained from Equations (7) and (8) [32].

λD =

[
ε0kBTe

Nee2

]1/2
≈ 743× (Te/Ne)

1/2, (cm) (7)

and ND =
4π

3
Neλ3

D, (8)

The influence of electromagnetic waves (i.e., the laser pulse) or particle beams on
Debye shielding makes the plasma oscillate at a characteristic frequency called electron
plasma frequency (fb). The value of fb that depends only on Ne can be calculated using
Equation (9) [33].

fp ≈ 8.98
√

Ne (Hz), (9)

For laboratory plasmas with particular fp, the depth to which electromagnetic radiation
can penetrate is called plasma skin depth (PSD) and is given by Equation (10), where
c = 3 × 108 m/s.

PSD =
c
fp
≈ 5.31× 105N−1/2

e , (cm) (10)

In underdense plasma, the energy of the refracted laser gets absorbed by the plasma
species. Of the main photon absorption mechanisms—inverse bremsstrahlung (IB) and the
photoionization of excited species—IB is the dominant [34], and the coefficient of IB (αIB) is
given by Equation (11).

αIB = 1.37× 10−26λ3N2
e T−1/2

e , (11)

At a particular Te, the electron of mass me attains an average velocity called electron
thermal velocity (vTe), given by Equation (12). In dense plasma, the electron–ion collision
rate is high, and the rate of collision is given by Equation (13).

vTe =

√
kBTe

me
≈ 4.19× 107T1/2

e , (cm/s) (12)

Vei = 2.9× 10−6NeT−3/2
e ln Λ, (s−1) (13)

where ln Λ = ln 9ND
Z is the Coulomb logarithm, and Z is the ionization state of the plasma

species. The average de Broglie wavelength of the electron at a particular temperature is
called electron thermal de Broglie wavelength and is given by Equation (14).
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λth,e =

√
h2

2πmekBTe
≈ 6.919× 10−8 1

T
1
2

e

, (14)

where h is the Planck’s constant.

3. Results and Discussion

LIBS is one of the powerful spectroscopic techniques to determine the plasma param-
eters by measuring the atomic emission intensity and wavelength [35–37]. The atomic
emission spectrum of the copper metal is recorded in the wavelength range of 325–840 nm,
excluding the laser excitation wavelength, at ambient air pressure (P) variations from
0.01 mbar to 100 mbar. The plasma plume images at different ambient pressures for 500 ns
gate width, captured through an entrance slit of width 2500 µm, are shown in Figure 2.
Upon laser ablation, electrons, ions, and neutral atoms of the target are ejected and travel
in the forward direction, constituting the plume. The velocities of the plasma constituents
vary with their masses, emitted direction, and ambient gas pressure. At low pressures, the
resistance to the movement of plasma species being less, the plume expands above the
target surface showing the weak confinement of plasma. The plasma density being less,
the spectral intensity is also less. The spectra recorded under different chamber pressure
are shown in Figure 3. The increase in chamber pressure restricts the motion of plasma
species, thereby preventing the expansion of the plasma plume. The plasma confinement to
a smaller volume at 100 mbar, shown in Figure 2, justifies this. The increased confinement
effect of plasma with ambient pressure leads to an enhanced collision rate of the plasma
species and the release of energy appearing as an increase in spectral intensity and plasma,
which is evident from the variation of the hottest region in the image of the plasma plume.
Figure 2 also shows the detachment of the plasma plume from the target surface, which can
be explained by the plume expansion and subsequent cooling with the trailing end of the
laser pulse. Upon cooling, after the trailing end of the laser pulse, the cooler adjacent air
molecules rush in and detach the hotter region of the plasma plume from the target surface.
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Figure 2. sCMOS images of the induced plasma plume at varying ambient air pressure.

The Cu I and Cu II emission spectrum recorded with a gate delay of 400 ns for different
air pressure is shown in Figure 3a with 320 to 500 nm region enlarged in Figure 3b. The
analysis reveals a more significant number of well-resolved emission lines of Cu I. Hence,
in the present study, only the Cu I emission lines are analyzed to understand the behavior
of plasma parameters. Using the spectroscopic parameters—upper-level energy, transition
probability, and upper-level degeneracy—from the NIST database, shown in Table 1, for
the Cu I emission lines, the Boltzmann plot (Figure 4a) is drawn [38]. From the slope of
the Boltzmann plot (Equation (4)), the plasma electron temperature (Te) is calculated, and
its variation with P is shown in Figure 4b. It is observed that the value of Te is less at low
chamber pressure and increases with the pressure for a given laser fluence (80 mJ), which
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is reflected as a decrease in the slope of the Boltzmann plot. When the chamber pressure is
increased to 100 mbar, the value of Te is 11,273.46 K. This temperature is not included in
Figure 4b as there is a greater difference in the values of pressure. The observation justifies
the analysis of Figure 2 that the increase of P restricts the plume expansion and enhances
the collision of energetic plasma species. Knowledge of plasma temperature is essential in
magnetically confined plasma, to obtain fusion continuity for a long time in nuclear power
plants [39].
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Figure 3. (a) Copper plasma emission spectrum at different ambient air pressure and (b) the enlarged
portion of the spectrum in the range 320 to 500 nm.

Table 1. Copper plasma emission peaks and spectral transition parameter assignment.

Atom/Ion Observed λ (nm) Aij (s−1) Ei (eV) gi
Transitions

Lower Level : Upper Level

Cu I 324.81 1.395 × 108 3.816692 4 3d104p : 3d104s
Cu I 327.21 1.376 × 108 3.785898 2 3d104p : 3d104s
Cu I 402.51 1.90 × 107 6.867196 4 3d105d : 3d104p
Cu I 406.6 2.10 × 107 6.867646 6 3d105d : 3d104p
Cu I 427.27 3.45 × 107 7.737027 8 3d94s(3D)5s: 3d9(2D)4s4p(3P◦)
Cu I 453.38 2.12 × 107 7.883492 4 3d94s(3D)5s : 3d9(2D)4s4p(3P◦)
Cu I 465.96 3.80 × 107 7.737027 8 3d94s(3D)5s : 3d9(2D)4s4p(3P◦)
Cu I 471.33 5.5 × 106 7.737027 8 3d94s(3D)5s : 3d9(2D)4s4p(3P◦)
Cu I 510.42 2.0 × 106 3.816692 4 3d104p : 3d94s2

Cu I 515.07 6.0 × 107 6.191175 4 3d104p : 3d104d
Cu I 521.48 7.5 × 107 6.192025 6 3d104p : 3d104d
Cu I 522.36 1.50 × 107 6.191175 4 3d104p : 3d104d
Cu I 578.92 1.65 × 106 3.785898 2 3d104p : 3d94s2
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The width of peaks in the plasma spectrum, shown in Figure 3, is a function of
the plasma electron density, Ne, which can be estimated from the average FWHM of the
Stark-broadened profile of the non-overlapped peaks in a spectrum. For example, at
pressure 0.2 mbar, the peaks corresponding to Cu I—402.67, 406.52, 454.02, 459.63, 466.04,
510.42, 515.07, and 521.48 nm—are considered for the calculation of Ne using the value
of ω from the literature [40,41] in Equation (6). The representative peak at 515.07 nm at a
pressure of 0.2 mbar for Cu I, showing stark broadening, is displayed in Figure 5a. Out of
the three broadening mechanisms—Doppler broadening, collision broadening, and stark
broadening—the third is the dominant broadening mechanism in the laser plasma, which
influences the spectral linewidth more. The local electric field greatly influences the spectral
emission from the densest region of the plasma, leading to a stark broadening and shift in
the atomic and ionic emission line. The pressure dependence of Ne in the range of 0.01 mbar
to 1 mbar is shown in Figure 5b. The study reveals that irrespective of the chamber pressure,
the value of Ne is greater than the critical value set by McWhirter’s criterion, indicating the
LTE condition. It can also be understood from Figure 5b that Ne increases, with P reaching
a value of 2.24 × 1016 cm−3 at 100 mbar, which agrees well with the explanation given for
plasma plume and Te. The greater the chamber pressure, the greater the number of air
molecules in contact with the target surface, which plays a significant role in the energy
exchange between them. The higher P reduces the mean free path of the species in the
plasma, producing denser plasma with higher temperatures [42].
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The increase of plasma density with P results in a shielding effect and reduces laser
energy density at the target surface. Figure 5b shows that the rate of change of electron
density is rapid initially up to 0.4 mbar and slows down later. This observation justifies the
shielding mechanism involved. As the charged particles initially build up in the plasma,
the local electric field and temperature increase with which the laser pulse interacts. The
change in Te and the field refracts and reduces the laser energy density at the target. This
accounts for the reduced rate of increase of Te and Ne beyond 0.4 mbar. Another factor
that comes into play is the inverse bremsstrahlung arising due to the increased collision
frequency of plasma species. Knowledge of the plasma temperature and density is needed
to realize the dissociation, atomization, ionization, and excitation processes in plasma that
play a vital role in the quantitative analysis of materials using LIBS.

A laser-produced plasma is always in a quasi-neutral state, where the fundamental
parameters actively try to be in an ideal equilibrium state by readjusting the charge distribu-
tion in response to an external disturbance [33]. With the initiation of plasma formation, the
electric field due to the charged species increases, which builds up a shielding mechanism
to the incident photon. Hence, the effective electric field at the target surface due to the
laser pulse decreases. This mechanism is known as Debye shielding, which extends over a
distance called Debye length (λD), calculated using Equation (7). Thus, λD can be regarded
as one of the fundamental properties of plasma, a function of Ne and Te. The significance of
investigating λD is that it gives information about the quasi-neutrality of the plasma, as λD
is the characteristic distance of separation between electrons and ions in the plasma. The
difference between the electron density (Ne) and ion density (Ni) ∆N = |Ne − Ni|, tells about
the quasi-neutrality of the plasma system of length L. The variation of λD and the total num-
ber of particles in the Debye sphere (ND—calculated using Equation (8)) with P is shown
in Figure 6a,b. Figure 6a shows the decrease of λD with ambient pressure. A comparison
of λD with plume size (L) reveals that λD << L, which agrees with the literature [43]. The
quasi-neutrality condition demands ∆N << Ne and Ni or L >> λD, which suggests that the
plasma plume shown in Figure 2 is in a quasi-neutral state. The quasi-neutrality of a plasma
can be defined on a macroscopic scale, while there may be deviations in the microscopic
scale. From Figure 6b, it can be seen that ND increases with P. From Figures 5b and 6b,
it can be inferred that as the chamber pressure increases, the number density of charged
species dominates in ND.
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Since the reflection and absorption of the laser pulse depend on fp, the oscillating
nature of the plasma is also investigated. The pressure dependence of fp, the characteristic
plasma frequency, is shown in Figure 7a, which shows an increase with P due to the rise
in Te and Ne. The plasma electrons oscillate at high frequencies due to thermal distress.
At larger fp (overdense plasma) the electromagnetic waves will get reflected from the
plasma, and at smaller fp (underdense plasma) it will get refracted through the plasma. The
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decreasing nature of PSD, as evident from Figure 7b, is due to its inverse dependence on fp.
From Equations (7) and (10) it is evident that the λD and PSD are inversely proportional
to the square root of Ne. PSD can give information on the relativistic nature of the plasma
in comparison with λD, i.e., when λD < PSD this means that the plasma is thermally non-
relativistic (kTe << mec2 = 0.5 MeV), and when λD ≥ PSD, plasma is said to be thermally
relativistic [44]. Knowledge of the relativistic nature of plasma is highly essential in the
applications such as ion propulsion, fast ignitor fusion, proton therapy, astrophysics, time-
resolved radio-biological studies, and radio-chemistry experiments [45]. From Figures 6a
and 7b, it is evident that for the copper plasma in the present investigation, λD < PSD,
revealing that the plasma is thermally non-relativistic.
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The IB becomes significant when the electron in the plasma absorbs a photon and
thereby undergoes a momentum change. Such absorption is a highly dominant mechanism
of photon absorption in laser plasma. From Figures 5b and 6b, it is evident that Ne and
ND increase with P. The variation of IB co-efficient, αIB, with P from 0.01 mbar to 1 mbar
is shown in Figure 8a. The value of αIB at 100 mbar is 9.78 × 10−15 cm−1. As the increase
of P increases Ne and ND, the probability of interaction of a photon with an electron in
the plasma becomes high, which accounts for the increased absorption leading to the IB.
As IB changes the electron momentum, the electron thermal velocity (vTe ) also changes.
The variation of average velocity vTe , calculated using Equation (11), with P is shown in
Figure 8b. The increase of Te, Ne, ND, and vTe with P enhances the electron–ion collision
frequency (Vei), as shown in Figure 8c. The increase of vTe with Te which in turn with P
increases the electron momentum and, hence, lowers the electron de Broglie wavelength
(λth,e), is shown in Figure 8d.
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4. Conclusions

Comprehensive analysis of LIP has become inevitable, considering the applications
of LIBS in diversified fields of science and technology. In this work, the second harmonic
radiation of a Q-switched Nd: YAG laser (532 nm) of pulse width 7 ns at a fluency of 80 mJ is
used for plasma generation on a copper sheet surface. As a function of ambient air pressure
from 0.01 mbar to 100 mbar, a systematic analysis of different plasma parameters, e.g.,
plasma electron temperature, plasma electron density, Debye length, number of particles
in a Debye sphere, electron plasma frequency, plasma skin depth, inverse bremsstrahlung
absorption, electron thermal velocity, electron–ion collision frequency is performed. The
analysis of plasma plumes at low pressures showed the weak confinement of plasma due
to less resistance to the movement of plasma species. As the P increases, the confinement
effect and the collision rate of the plasma species are enhanced, resulting in the release
of energy. This is reflected as an increase in spectral intensity and plasma temperature
estimated from the Boltzmann plot of several singly ionized and well-isolated spectral lines
of Cu. At the same time, the electron density measurement using the Stark broadened
profile confirmed that the LIP obeys the LTE condition where the value of Ne is greater
than the critical value set by McWhirter’s criterion. Thus, the increase of plasma density
with pressure causes a shielding effect, decreasing the Debye length and increasing the
total number of particles in the Debye sphere. The analysis of copper plasma also revealed
that it fulfills the condition for quasi-neutrality, ∆N « Ne and Ni or L >> λD, which also
agrees well with the plasma plume analysis. Since the plasma electrons oscillate at high
frequency due to thermal distress, as Te and Ne increase, the value of fp also increases with
P. The variation of PSD with P throws light into the relativistic nature of plasma, which is
highly significant for applications in astrophysics, proton therapy, and radiochemistry. In
the present work, as λD < PSD, the copper plasma is said to be thermally non-relativistic.
Information regarding the highly dominant absorption mechanism, IB, in plasma is also
studied. The variation of IB co-efficient, αIB, shows an increase with P, which is attributed
to the enhanced interaction of photons with electrons in the plasma accounting for the
increased IB absorption. This results in increased electron momentum, increasing electron
thermal velocity, electron–ion collision frequency, and electron de Broglie wavelength with
ambient pressure. Thus, the comprehensive analysis of the laser-induced copper plasma
opens up the potential of LIBS in panoramic fields of science, where the plasma parameters
play a significant role.
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