
Citation: Arian, R.; Mahmoudi, T.;

Riazi-Esfahani, H.; Faghihi, H.;

Mirshahi, A.; Ghassemi, F.;

Khodabande, A.; Kafieh, R.; Khalili

Pour, E. Automatic Choroid

Vascularity Index Calculation in

Optical Coherence Tomography

Images with Low-Contrast

Sclerochoroidal Junction Using Deep

Learning. Photonics 2023, 10, 234.

https://doi.org/10.3390/

photonics10030234

Received: 14 November 2022

Revised: 7 February 2023

Accepted: 9 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Automatic Choroid Vascularity Index Calculation in Optical
Coherence Tomography Images with Low-Contrast
Sclerochoroidal Junction Using Deep Learning
Roya Arian 1, Tahereh Mahmoudi 2, Hamid Riazi-Esfahani 3 , Hooshang Faghihi 3, Ahmad Mirshahi 3,
Fariba Ghassemi 3, Alireza Khodabande 3, Raheleh Kafieh 1,4,* and Elias Khalili Pour 3

1 Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine,
Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran

2 Department of Medical Physics and Biomedical Engineering, School of Medicine,
Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran

3 Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 14176-13151, Iran
4 Department of Engineering, Durham University, South Road, Durham DH1 3LE, UK
* Correspondence: raheleh.kafieh@durham.ac.uk

Abstract: The choroidal vascularity index (CVI) is a new biomarker defined for retinal optical
coherence tomography (OCT) images for measuring and evaluating the choroidal vascular structure.
The CVI is the ratio of the choroidal luminal area (LA) to the total choroidal area (TCA). The automatic
calculation of this index is important for ophthalmologists but has not yet been explored. In this
study, we proposed a fully automated method based on deep learning for calculating the CVI in
three main steps: 1—segmentation of the choroidal boundary, 2—detection of the choroidal luminal
vessels, and 3—computation of the CVI. The proposed method was evaluated in complex situations
such as the presence of diabetic retinopathy and pachychoroid spectrum. In pachychoroid spectrum,
the choroid is thickened, and the boundary between the choroid and sclera (sclerochoroidal junction)
is blurred, which makes the segmentation more challenging. The proposed method was designed
based on the U-Net model, and a new loss function was proposed to overcome the segmentation
problems. The vascular LA was then calculated using Niblack’s local thresholding method, and
the CVI value was finally computed. The experimental results for the segmentation stage with
the best-performing model and the proposed loss function used showed Dice coefficients of 0.941
and 0.936 in diabetic retinopathy and pachychoroid spectrum patients, respectively. The unsigned
boundary localization errors in the presence of diabetic retinopathy were 3 and 20.7 µm for the BM
boundary and sclerochoroidal junction, respectively. Similarly, the unsigned errors in the presence of
pachychoroid spectrum were 21.6 and 76.2 µm for the BM and sclerochoroidal junction, respectively.
The performance of the proposed method to calculate the CVI was evaluated; the Bland–Altman plot
indicated an acceptable agreement between the values allocated by experts and the proposed method
in the presence of diabetic retinopathy and pachychoroid spectrum.

Keywords: choroidal vascularity index; optical coherence tomography images; deep learning

1. Introduction

The choroid is a vascularized tissue located between the retina (as the innermost layer
of the eye) and the sclera (as the outermost layer of the eye). It has the highest blood flow
of all tissues in the human body. This layer is responsible for supplying blood to the outer
parts of the retina and the optic nerve [1]. Choroidal changes occur primarily or secondarily
in many ocular diseases. The inspection of choroidal changes adjoined with information
from the retina leads to better understandings of the pathogenesis of diverse diseases and
how to control responses to treatments [2].
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Despite the valuable clinical information that has been gained through choroidal thick-
ness (CT), it only represents the overall choroidal structure and provides no distinctions
between the stromal and luminal vascular components [2]. Recently, the choroidal vascular-
ity index (CVI), defined as the ratio of the choroidal luminal area (LA) to the total choroidal
area (TCA), has been employed to evaluate the vascular structure of choroids in different
retinal and choroidal disorders [2,3]. Since CVI’s introduction, many investigations have
measured its effectiveness as a useful method for disease prognostication and tracking
progression with positive findings [1,4–8].

Optical coherence tomography (OCT) has become a crucial tool in retinal imaging
that provides noninvasive and high-resolution cross-sectional images from the retinal
layers in vivo. OCT is a preferred imaging technique that is essential for the diagnosis
and management of many retinal diseases associated with the choroid. Preliminary OCT
imaging devices did not have adequate resolution to demonstrate the choroidal layers,
particularly the sclerochoroidal junction as the outermost boundary of the choroid. The
main reason was the absorption and scattering of emitted light from the OCT device by the
overlying layers, especially in patients with a thick choroid (pachychoroid spectrum) [3,9].
The advent of enhanced depth imaging (EDI)-OCT and swept-source (SS)-OCT facilitated
the investigation of choroidal structures such as the vascular layers and outer borders of
choroid for quantitative evaluation of biomarkers such as CT and CVI [10,11]. However,
even with such novel techniques, the segmentation of the choroid and sclerochoroidal
junction on OCT images (B-scans) remains challenging.

The exact localization of the sclerochoroidal junction provides useful numerical infor-
mation such as the CVI, which acts as a new OCT-based biomarker and can be employed
for measuring and evaluating the choroidal vascular structure in chorioretinal disorders.
Manual measurement of the CVI is time-consuming, prone to subjective error, and requires
much effort. Thus, manual measurement procedures have been introduced [4]. Further-
more, automatic calculation of the CVI is another crucial task that includes three main
steps: 1—segmentation of choroidal layer, 2—detection of choroidal luminal vessels, and
3—computation of the CVI.

Regarding the first task, previous segmentation algorithms for detecting choroidal
boundaries relied on standard image-processing methods such as graph-theory-based
approaches, active contour, and statistical model-based methods [12–15]. Graph-based
approaches exhibited better performance than the other methods, but they suffered from
a high processing time [12,14]. Recently, deep-learning-based architectures have been
successfully applied in the field of biomedical image segmentation of the retina, liver, brain,
pancreas, heart, and other structures [16–19].

For segmentation of the choroidal layer, patch-based approaches were presented that
used CNN for the segmentation of the RPE and choroidoscleral interface (CSI) bound-
aries [20–22]. In other studies, a combination of deep learning and graph cut algorithms
were used for choroidal boundary segmentation [23,24]. Mao et al. suggested a skip con-
nection attention (SCA) block integrated into U-shape architectures such as U-Net and
the context encoder network (CE-Net) for automated choroid layer segmentation [25].
Xu et al. applied an automated method for PED segmentation in polypoidal choroidal
vasculopathy using a deep neural network [26]. Zheng et al. carried out choroid layer
segmentation to obtain several evaluation parameters in swept-source OCT images from a
healthy population. Residual U-Net was used to segment the choroidal boundaries [27].

Table 1 provides a comparison of the previous methods by summarizing the recent
deep learning works for choroid layer segmentation and comparing them in different as-
pects such as the dataset, device, proposed method, loss function, metrics, and performance.
This table was designed to provide an overview of the methods and was not intended to
be a numerical comparison (which was not possible due to different imaging resolutions
and ROIs).
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Table 1. Summary of the previous studies in choroid layer segmentation using deep learning approaches.

Paper Data Device Name Method Loss Function Metrics Performance

Mao et al. [25] 20 normal human
subjects

Topcon
DRI-OCT-1 SCA-CENet Not reported

Sensitivity 0.918

F1-score 0.952

Dice coefficient 0.951

IoU 0.909

Mean absolute error (MAE) (BM)
(in pixels) 1.945

MAE (SCI) (in pixels) 8.946

Kugelman et al.
[20]

99 children,
594 B-scans SD-OCT

Patch-based
classification
(CNN-RNN)

Tverksy loss

Mean error (ME)
(in pixels)

ILM 0.01

BM 0.03

CSI −0.02

MAE (in pixels)

ILM 0.45

BM 0.46

CSI 3.22

Masood et al. [21]

11 normal,
4 Shortsightedness,
4 glaucoma,
3 DME

Swept-source
OCT

Morphological
processing and
CNN

Cross entropy
loss

ME (in pixels)
BM 0.43 ± 1.01

Choroid 2.8 ± 1.50

MAE (in pixels)
BM 1.39 ± 0.25

Choroid 2.89 ± 1.05

Sui et al. [23]
912 B-scans
(618 B-scans normal,
294 macular edema)

EDI-OCT Graph-based
and CNN MSE MAE (in pixels)

BM 4.6 ± 4.8

CSI 11.4 ± 11.0

Xu et al. [26] 50 PCV patients
(1800 B-scans) SD-OCT Dual-stage

DNN Log-loss MAE (in µm) BM 5.71 ± 3.53

Tsuji et al. [24] 43 eyes from
34 healthy individual SS-OCT SegNet and

graph cut Not reported Dice coefficient 0.909 ± 0.505

He et al. [22] 146 OCT images SD-OCT Patch-based
CNN classifier Focal loss Dice coefficient 0.904 ± 0.055

Zheng et al. [27] 450 images from
12 healthy individual SS-OCT Residual

U-Net Not reported Failure ratio less than 0.02 mm 68.84%

As discussed above, the second task for automatic calculation of the CVI is the de-
tection of choroidal luminal vessels. Histopathological assessment is the gold standard
for investigating the choroidal vascular area. However, it is not a practical clinical tool
because it is dependent on autopsy or biopsy samples, and due to post-fixation shrinkage
and distortion, it results in the lack of repeatability and reliability. On the other hand, it
is almost impossible to label the images manually due to the complex structure and the
substantial amount of time required.

After comparing different image-segmentation techniques, Agrawal et al., the pioneers
of CVI measurement, adopted Niblack’s auto local threshold technique in many studies of
the CVI while considering different healthy and pathologic conditions. Niblack’s method
was selected because it considers the mean and standard deviation of all the pixels in
the region of interest [4]. Vupparanbina et al. [28] introduced another automated CVI
analysis. Recently, Betzler et al. developed an automated platform for measuring CVI
(www.cvigrid.org; accessed on 10 May 2019). The algorithm was not officially released at
the time of writing this manuscript [4,29].

To the best of our knowledge, the proposed method is the first fully automated algo-
rithm to cover the three mentioned steps of segmentation of the choroidal layer, detection
of the choroidal luminal vessels, and computation of the CVI. The novelties of this work
can be categorized as:

• A fully automated method with freely available code was proposed for the first time
to calculate the CVI value in diabetic retinopathy and pachychoroid spectrum using
deep learning methods.

• The proposed modified U-Net segmented the choroid and BM boundaries in challeng-
ing cases such as low-contrast images with thickened choroidal areas.

www.cvigrid.org
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• The proposed loss function (weighted sum of Dice loss (DL), weighted categorical
cross entropy (WCCE), and Tversky loss) was shown to overcome the imbalanced
data (small foreground vs. big background).

The remainder of this paper is organized as follows: Section 2 presents the proposed
method in detail, Section 3 describes the experimental results, and Section 4 discusses
the results. The dataset is available at https://zenodo.org/record/7618624#.Y-K-ci_P1D8
(accessed on 13 November 2022), and the codes can be accessed at https://zenodo.org/
record/7618647#.Y-K-Uy_P1D8 (accessed on 13 November 2022).

2. Materials and Methods
2.1. OCT Data and Manual Annotation

The dataset used in this study was collected at Farabi Hospital, Tehran University of Medi-
cal Sciences, Tehran, Iran. EDI-OCT images were obtained using the RTVue XR
100 Avanti instrument (Optovue, Inc., Fremont, CA, USA). Patients with diabetic retinopa-
thy were positioned appropriately, and equally spaced high-resolution EDI-OCT B-scans at
1.5 mm ∗ 12 mm long raster patterns were captured. In patients with pachychoroid spectrum,
the image-acquisition protocol was based on EDI-OCT HD line 3 mm ∗ 12 mm long B-scans.
In a retrospective study, 439 raster OCT B-scans from 112 patients with diabetic retinopathy
and 98 EDI-HD OCT B-scans from 44 patients with pachychoroid spectrum were selected
for training and testing the model. The study was approved by the Tehran University
of Medical Sciences Institutional Review Board (IRB) (IR.TUMS.FARABIH.REC.1399.017)
and adhered to the tenets of the Declaration of Helsinki. Written informed consent was
obtained from all participants. The subjects’ demographics and clinical characteristics are
reported in Table 2.

Table 2. Demographics and clinical characteristics of the patients.

Data Pachychoroid Spectrum Diabetic Retinopathy

No. of patients 44 112

No. of B-scan Images 98 439

Mean age (mean ± SD) 50.6 ± 11.2 (range: 29–74 years) 61 ± 8 (range: 47–78 years)

Gender 37 (84.1%) male 59 (52.6%) male

Best corrected visual acuity (BCVA) (mean ± SD) 0.50 ± 0.38 0.57 ± 0.25

Subfoveal choroidal thickness (range in µm) (265–510 µm) (135–370 µm)

Resolution 3000 × 12,000 µm 1500 × 12,000 µm

For manual delineation of choroidal boundaries as ground truth, raw OCT images were
imported using ImageJ software (http://imagej.nih.gov/ij; accessed on 13 November 2022),
which is provided in the public domain by the National Institutes of Health, Bethesda, MD,
USA. Choroidal borders of all images were delineated using the polygonal selection tool in
the software toolbar. The RPE–Bruch’s membrane complex (BM) and the sclerochoroidal
border were selected as the upper and lower margins of the choroid, respectively. The
edge of the optic nerve head and the most temporal border of the image were selected
as the nasal and temporal margins of the choroidal area. All manual segmentations were
conducted by a skilled grader (E.K.H.) and verified by another independent grader (H.R.E.).
In case of any disputes, the outlines were segmented by consensus.

2.2. Manual Calculation of CVI

According to the method introduced by Sonoda et al. [30], the ground truth for the CVI
values were calculated using ImageJ software. For this purpose, the total choroidal area
was manually selected from the optic nerve to the temporal side of the image. The selected
area was added as a region of interest (ROI) with the ROI manager tool. The CVI was
calculated in selected images in both the diabetic and pachychoroid spectrum groups by
randomly selecting three sample choroidal vessels with lumens larger than 100 µm using

https://zenodo.org/record/7618624#.Y-K-ci_P1D8
https://zenodo.org/record/7618647#.Y-K-Uy_P1D8
https://zenodo.org/record/7618647#.Y-K-Uy_P1D8
http://imagej.nih.gov/ij
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the oval selection tool in the toolbar. The average reflectivity of these areas was determined
by the software. The average brightness was set as the minimum value to minimize the
noise in the OCT image.

Then, the image was converted to 8 bits and adjusted with the auto local threshold
of Niblack (using default parameters). The binarized image was reconverted into an RGB
image, and the luminal area was determined using the color threshold tool. The light pixels
were defined as the choroidal stroma or interstitial area, and the dark pixels were defined
as the luminal area. The total choroidal area (TCA), luminal area (LA), and stromal area
(SA) were automatically calculated [30].

Herein, we refer to the ratio of LA to TCA as the choroidal vascularity index (CVI).
The CVI was calculated separately for each image.

To evaluate the inter-rater reliability of the CVI measurement, the absolute agreement
model of the inter-class correlation coefficient (ICC) was employed on 20 EDI-OCT images
that were initially segmented by two independent graders. A correlation value of 0.81–1.00
indicated good agreement.

Table 3 shows the acceptable inter-rater agreements in the assessment of the
CVI measurement.

Table 3. Acceptable inter-rater agreements in assessment of CVI measurement.

Interclass Correlation Coefficient (ICC) 95% Confidence Interval (CI)

CVI 0.969 0.918–0.988

2.3. Fully Automated Calculation of CVI Using Deep Learning

Fully automated calculations of the CVI included three main steps: segmenting the
choroidal layer, detecting the choroidal luminal vessels, and computing the CVI. These
steps are elaborated in the following sections.

2.3.1. Automatic Segmentation of the Choroidal Layer

In the proposed method, manual segmentation of the choroidal area was utilized to
construct the ground truth masks for the choroid area. In a simple approach, two-class
segmentation should be designed to divide the image into the choroid area (foreground)
and the rest of the image (background), which was the most prevalent technique in similar
works. However, we found that the backgrounds of the upper and lower choroid areas had
different textures because they referred to different anatomical structures. Accordingly, we
selected the second three-class approach to consider the intrinsic differences of the ocular
structures. The second approach yielded better results after being trained with similar data,
and we used it as our final segmentation approach in the next stages.

All original training images (Figure 1a) were cropped to set the most nasal side of the
macula on the margins of the optic disc (Figure 1(a1)), thus eliminating the unwanted areas
of the image. Two distinct models (two-class and three-class approaches) were trained
separately on the cropped images.

• In the two-class segmentation approach, all pixels of the choroidal area (target class)
were replaced with white pixels (Figure 1(b2)).

• In the three-class segmentation approach, the cropped image was divided into three
regions (Figure 1(c2)).

The block diagram of the proposed approach is depicted in Figure 1.
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Figure 1. Block diagram of the proposed method. The unwanted area of the original image (a) is
shown as cropped in (a1). Two approaches (two-class (b1, 2) and three-class (c1, 2)) were used for
segmentation of the choroid area using U-net (d). After denoising of the obtained image (e), vascular
LA detection was carried out using Niblack’s auto local threshold (f). The CVI was finally calculated
using the ratio of the LA to the TCA.

Network Architectures

A modified U-Net model with a connectivity-promoting regularization loss function
was used for both the two- and three-class segmentation approaches (Figure 2). U-Net,
originally proposed by Ronneberger et al., is one of the most popular segmentation models
in medical imaging based on an encoder–decoder architecture and the use of skip connec-
tions [31]. The number of filters in the proposed method started at 32 and continued for
five stages with a learning rate of 10−7 and an Adam optimizer. These hyperparameters
were obtained empirically in order to achieve the best loss and lowest errors in the training.
Due to the limited and diverse amount of data used, the high learning rate did not provide
a suitable training.

Figure 2. Architecture of the proposed U-Net model.
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Modified Loss Function

One of the main issues in the segmentation of a relatively thin layer from a whole
image is handling the unbalanced data. Standard losses such as cross-entropy loss and Dice
loss usually fail on such occasions, and some new substitutes have already been introduced
to solve the problem. The Dice coefficient treats false negatives (FNs) and false positives
(FPs) equally, thereby resulting in higher recall and lower precision. Tversky loss [32] was
introduced as an alternative to the Dice coefficient by weighing FNs more heavily than FPs
for imbalanced data.

On the other hand, weighted categorical cross entropy (WCCE) was introduced to
replace categorical cross entropy (CCE), the most famous loss function in classification
problems. WCCE weighs the foreground more heavily than the background (choroid area
vs. the whole image) and is useful for imbalanced data. To design the weights of WCCE in
(j = 3)-class segmentation, we used the following equation:

wj=
1− fwjj

β

1− β
, (1)

where wj is a weight vector in WCCE, fj is the ratio indicating the area corresponding to
class j compared to the whole area, and β is a hyperparameter (β ∈ [0, 1)) that was chosen
empirically as 0.8 in this study.

Finally, considering that the desired segmented region (choroid area) had an inter-
connected structure and that the anatomical background did not yield disjoint sections,
total variation (TV) loss was utilized to model these characteristics. To consider all of the
mentioned loss functions, we investigated the results of using each individual loss function
and their combinations. Four different loss functions were examined:

Loss Function #1: Dice loss
Loss Function #2: Dice loss + weighted categorical cross entropy (WCCE) [33]
Loss Function #3: Dice loss + WCCE+ total variation (TV)
Loss Function #4: Dice loss + WCCE+ Tversky

Train/Test Split and Metrics of the Segmentation Model

In health-related applications, it is crucial to split the data at the patient level (not the
B-scan level) to avoid any leakage between test and training data or any correlation between
the images in the test and training data. For this purpose, we divided the datasets to avoid
any data from a single subject occurring in both the training and test sets. Regarding
the images of diabetic retinopathy from 112 patients, 25 patients were randomly selected
as the test data, and the rest were used as the training/validation data. Regarding the
pachychoroid cases from 44 patients, 10 patients (20 images) were selected as test data, and
the rest were employed in the training/validation data stage. Fivefold cross validation was
applied to the train/validation data, and the results were reported for test sets.

For evaluating the accuracy of the segmentation, the predicted masks of the choroid
layer were compared with manual masks, and the Dice similarity coefficient (DSC) was
calculated based on the following equation:

DSC =
2(A∩ B)

A + B
, (2)

where A and B are the predicted and ground truth masks, respectively. To report an
accurate Dice coefficient concentrated on the area of interest and while considering that
the choroid layer was significantly smaller than the background, the DSC value was only
reported for the segmented choroid layer rather than the background. The average DSC on
all B-scans of the test dataset is reported in Section 3. Furthermore, the mean absolute error
between the predicted boundaries and the manually annotated boundaries were calculated
and reported.
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2.3.2. Detection of Choroidal Luminal Vessels and Computation of the CVI

After calculation of the BM boundary and sclerochoroidal junction based on the
choroidal layer mask from the U-Net architecture, the next steps were designed:

• Noise reduction using a non-local means algorithm with a deciding filter strength of
10 [34]. As shown in Figure 3, noise reduction reduced the errors in finding vascular
components by omitting and noisy and disturbing pixels. Moreover, as was mentioned
in Section 2.2, in order to calculate the CVI ground truth after finding the choroidal area,
noise reduction was performed manually (before applying the Niblack algorithm).
Therefore, in the proposed automatic method, we attempted to mimic what is already
done in the manual process and achieve the most reliable performance.

• Vascular LA detection using Niblack’s auto local threshold method using Python
software. The selected parameters for Niblack’s method are summarized in Table 4 to
make the provided code reproducible. The parameters were empirically adjusted to
resemble the gold standard values as much as possible in the training dataset.

• Calculation of CVI using:

CVI =
vascular luminal area
total choroidal area

, (3)

Note that the total choroidal area was obtained by computing the sum of all the pixels
between the two boundaries, while the vascular luminal area was the sum of all pixels that
were obtained using Niblack’s method.

Figure 3. Comparing noisy and denoised images in a fully automatic method: (a–c) show noisy
images while (d–f) are their respective denoised versions.
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Table 4. Parameters used for Niblack’s algorithm in two datasets.

Parameter of Niblack’s Algorithm Diabetic Retinopathy Images Pachychoroid Spectrum Images

Window Size 15 13

K 0.001 0.01

Threshold Coefficient 1.03 1.02

3. Results

The software environment used in this study consisted of the Keras platform backend
in Python 3.7 and an NVIDIA GeForce GTX 1080Ti GPU. The performances of differ-
ent proposed segmentation methods were compared while considering the values of the
signed error (S_E) and unsigned error (U_E) for localization of the BM boundary and
sclerochoroidal junction. These errors were calculated separately for each boundary by sub-
tracting the pixel number of the predicted and ground truth layer in the vertical direction;
these were ultimately converted to micrometers. Furthermore, the DSC for each method
was reported and compared. In addition, the calculation of the CVI values was evaluated
based on the Bland–Altman plot of the manual and automated measurements.

3.1. Choroidal Boundary Segmentation in Pachychoroid Spectrum Dataset

We compared the performances of different loss functions for two-class and three-
class segmentation approaches for localization of the choroidal boundary in pachychoroid
spectrum patients. The segmentation results for each loss function (using two examples)
are demonstrated in Figure 4. Manually annotated boundaries for each image are shown in
red, and the predicted ones are shown in blue.

For further validation purposes, the mean signed and unsigned boundary positioning
errors for each layer are reported in Table 5. The errors are reported in micrometers (while
considering that the height of B-scans for pachychoroid spectrum dataset was 3 mm) for
input images resized to 128 × 128 pixels and using a batch size of 8. The experimental
results with different batch sizes and different input image sizes (64 × 64 and 265 × 256)
are reported in the Supplementary Materials, and the best values for the batch size and
input image size were selected for the rest of the analysis.

Note that because U-Net inherently performs much better for square images than
rectangular ones, we resized the input images to different square sizes such as 64 ∗ 64,
128 ∗ 128, or 256 ∗ 256 pixels. Obviously, the higher the resolution that was chosen, the
better the performance of model (with more time complexity). So, we used 128 ∗ 128 pixels
as the starting resolution to save time in our long study process of investigating different
hyperparameters and loss functions to find out the best ones; however, finally we tried
the best-found model with different input image sizes. The results are reported in the
Supplementary Materials.

Table 5. Mean signed and unsigned errors (S_E and U_E) for different loss functions in two- and
three-class segmentation of the pachychoroid spectrum dataset (errors are reported in micrometers;
the height of the B-scans for the pachychoroid spectrum dataset was 3000 µm). Bold font indicates
the best results.

Unit Loss Function
Two-Class Segmentation Three-Class Segmentation

BM Boundary Choroid Boundary BM Boundary Choroid Boundary
U_E S_E U_E S_E U_E S_E U_E S_E

µm

Loss#1 44.7 −9.6 95.7 −37.8 22.2 −16.5 91.5 16.8
Loss#2 33.9 −31.8 92.7 22.5 21.9 −19.8 78 12.6
Loss#3 39 3.9 87.3 11.7 22.5 −11.1 78.3 15.3
Loss#4 30.3 −25.5 84.3 −5.7 21.6 −14.4 76.2 −25.5
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1 

 

 

Figure 4. Segmentation results of the two example images in the pachychoroid spectrum class.
(a) Original pachychoroid spectrum sample 1; (b) two-class ground truth. Real and predicted
boundaries of two-class approach using loss function: (c) DL; (d) DL + WCCE; (e) DL + WCCE + TV;
(f) DL + WCCE + Tversky. (g) Cropped original pachychoroid spectrum sample 1; (h) three-class
ground truth. Real and predicted boundaries of three-class approach using loss function: (i) DL;
(j) DL + WCCE; (k) DL + WCCE + TV; (l) DL + WCCE + Tversky. (m) Original pachychoroid
spectrum sample 2; (n) two-class ground truth. Real and predicted boundaries of two-class approach
using loss function: (o) DL; (p) DL + WCCE; (q) DL + WCCE + TV; (r) DL + WCCE + Tversky.
(s) Cropped original pachychoroid spectrum sample 2; (t) three-class ground truth. Real and predicted
boundaries of three-class approach using loss function: (u) DL; (v) DL + WCCE; (w) DL + WCCE + TV;
(x) DL +WCCE + Tversky. Manually annotated boundaries for each image are shown in red and
predicted ones are shown in blue.
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3.2. Choroidal Boundary Segmentation in the Diabetic Retinopathy Dataset

Similar to the pachychoroid spectrum dataset, the segmentation results for the diabetic
retinopathy dataset are shown in Figure 5, and the boundary positioning errors are reported in
Table 6. The errors are reported in micrometers (while considering that the height of B-scans
for diabetic retinopathy dataset was 1.5 mm) for input images resized to 128× 128 pixels. The
experimental results with different batch sizes and different input image sizes (64 × 64 and
265 × 256) are reported in the Supplementary Materials, and the best values for the batch
size and input image size were selected for the rest of the analysis.

Figure 5. (a) Original diabetic retinopathy subject 1; (b) two-class ground truth. Real and predicted
boundaries of two-class approach using loss function: (c) DL; (d) DL + WCCE; (e) DL + WCCE +
TV; (f) DL + WCCE + Tversky. (g) Cropped original diabetic retinopathy subject 1; (h) three-class
ground truth. Real and predicted boundaries of three-class approach using loss function: (i) DL;
(j) DL + WCCE; (k) DL + WCCE + TV; (l) DL + WCCE + Tversky. (m) Original diabetic retinopathy
subject 2; (n) two-class ground truth. Real and predicted boundaries of two-class approach using
loss function: (o) DL; (p) DL + WCCE; (q) DL + WCCE + TV; (r) DL + WCCE + Tversky. (s) Cropped
original diabetic retinopathy subject 2; (t) three-class ground truth. Real and predicted boundaries of
three-class approach using loss function: (u) DL; (v) DL + WCCE; (w) DL + WCCE + TV; (x) DL +
WCCE + Tversky. Manually annotated boundaries for each image are shown in red and predicted
ones are shown in blue.
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Table 6. Mean signed and unsigned errors (S_E and U_E) for different loss functions in two- and
three-class segmentation of the diabetic retinopathy dataset (errors are reported in micrometers; the
height of the B-scans for the diabetic retinopathy spectrum dataset was 1500 µm). Bold font indicates
the best results.

Unit Loss Function
Two-Class Segmentation Three-Class Segmentation

BM Boundary Sclerochoroidal Boundary BM Boundary Sclerochoroidal Boundary
U_E S_E U_E S_E U_E S_E U_E S_E

µm

Loss#1 30.15 6.75 45.15 19.35 4.95 −4.35 21.45 −3.3
Loss#2 22.5 3.45 37.2 14.55 3.15 −1.5 20.85 0.45
Loss#3 22.8 4.8 37.65 16.5 3.15 −1.05 22.2 −7.35
Loss#4 21.15 1.65 31.35 −0.9 3 0.15 20.7 0.15

In addition, the DSC value between the segmented choroid layer and the ground truth
is shown in Figure 6 for each combination of loss functions. The results indicated that
the best performance was exhibited by the three-class segmentation and a combination
of the best-chosen loss function (DL, WCCE, and Tversky losses). The sample results
using the best-selected model are demonstrated in Figure 7 for diabetic retinopathy and
pachychoroid spectrum data.

Figure 6. Comparison of DSC value between the segmented choroid layer and the ground truth for
different loss functions in the pachychoroid spectrum and diabetic retinopathy datasets using two-
and three-class segmentation.
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Figure 7. Illustrations of the four samples with final segmentation using the three-class approach
with a combination of three loss functions (DL + WCCE + Tversky). The first row belongs to the
diabetic retinopathy dataset, and the second row shows the results from the pachychoroid spectrum
dataset. Manually annotated boundaries for each image are shown in red and predicted ones are
shown in blue.

As mentioned previously, deep-learning-based architectures have been successfully
applied recently in the field of biomedical image segmentation [16–19]. Therefore, in order
to compare our proposed method with other segmentation methods, we employed only
deep-learning-based methods that included semantic segmentation and the path-based
methods mentioned in [20]. According to the limited data used in this study, most of the
complex deep learning methods cannot be trained by such a small amount of training data,
and in the best case the Dice coefficient will be equal to 60%. To overcome this problem,
first we trained the models using the main data of the study and then evaluated them using
our test dataset. The results are compared in Table 7.

Table 7. Comparison of different deep learning segmentation algorithms. Bold font indicates the
best results.

Unit Method
Pachychoroid Diabetic Retinopathy

BM Boundary Choroid Boundary BM Boundary Choroid Boundary
U_E S_E U_E S_E U_E S_E U_E S_E

µm
Proposed model 21.6 −14.4 76.2 −25.5 3 0.15 20.7 0.15

Semantic
segmentation [20] 27.1 −5.76 88.5 45.7 4.5 1.56 29.3 −4.67

Patch-based [20] 32.2 25.3 96.5 4.32 6.1 −3.4 40.1 0.26

3.3. Vascular LA Segmentation CVI Measurement

The results of the vascular LA segmentation method are shown in Figure 8. The
automated and manual CVI for pachychoroid spectrum and diabetic retinopathy were
measured, and the Bland–Altman limits of agreement between the manual and automated
measurements were calculated for the pachychoroid spectrum and diabetic retinopathy
data. Bland–Altman plots were used to graphically represent the agreement between the
manual and automated methods in the CVI measurements as shown in Figure 9. The limits
of agreement between the automated and manual methods to measure the CVI ranged from
−0.168 to 0.120 and −0.080 to 0.095 for pachychoroid spectrum and diabetic retinopathy
data, respectively.
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Figure 8. Illustration of the vascular LA detection using Niblack’s algorithm. First row: (a) original
image (diabetic retinopathy); (b) denoised image; (c) predicted choroid area; (d) vascular LA detection.
Second row: (e) original image (pachychoroid spectrum); (f) denoised image; (g) predicted choroid
area; (h) vascular LA detection.

Figure 9. Bland–Altman plots of manual and automated measurements of CVI in (a) pachychoroid
spectrum and (b) diabetic retinopathy data.

4. Discussion

The recently introduced CVI metric was developed in response to the need for
choroidal vasculature assessments that are more reliable and precise than previous mea-
sures such as CT and choroidal vessel diameter, which have limitations. CVI displayed
less changeability than CT and was influenced by fewer physiologic elements in previ-
ous studies, which showed that it is a generally stable biomarker for studying choroidal
modifications [4–6].

The need for automatic calculations of the CVI is undeniable in the presence of a
high number of OCT B-scans; in addition, there is no fully automatic method with freely
available code to address this issue. In the current study, a U-Net architecture was used to
segment the RPE boundary and sclerochoroidal junction. A tailored set of loss functions
with a combination of four classic losses (such as the Dice loss coefficient (DL), weighted
categorical cross-entropy (WCCE), total variation (TV), and Tversky) were examined to
fulfill the need to manage the imbalanced data in the segmentation of small regions in an
image.

Subsequently, the desired task was inspected using two-class and three-class seg-
mentation approaches. At first, we carried out a two-class approach. One class was the
choroid area, and the rest of the image was the other class. As the upper and lower choroid
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areas had different textures, we used a three-class approach as the final approach. The
experimental results showed that the three-class approach performed better at segmenting
the choroid area, so we used this network for the final segmentation to obtain the CVI.
The experimental results with three-class segmentation using combined loss (Dice, WCCE,
and Tversky) showed Dice coefficients of 0.941 and 0.936 in the diabetic retinopathy and
pachychoroid spectrum patients, respectively (Figure 5).

In the presence of diabetic retinopathy, the unsigned boundary localization errors were
3 and 20.7 µm for the BM boundary and sclerochoroidal junction, respectively. However, in
the presence of the pachychoroid spectrum, the unsigned errors were 21.6 and 76.2 µm for
BM and sclerochoroidal junction, respectively (Tables 4 and 5).

Then, Niblack’s auto local threshold was adopted to calculate the vascular LA in
accordance with clinically approved publications. The CVI value was then calculated based
on this stage, and the Bland–Altman plots indicated an acceptable agreement between the
manually allocated values and the proposed method for CVI calculation.

The results of our study showed that the designed deep learning algorithm could
detect the RPE with a higher accuracy than the sclerochoroidal junction due to the higher
intensity of the RPE signal in the OCT images compared to the sclerochoroidal junction.

Previous studies were limited to normal OCT B-scans, and the challenge of segmenting
blurred boundaries was achieved in this work. There is just one available code called OCT-
tool [35] that can be used to segment the choroidal layer. Using this code, the BM boundary
of each test datum was automatically detected; however, the choroid boundary was detected
manually by adding some control points. It took a long time to add enough control points
to fit the choroid layer. However, in the current study this layer was automatically detected
with a high accuracy, which was greatly time consuming.

Due to the uncertainty of the sclerochoroidal junction, choroidal segmentation is dif-
ficult in patients with a thick choroidal (such as patients with pachychoroid spectrum).
Therefore, in this study, in addition to diabetic patients, a group of patients with pachy-
choroid spectrum was included. Moreover, we considered ROI extended from the optic
nerve to the temporal side of the image to obtain a more precise estimate of the CVI. While
Agrawal et. al. [6] demonstrated that the subfoveal CVI could accurately reflect the CVI of
the entire macular area in healthy individuals, this assertion did not hold in pachychoroid
disease or ethnicities with a thicker choroid.

The limitations of our study included the following. This study was performed on just
a small number of OCT B-scans and included only two disease entities: diabetic retinopathy
and pachychoroid spectrum. At best, the accuracy of our algorithm was in the range of
10 microns around the sclerochoroidal junction in both groups of patients with diabetic
retinopathy and pachychoroid spectrum. Although this accuracy seemed acceptable for
patients in the current study, it may not be satisfactory for patients with a very thin choroid
(such as patients with age-related macular degeneration). The same is true for patients with
very thick choroidal structures (such as patients with an infiltrative choroidal disease; e.g.,
Vogt-Koyanagi-Harada). Furthermore, blood vessel reflection and shadowing is a potential
source of errors in cross-sectional OCT images for choroidal boundary segmentation, thus
limiting the accuracy of both automated and manual approaches for precise segmentation
and CVI measurement.

Moreover, the OCT B-scans used in the current study were captured with an RTVue XR
100 Avanti instrument. However, the results of a previous study by Agrawal et al. showed
that CVI measurement was not affected by the device used (SD-OCT vs. swept-source) [36].
However, to generalize the results of deep learning algorithms to other diseases, these
algorithms should be evaluated using diverse devices in different diseases.

Similar to previous studies in this area, the current study assessed the choroid in only
a limited cross-sectional B-scan that passed through the macular area, and it is critical not
to extend the current findings to all regions of the retina and choroid (especially peripheral
sections). Future advancements in OCT devices capable of ultra-wide field imaging as well
as 3D assessments of these regions will improve the accuracy of assessments.
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In conclusion, our limited experience showed that a deep-learning-based algorithm
for the automatic calculation of the CVI in OCT images of patients suffering from diabetic
retinopathy and pachychoroid spectrum can yield a good performance in this regard.
Larger-scale studies on different retinochoroidal diseases with more OCT B-scans captured
with different devices can improve automated measurements of the CVI, which is a useful
biomarker for diagnosis and prognostication.
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