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Abstract: Optical coherence tomography (OCT) attenuation imaging is a technique that uses the
optical attenuation coefficient (OAC) to distinguish the types or pathological states of tissues and
has been increasingly used in basic research and clinical diagnosis. With the increasing application
of swept-source OCT, scholars are increasingly inclined to explore deep tissues. Unfortunately, the
accuracy of OAC calculation when exploring deep tissues has yet to be improved. Existing methods
generally have the following problems: overestimation error, underestimation error, severe fluctua-
tion, or stripe artifacts in the OAC calculation of the OCT tail signal. The main reason for this is that
the influence of the noise floor on the OCT weak signal at the tail-end is not paid enough attention.
The noise floor can change the attenuation pattern of the OCT tail signal, which can lead to severe
errors in the OAC. In this paper, we proposed a Kalman filter-based OAC optimal algorithm to
solve this problem. This algorithm can not only eliminate the influence of the noise floor, but can
also effectively protect the weak signal at the tail-end from being lost. The OAC of deep tissues
can be calculated accurately and stably. Numerical simulation, phantom, and in vivo experiments
were tested to verify the algorithm’s effectiveness in this paper. This technology is expected to play
an essential role in disease diagnosis and in the evaluation of the effectiveness of treatment methods.

Keywords: optical coherence tomography attenuation imaging; optical attenuation coefficient; noise
floor; Kalman filter

1. Introduction

Optical coherence tomography (OCT) is a valuable technique that provides nonin-
vasive, volumetric, and real-time in vivo images of tissue microstructures [1]. Over the
past two decades, a variety of OCT-based imaging technologies have sprung up, such
as Doppler OCT [2,3], OCT-based angiography (OCTA) [4,5], OCT-based elastography
(OCE) [6,7], Magnetomotive OCT (MMOCT) [8] and so on. These technologies have taken
the development of OCT to new heights, and bring significant benefits to basic research and
clinical applications, such as ophthalmology [9], dermatology [10], and neuroscience [11].

Currently, another OCT-based imaging technology, OCT attenuation imaging (OCT-
ai), is becoming increasingly popular. The basic principle of this technology is that the
power of an incident light beam passing through a biological tissue decays along its path
due to scattering and absorption. Therefore, the closer to the tail, the weaker the OCT
signals. The optical attenuation coefficient (OAC) reflects the rate at which the incident
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light is attenuated. It is only related to the optical properties of the tissue and does not
diminish with increasing depth theoretically (within the effective OCT imaging depth
range). Therefore, the OAC can be used as an indicator of tissue characteristics. By
measuring the OAC, OCT-ai can distinguish between the various types of tissue affected by
the disease and can be used to detect and quantify multiple diseases [12], such as via the
imaging of atherosclerotic plaques [13], the assessment of glaucoma [14], the identification
of axillary lymph nodes [15], the differentiation between normal and cancerous tissue in
the bladder [16] and colon [17], and the imaging of the cerebral cortex after stroke [18,19].

Swept-source optical coherence tomography (SS-OCT) has recently become more
widely used in clinical studies to investigate deep tissues due to its deeper penetration than
spectral domain OCT. Unfortunately, the OAC calculation accuracy of the OCT tail-end
signal has not been improved, which affects the accurate quantification of the attenuation
properties of deep tissues. The Depth-Resolved (DR) method [20] proposed by Vermeer
et al. produces a significant error in the tail end of the signal. This is mainly due to the use
of finite data (∑N

i=z+1 I[i]) to approximate infinite data (∑∞
i=z+1 I[i]). The two are roughly

equal in the superficial tissues (where z is small); however, there is a vast difference between
the two in deep tissues, where z is large and close to N. The Depth-Resolved Confocal
(DRC) method [21] improves the calculation accuracy of the OAC by introducing confocal
function and sensitivity fall-off, but the tail error problem has not been fundamentally
solved. In previous work, we proposed an Optimized Depth-Resolved Estimation (ODRE)
method [22], which almost solved the tail error problem by compensating for the residual
light intensity. However, the OCT signal contains the noise floor, an additive noise that is
uniformly distributed over all depth ranges of the OCT signal. The proportion of the noise
floor increases with depth. The noise floor’s presence changes the OCT signal’s attenuation
pattern to y = y0·e−2µ·z + b, where b is the noise floor. We call this phenomenon the noise
floor effect (NFE). In this case, when the signal has decayed to a certain level, it is no
longer significantly attenuated. Then, the OAC calculated by the ODRE method is severely
underestimated. Li et al. proposed an overestimation-free depth-resolved attenuation
estimation [23] method. This algorithm truncates the tail OCT signal and then uses the
compensation algorithm to calculate the OAC of the remaining signal accurately. However,
the attenuation information of the deep tissue is lost. If the tail signal is not truncated,
the method produces unstable factors, resulting in light and dark stripe artifacts deep in
the image. If one chooses to directly subtract the mean of the noise floor from the OCT
signal, its attenuation pattern changes back to the Beer–Lambert law y = y0·e−2µ·z [24].
This method can only improve the accuracy of the OAC in shallow tissue. In deep tissue,
where the optical signal is about to be exhausted, the intensity of the noise is much greater
than that of the signal, resulting influctuations in the range of the OAC increasing rapidly
with the depth. This seriously affects the detection accuracy of the OAC in the deep tissue,
thereby affecting the diagnosis of diseases. Although some traditional denoising algorithms
(such as Gaussian filtering, median filtering, or restoration filter [21], etc.) can smooth the
amplitude of part of the noise, they often also lose the information of the weak signal at
the tail end. Determining the the way in which to effectively eliminate the noise floor and
protect the tail-end weak signal from loss is the key to accurately calculating the OAC in
deep tissue.

The Kalman filter is a highly efficient recursive that uses a series of measurements
observed over time and systematic predictions to generate optimal state estimates that
tend to be more accurate compared to those based on a single measurement alone [25]. At
present, the Kalman filter has been applied to OCT by some scholars. Igor Gurov et al.
applied the Kalman filter to dynamic evaluate layer borders of multilayer tissues in Optical
Coherence Tomography (OCT), and improved the resolution of the layer boundary [26].
Amir Tofighi Zavareh et al. proposed an unscented Kalman filter and used it in the context
of SS-OCT spectral calibration. This technology can alleviate the image quality degradation
caused by non-linear spectral sweeps, phase instability, and the increased noise levels of
swept lasers [27]. The application of the Kalman filter to OAC calculation in OCT has
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not been reported. The intensity of the OCT signal decays exponentially along the depth
direction. Therefore, by establishing an exponential decay prediction model, we can apply
the Kalman filter to the OAC estimation.

In general, the existing algorithms mainly suffer from the following problems in
calculating the OAC in deep tissues: overestimation error, underestimation error, drastic
fluctuation, and streaklike artifacts. In this paper, we proposed a Kalman filter-based OAC
optimization algorithm to solve the above problems. The proposed algorithm can effectively
eliminate the noise floor and protect the weak signal in the tail from loss. The resulting
OAC is more accurate and stable. Compared with the existing methods, the proposed
method can significantly improve the accuracy of OAC calculation in deep tissues, thereby
enhancing the disease diagnosis capabilities of OCT-ai technology. Numerical simulation,
phantom, and in vivo experiments were used to verify the effectiveness of the algorithm in
this paper.

2. Method
2.1. Optical Attenuation Coefficient (OAC) Calculation

OAC calculation methods are mainly divided into curve-fitting and depth resolution
estimation. The curve-fitting method is suitable for homogeneous media. It is highly
accurate and can be used as the gold standard. However, if the sample structure is too
complex, this method may lose parts of the depth resolution information. The depth-
resolved estimation method was proposed by Vermeer et al. Because it is suitable for the
OAC calculation of multi-layer media, this method has been widely used and improved.
The model in the discrete domain is transcribed as follows:

µ[z] =
I[z]

2∆∑N
i=z+1 I[i]

(1)

I[z] is the OCT signal of a pixel at depth z, ∆ is the pixel size, and µ[z] (expressed in
mm−1) is the current OAC value. Factor 2 is due to the light propagating through the tissue
twice. However, this method violates the assumption that “almost all light is attenuated”
and thus produces errors that increase with depth.

In our previous work, we proposed an optimized depth-resolved estimation (ODRE)
method. The ODRE method adds the sum of the signal beyond the boundary back to
the denominator, thus guaranteeing the assumption of “almost all light is attenuated”.
Equation (1) was rewritten as follows [22]:

µ[z] =
I[z]

2∆∑N
i=z+1 I[i] + I[N]

µ[N]

(2)

where I[N] is the OCT signal for the last point N. µ[N] is the last OAC that can be obtained
via the exponential fitting of the last piece of data. This method allows the accurate
extraction of the OAC from thinner tissues, accounting for the possibility of light being
incompletely attenuated in tissue. However, the NFE cannot be overcome by the ODRE
algorithm. To solve this problem, the statistical characteristics of the noise contained in
the OCT signal need to be analyzed; this not only explains the cause of the error, but also
provides parameters for the subsequent Kalman filter algorithm.

2.2. The Noise Analysis of OCT

The OCT signal contains two kinds of noise, multiplicative noise and additive noise.
Speckle noise, as a major multiplicative noise, is influenced by the optical properties of the
target object, the size and temporal coherence of the light source, the multiple scattering
and phase aberrations of the propagating beam, and the aperture of the detector [28]. The
OCT signal intensity follows an exponential distribution. In this case, the speckle contrast
(C) is 1 [29]. This means that the standard deviation of speckle noise is equal to the intensity
of the OCT signal.



Photonics 2023, 10, 460 4 of 15

Additive noise, independent of the backscattered light intensity of the sample, is
distributed over the entire depth range of the OCT image, forming what we call the noise
floor. The noise floor includes the electrical noise of the photo detector, hte shot noise, and
the relative intensity noise (RIN) produced by the reference arm light [30]. The existence
of the noise floor can greatly affect the estimation of the attenuation coefficient. To clarify
this problem, we conducted two sets of numerical simulation experiments. In the first
experiment, we simulated a light beam passing through a noise-free, uniform medium.
Two sets of OACs (0.5 and 1) were preset. The simulated observation depth was 3 mm, and
the pixel size ∆ was 0.005 mm. For ease of calculation, we assumed that the initial light
intensity was 1, as shown in Figure 1a. Using Equation (2), we could obtain very accurate
OACs, as shown in Figure 1b. Figure 1c is obtained by adding a constant b to the signal
in Figure 1a, where the value of b is 5% of the maximum intensity, as shown by the solid
yellow line in Figure 1c. The same method was used to calculate the OAC, and the results
are shown in Figure 1d.
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Figure 1. Two numerical simulations that feature exponential decay, with OACs set to 0.5 and 1, and in
which the initial light intensity is 1; the attenuation models are y = y0·e−2µ·z (a) and y = y0·e−2µ·z + b (c),
respectively, b = 0.05. (b,d) are the corresponding OACs obtained by using Equation (2).

It can be seen from Figure 1 that, for attenuation models in the form of y = y0·e−2µ·z,
whose limit is 0 as z approaches infinity, the OAC can be accurately calculated. However,
the noise floor is included in all the original OCT signals, and in this case, the signal does
not continue to decay when the signal is attenuated to a certain level; thus, its attenuation
model should be in the form of y = y0·e−2µ·z + b. It can be seen from Figure 1d that
the OACs are seriously underestimated in most of the depth ranges, and the faster the
signal decays, the more underestimated it is. This is because a lot of noise (noise floor)
is accumulated in the denominator of Equation (2) (∑N

i=z+1 I[i]). When z approaches the
maximum depth N, the accumulated noise is also reduced, so the OAC gradually recovers.

Considering that the real OCT signal is noisy, we next simulated a signal with multi-
plicative noise and additive noise, as shown in Figure 2. As mentioned earlier, the standard
deviation of speckle noise is equal to the intensity of the OCT signal. Speckle noise can be
offset by multiple averages. For example, if each B-scan is collected 5 times repeatedly, the
speckle noise decreases to 1/

√
5 of the original. As a result, C = 0.447, and the standard

deviation of speckle noise is C × y, y = [y1, y2, . . . , yN]. Meanwhile, its variance is [C × y]2.
Therefore, we added Gaussian distribution multiplicative noise with zero mean and a vari-
ance of [C × y]2. The additive noise we added here obeys a Gaussian distribution with
a mean of 0.025 and a variance of 1. The selection of additive noise parameters is based on
experience. In actual OCT signals, the mean value of the noise floor is about 2.5% of the
initial OCT intensity, as shown in Figure 2.
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Figure 2. (a) Simulated signal that contains multiplicative noise (Gaussian distribution with zero
mean and a variance of [C × y]2, C = 0.447) and additive noise (Gaussian distribution with a mean
of 0.025 and a variance of 1). (b) The corresponding OAC obtained by using Equation (2), the
yellow dotted line is the OAC of the ideal OCT signal; the OAC of noisy OCT signals is seriously
underestimated. (c) The mean of noise floor b (the yellow dotted line) is subtracted from the simulated
signal. (d) The corresponding OAC of (c), the fluctuations range in the OAC increases rapidly with
the depth.

In Figure 2a, under the influence of the noise floor, the signal-to-noise ratio (SNR) of
the signal decreases with the increase in depth, and the tail-end signal is almost submerged
in the noise. Signal fluctuations here no longer reflect real structural information, but high-
frequency noise. The calculated OAC was not surprisingly underestimated (Figure 2b).
Subtracting the mean of the noise floor from all signals raises new questions (Figure 2c). The
statistical properties of the additive noise follow a Gaussian distribution with a zero-mean.
The sum of the tail-end data (∑N

i=z+1 I[i]) becomes close to 0, which is much smaller than the
numerator part (I[z]). As a result, the corresponding OAC was very sensitive to noise (the
fluctuation range in the tail OAC increases rapidly with the depth, as shown in Figure 2d).
This phenomenon affects the identification of the tissue attenuation characteristics. This is
the noise floor effect (NFE) described in this article. In order to effectively reduce the NFE
without affecting the image details, we introduced the Kalman filter method.

2.3. Classic Kalman Filter

The Kalman filter works in two steps: prediction and update. In the prediction phase,
the Kalman filter uses the information in the previous time step to produce a state estimate
and its uncertainties at the current time step. In the update phase, a more accurate “state
estimate” is refined using the predicted state estimate, the current measurement, and a
weighting factor. The Kalman filter assigns more weight to the greater certainty side. The
update of the estimated error covariance is also completed at this stage [31].

For ease of understanding, the following descriptions are based on one-dimensional
signals. The Kalman filter model assumes that the true state at time step z evolves from the
state at z − 1, according to the following:

xz = Axz−1 + Buz−1 + wz−1 (3)

where xz is an a priori state estimate at time step z, A is the state transition matrix applied
to the previous state vector xz−1. B is the control–input matrix applied to the control vector
uz−1, and wz−1 is the process noise vector that is assumed to be a zero-mean Gaussian
with the covariance Q, i.e., wz–1∼N(0,Q). If there is no control vector u, the formula can be
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simplified to xz = Axz−1 + wz−1. At time step z, a measurement yz of the true state xz is
made according to the following:

yz = Hxz + vz (4)

where H is the measurement matrix, which is equal to 1 here. νz is the measurement noise
vector that is assumed to be the zero-mean Gaussian with the covariance R. Now, given
the initial estimate of x0, the series of measurement y and the information of the system
described by A, B, H, Q, R, the Kalman filter can be operated according to the procedure in
Table 1.

Table 1. Kalman filter iterative equation.

Prediction:
Predict the state estimate x̂−z = A·x̂z−1 (5)

Predict the error covariance P−z = APz−1 AT + Q (6)

Update:
Calculate the Kalman gain Kgz = P−z ·

(
P−z + R

)−1 (7)
Update the state estimate x̂z = x̂−z + Kgz·

(
yz − x̂−z

)
(8)

Update the error covariance Pz = (I − Kgz)·P−z (9)

In the equations in Table 1, the hat operator, ˆ, represents an estimate of a variable.
The superscripts, -, denote the predicted estimate. The new term P representsthe estimate
error covariance. P−z = E

[
e−z e−T

z
]

is an a priori estimate error covariance and Pz = E
[
ezeT

z
]

is an a posteriori estimate error covariance. e−z ≡ xz − x̂−z and ez ≡ xz − x̂z are a priori and
posteriori estimate errors, respectively. In practical application, an initial P0 should be set
first, and then the p value will stabilize quickly as the calculation goes on.

2.4. Kalman Filter for OCT Signals

The proposed method was based on the time-varying Kalman filter. The intensity of
the OCT signal varies with depth, so the “time step” in this section should be called the
“depth step”. To process OCT signals using the Kalman filter, a linear prediction model with
exponential attenuation is required. In OCT, the linear relationship between the amount of
attenuated irradiance and the irradiance of the incident light beam is determined by the
following equation:

xz = x0·e−2∆∑z−1
i=0 µ[i] (10)

The linear prediction model of exponential decay can be derived by dividing xz
by xz−1.

xz

xz−1
=

e−2∆∑z−1
i=0 µ[i]

e−2∆∑z−2
i=0 µ[i]

= e−2∆µz−1 (11)

xz = e−2∆µz−1 ·xz−1 (12)

The above formula can be rewritten into the form of the Kalman filter, expressed
as follows:

x̂−z = e−2∆µz−1 ·x̂z−1 (13)

where e−2∆µz−1 corresponds to the system parameter A shown in Equation (3). There is no
control vector, so the system parameter B = 0.

In this linear predictive equation, speckle noise and sharp changes in the organiza-
tional structure are the main factors that affect the prediction accuracy. Speckle noise
constitutes the process noise, the covariance of which is indicated by Q. P is the estimate
error covariance. Speckle noise varies with signal intensity, so Q varies with depth too. The
estimated error covariance can be rewritten as follows:

P−z = e−2∆µz−1 ·Pz−1·e−2∆µz−1 + Qz−1 (14)
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According to Section 2.2, the variance of speckle noise is [C × y]2, C = 0.447. For a
one-dimensional signal, the covariance is equal to the variance, that is, Qz = [C × yz]2.
However, the measurement yz already involves the measurement noise vz. The speckle
noise, in theory, should not be affected by the measurement noise v. Therefore, we let
Qz–1 = [C × x̂z−1]2. On the other hand, the measurement noise is mainly caused by additive
noise (i.e., the noise floor), so the measurement noise covariance R is equal to the covariance
of the noise floor. The noise floor can be obtained by shielding the sample arm and
collecting the reference arm signal separately. Since the OAC µ has been included in the
linear prediction model, the Kalman filter requires an additional equation to calculate the
current depth step of the OAC to predict the state estimate of the next depth step. In this
study, Equation (2) was used to calculate the OAC at the current depth step. The entire
algorithm process is shown in Figure 3:
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Figure 3. The entire algorithm process of the Kalman filter applied to the OCT signals.

In Figure 3, the red boxes are the inputs, the green box is the output, and the blue
boxes are the process variables. I is the original OCT signal. v is the noise vector obtained
by recording the reference arm spectrum. b is the mean of the noise vectors. y is the OCT
signal after subtracting b. The initial value x0 = y0, µ0 can be calculated using Formula (2).
The initial value P0 is set to 1. P0 has little effect on the result. In general, it cannot be set to
0. Finally, the OAC at any depth can be accurately obtained by applying Formula (2) again
to the output x̂.

3. Result
3.1. Numerical Simulations

Firstly, the proposed method was used to process the numerical simulation shown in
Figure 2. The results are shown in Figure 4.

Figure 4 shows the Kalman filter result and the corresponding OAC calculated from
the filtered data. The blue curve in Figure 4a represents the OCT signal after subtracting
the mean of the noise floor. The red curve represents the filtered signal.

It can be seen that the filtering scale of the shallow signal is small, but with the increase
in depth, the filtering scale becomes larger and larger. Figure 4b is the OAC calculated
from the filtered data; the accuracy and stability of the OAC have been greatly improved
compared to Figure 2d.
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filtered signal. (b) The corresponding OAC calculated from the filtered data.

In order to facilitate subsequent comparative studies, we renamed the OACs obtained
by different methods. The OAC shown in Figure 2b is calculated based on the original OCT
data containing noisy floors; we call this the “original OAC”. The OAC shown in Figure 2d
is calculated using OCT data and subtracting the mean value of the noise floor, but does not
suppress the noise intensity. The fluctuation range in the OAC increases rapidly with the
depth, in other words, the error increases significantly. Therefore, we call it the “high-error
OAC”. The OAC calculated using Li et al.’s algorithm [23] is referred to as the “Li et al.
OAC” for short. We call the OAC shown in Figure 4b and obtained using Kalman filter
optimizationthe “optimized OAC”.

3.2. Phantom Experiments

A swept-source OCT (SS-OCT) system that was set up in our previous work [32] was
used in this paper. The light source employed was an akinetic swept source (MEMS-VCSEL,
Thorlabs Inc., Newton, NJ, USA), which operated at a 200 kHz swept rate and at a central
wavelength of 1300 nm with a 100 nm bandwidth in order to provide an axial resolution of
∼7.5 µm and a lateral resolution of ∼16 µm in air. The beam emitted by the swept source
was split into the sample arm and the reference arm by a 90:10 ratio coupler (TW1300R2A2,
Thorlabs Inc., Newton, NJ, USA). In the sample arm, an aiming beam was combined with
another 99:1 coupler to guide the OCT imaging.

An optical phantom with 0.1 wt % concentrations of TiO2 particles was fabricated
and used. Since the phantoms are homogeneous, the exponential fitting method can be
applied to the entire depth range, and the results are credible and can be used as a standard
for evaluating other methods. The confocal axial point spread function (PSF) proposed
by Faber et al. [33] was used to remove the influence of confocal characteristics, which is
described as follows:

I(z) ∝ h(z) · e−2µz (15)

h(z) =

(( z− zc f

zR

)2
+ 1

)−1

(16)

where µ is the OAC, z is the signal depth, the function h(z) is the axial PSF, and zcf is
the position of the confocal gate, which was recorded during the experiment. zR is the
‘apparent’ Rayleigh length used to characterize the axial PSF.

zR = απnw2
0/λ (17)

where w0 is the minimum beam radius, λ is the center wavelength of the light source, n is
the refractive index (we used n = 1.353), and α is used to distinguish specular reflection
(α = 1) from diffuse reflection (α = 2). The influence of the confocal characteristics could be
removed by dividing the intensity of OCT signals by the axial PSF h(z).

Comparing the quality of the OCT images obtained using different filters is the most
direct way to verify the performance of various algorithms. Here, we compared the
quality of the OCT images obtained using Kalman filtering with those obtained using
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low-pass filtering. Figure 5 shows a comparison of the OCT image processing results using
a Kalman filter and a 5 × 5 Gaussian low-pass filter. a–c are the original OCT images,
the Kalman-filtered OCT images and the low-pass-filtered OCT images, respectively. The
upper subimages are locally magnified images from a to c, respectively. We extracted
three regions from the deep positions of a to c, respectively, as shown in d. The SNR of
these three regions was calculated, and the mean and standard deviation of the SNR of
the three regions were plotted in figure e. We found that the SNR of the deep signal of
the original image was the lowest, and that both the Kalman filter and low-pass filter can
improve the SNR. However, the variance in the results obtained using the Kalman filter is
smaller, indicating that the stability is stronger. On the other hand, we can see from the
local magnification that the low-pass filter blurred the shallow image, while the Kalman
filter did not.
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Figure 5. Comparison between using Kalman filter and using low-pass filter in phantom experiments.
(a–c) The original OCT images, the Kalman-filtered OCT images and the low-pass-filtered OCT
images, respectively. The upper subimages are locally magnified images from (a–c), respectively.
Three regions extracted from the deep positions of (a–c) are shown in (d). (e) The mean and standard
deviation of the SNR of the three regions.

The logarithmic OCT intensity image of the phantom is shown in Figure 6a. Figure 6b
is the result of exponential fitting. The dark blue curve is a typical A-scan data (shown
by the yellow solid line in Figure 6a. The light blue curve is the exponential fitting result.
The fitting model is y = a·e−2µx + b, b = 10 (A.U.). The result of the OAC (µ) is 0.81 mm−1.
Figure 6c is the original OAC image calculated using the original image, and Figure 6d is
the original OAC curve at the position of the yellow line in c. The underestimation of the
OAC can be seen more significantly from Figure 6d. The OAC at the position shown by
the black arrow is even lower than 0.4 mm−1, which is only half of the real OAC value.
Figure 6e is the high-error OAC image calculated using the image after the subtraction of
the mean of the noise floor. It can be seen that the brightness of Figure 6c is significantly
lower than that of Figure 6e. Figure 6f is the high-error OAC curve. The fluctuation range
in the tail OAC can be seen to have increased significantly (Red oval). Figure 5g is the OAC
image calculated by Li et al.’s algorithm. This algorithm needs to cut off the tail OCT signal
with a low SNR, and then use the compensation algorithm to accurately calculate the OAC
of the remaining signals. If the tail signal is retained, as in Figure 5a, the algorithm generates
instability factors, causing bright (dark) streak artifacts to appear in the deep regions of the
image (shown in the green box in Figure 5g). Figure 5h is the OAC curve obtained using Li
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et al.’s algorithm, with an average value of 0.72. There is a slight underestimation of the
OAC in the middle region (green arrow). Figure 5i is the final optimized OAC image. The
OAC values of all the pixels within the imaging depth range are very uniform and accurate.
Figure 5j is the optimized OAC curve calculated using the filtered data. The average OAC
value is 0.8, which is very close to the exponential fitting result.
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Figure 6. Phantom experiment results. (a) Logarithmic OCT B-scan image of the phantom. (b) Expo-
nential fitting result of a typical A-scan (shown by the orange solid line in (a)). (c) Original OAC image
calculated from (a). (d) Original OAC curve at the position of the yellow line. (e) High-error OAC
image. The fluctuations range of the tail OAC has increased significantly (Red oval). (f) High-error
OAC curve. (g) OAC image calculated using Li et al.’s algorithm. Bright (dark) streak artifacts appear
in deep regions of the image (shown in the green box). (h) The OAC curve obtained using Li et al.’s
algorithm, with an average value of 0.72. There is a slight underestimation of the OAC in the middle
region (green arrow). (i) The optimized OAC image. (j) The optimized OAC curve.

In order to show the accuracy and stability of the algorithm more intuitively, we
extract rectangular regions from the shallow, middle, and deep layers of the image, and
calculate the mean and standard deviation of the OAC within the region. Figure 7a–d
shows the OAC images obtained using four methods and the regions to be detected. Since
phantom is a homogeneous medium, the OAC of the three regions should have been
close (approximately equal to 0.81), and the standard deviation should have been within
an appropriate range. However, Figure 7e shows that the OAC values of the three regions
are all much less than 0.81. In Figure 7f, although the average values of the three regions are
close to 0.81, the standard deviation of the OAC in deep tissue can be seen to have increased
significantly. The OACs in Figure 7g are slightly underestimated, but are significantly better
than those in Figure 7e. The variance in the OACs of the deep tissues increased slightly,
but were much lower than those in Figure 7f. Figure 7h shows that the OAC mean and
standard deviation of the three regions of the optimized OAC image are very close. This
shows that the method in this paper can significantly improve the accuracy and stability of
the OAC.
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3.3. In Vivo Experiments

In this section, we show a group of in vivo experiments and human fundus images.
Five healthy subjects aged 25 to 38 years were recruited. The subjects were recruited
from Northeastern University and had no anterior or posterior segment disease, systemic
disease, history of laser treatment, trauma, or eye surgery. The Northeastern University
Ethics Committee approved this human eye imaging study based on the principles of the
Declaration of Helsinki. In this experiment, we employed an SS-OCT system with a central
wavelength of 1060 nm and a bandwidth of 100 nm (MEMS-VCSEL, Thorlabs Inc., Newton,
NJ, USA). This can provide an axial resolution of 11µm and a lateral resolution of 13 µm.

A comparative experiment similar to that in Figure 5 was also performed in this
section, and the results are shown Figure 8. Similar to the phantom experiment, the Kalman
filter can not only improve the SNR of the deep images, but can also prevent the shallow
images from blurring.
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Figure 8. Comparison between using the Kalman filter and using the low-pass filter in in vivo
experiments. (a–c) The original OCT images, the Kalman-filtered OCT images and the low-pass-
filtered OCT images, respectively. The upper subimages are locally magnified images from (a–c),
respectively. Three regions extracted from the deep positions of (a–c) are shown in (d). (e) The mean
and standard deviation of the SNR of the three regions.

Figure 9a shows a typical fundus OCT B-scan image. Because SS-OCT has a stronger
penetrating ability, we can clearly distinguish the choroid part. Figure 9b–d show the
original OAC image, high-error OAC image, and Li et al. OAC image, respectively. The
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signal intensity of the original OAC image is significantly lower than the other two, while
the fluctuation range in the OAC at the deep position of the high-error OAC image increases
significantly. Streak artifacts exist in Figure 9d. Figure 9e shows the optimized OAC image
obtained using the algorithm in this paper. Figure 9f compares the four OAC curves at the
position of the solid orange line in a. Figure 10 shows the OAC calculation results of the
ocular fundus tissues obtained from other subjects.
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4. Discussion 
OCT technology has been widely used in many fields since it was proposed in 1991. 
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sity, focal plane position and sample placement angle, etc.. Meanwhile, the OAC reflects 

Figure 9. OAC calculation results using a different method. (a) A typical fundus OCT B-scan image.
(b–d) The original OAC image, high-error OAC image, and Li et al. OAC image, respectively. (e) The
optimized OAC image obtained using the algorithm in this paper. The unit of the colorbar is mm−1.
(f) The comparison of the four OAC curves at the position of the solid orange line in (a).
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4. Discussion

OCT technology has been widely used in many fields since it was proposed in 1991.
However, the OCT signal is influenced by many factors, such as the incident light intensity,
focal plane position and sample placement angle, etc.. Meanwhile, the OAC reflects the
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unique optical properties of biological tissues, and is not interfered with by the above
factors, so it can provide a more valuable reference for disease diagnosis and quantitative
analysis [34]. Therefore, it is important to obtain an accurate OAC.

Spectral Domain OCT (SD-OCT) is limited by the spectral resolution, and its sensitivity
decreases rapidly as the imaging depth increases. The SS-OCT developed in recent years
has proven to have significant advantages, including a faster scanning speed, stronger
light intensity and higher spectral resolution. Due to these advantages, the sensitivity and
penetration depth of the SS-OCT system have been significantly improved. A study has
shown that the sensitivity of the SS-OCT system can remain stable within 30 mm, and it is
only decreases by 10 dB in the range of 30–60 mm [35]. With the help of SS-OCT, we can
study the attenuation characteristics of deep tissues. However, the existing methods have
many shortcomings regarding the calculation of deep tissue OAC.

In this paper, we proposed an optimization algorithm based on the Kalman filter in
order to calculate the OAC of deep tissue. In Equation (3), ‘u’ is an optional control input. If
the system is stable, and its output is only related to its inputs and system function, then the
control input ‘u’ can be ignored. If the system is unstable, the output of the system is affected
by the environment (humidity, temperature, magnetic field strength, etc.). Then, the system
needs to introduce ‘u’ to correct it. Alternatively, if the system needs to switch modes
according to the situation, then an additional control input ‘u’ needs to be introduced in
order to adjust the system. The OCT system is a stable system. It is not affected by external
factors and does not need to switch modes during operation. Therefore, the control input
‘u’ can be ignored. The initial value P0 has little impact on the result. In this article, P0 is
set to 1, and during the first calculation, the estimate error covariance P−z is approximately
equal to the process noise covariance Q. Because Q is much larger than R when calculating
the Kalman gain, the system still trusts the measurement. After several iterations, the P−z
adjusts to the appropriate value and stabilizes. In addition to P0, the algorithm in this paper
does not require any artificial parameters. Therefore, the algorithm is very objective. This
enables the method to be applied to a wider range of fields and more complex situations.

A unified phantom was used to test algorithm performance. For homogeneous media,
both the average value and standard deviation of the OAC should be similar, regardless
of any position within the detection depth range. However, few existing methods can
achieve such results. The main problem is that the impact of NFE increases significantly
as SNR decreases. Since multiplicative noises (speckle noise) are considered to be fixed
components of the signal, their ratio is constant. The negative effect of directly subtracting
the mean of the noise floor is that the vibration fluctuation range in the tail OAC increased
significantly. Although this method can obtain a relatively accurate OAC value in shallow
and middle tissues, in deep tissues, the accuracy and recognizability of the OAC are very
low. The main idea of Li et al.’s method is to subtract part of the tail signal (the tail signal
contains a lot of noise and the SNR is very low), and then use a compensation algorithm to
accurately calculate the OAC of the remaining part. This method is similar to our previous
proposal [22]. Although the performance is improved, the disadvantage is that the OAC
of deep tissues is sacrificed. In addition, this method recursively calculates the OAC from
the boundary value µ[N]. If the tail signal is not cut off, the inaccurate µ[N] will affect the
accuracy of µ[N − 1], µ[N − 2] and so on. As such, all subsequent OACs are affected. This
is why the striped pattern appears in the deep region of the OAC image. Fortunately, this
effect gradually diminishes as the SNR increases.

The numerical simulation experiments show that the proposed algorithm has high
accuracy. The proposed method’s accuracy and stability have been verified through the
phantom experiment. In human eye imaging experiments, the results of the proposed
algorithm show high clarity and recognizability, which not only eliminate the various
errors found in deep tissue OAC, but also retain the image details to the greatest extent.
These results fully demonstrate the great potential of the proposed algorithm in actual OCT
clinical diagnosis.
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5. Conclusions

OCT-ai is a promising imaging technology. The Kalman filter-based depth-resolved
method proposed in this paper can suppress NFE well and accurately calculate the OAC
of deep tissues. From the phantom and in vivo experiments, we can see that the deep
signals of the OAC images of fundus tissue obtained using the algorithm proposed in this
paper have no underestimation error, no overestimation error, and no sharp fluctuations or
striation artifacts. The obtained OAC images are clear, accurate, and highly identifiable,
which can provide a reliable basis for quantifying and diagnosing fundus deep tissue. This
technology is expected to play an important role in the diagnosis of deep tissue diseases
and the evaluation of the effectiveness of treatment methods.
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