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Abstract: The fundamental process of information processing and memory formation in the brain is
associated with complex neuron firing patterns, which can occur spontaneously or be triggered by
sensory inputs. Optogenetics has revolutionized neuroscience by enabling precise manipulation of
neuronal activity patterns in specified neural populations using light. However, the light pulses used
in optogenetics have been primarily restricted to square waveforms. Here, we present a detailed
theoretical analysis of the temporal shaping of light pulses in optogenetic excitation of hippocampal
neurons and neocortical fast-spiking interneurons expressed with ultrafast (Chronos), fast (ChR2),
and slow (ChRmine) channelrhodopsins. Optogenetic excitation has been studied with light pulses
of different temporal shapes that include square, forward-/backward ramps, triangular, left-/right-
triangular, Gaussian, left-/right-Gaussian, positive-sinusoidal, and left-/right-positive sinusoidal.
Different light shapes result in significantly different photocurrent amplitudes and kinetics, spike-
timing, and spontaneous firing rate. For short duration stimulations, left-Gaussian pulse results
in larger photocurrent in ChR2 and Chronos than square pulse of the same energy density. Time
to peak photocurrent in each opsin is minimum at right-Gaussian pulse. The optimal pulse width
to achieve peak photocurrent for non-square pulses is 10 ms for Chronos, and 50 ms for ChR2
and ChRmine. The pulse energy to evoke spike in hippocampal neurons can be minimized on
choosing square pulse with Chronos, Gaussian pulse with ChR2, and positive-sinusoidal pulse with
ChRmine. The results demonstrate that non-square waveforms generate more naturalistic spiking
patterns compared to traditional square pulses. These findings provide valuable insights for the
development of new optogenetic strategies to better simulate and manipulate neural activity patterns
in the brain, with the potential to improve our understanding of cognitive processes and the treatment
of neurological disorders.
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1. Introduction

The intricate spatiotemporal patterns of neuronal firing are the basis of information
processing, memory formation, and numerous neurological disorders in the brain [1–3].
Manipulating or disrupting these firing patterns using neurostimulation techniques has
become a common approach for understanding their underlying mechanisms and devel-
oping treatments for neurological diseases such as Parkinson’s disease and epilepsy, and
brain–computer interfaces [4–7]. Optogenetics has revolutionized neuroscience by enabling
precise manipulation of neuronal activity patterns in specified neural populations using
light [8–10]. It has a wide range of applications in and beyond neuroscience that include
heart, peripheral, and retina [11–15]. However, the conventional method of optogenetic
stimulation typically relies on square-shaped pulse trains, which may not reflect the natural
patterns of neural activity. Recent research suggests that employing irregular temporal
patterns of optogenetic stimulation can produce more naturalistic activity patterns, po-
tentially leading to more effective therapeutic outcomes in a range of neuropsychiatric
applications [16–19].
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Light-sensitive proteins are essential tools in optogenetics that offer a diverse range
of properties, including light sensitivity, photocurrent kinetics and amplitude, ion selec-
tivity, and mechanisms of ion transportation [20,21]. Channelrhodopsin-2 (ChR2) is one
of the most extensively studied opsins in optogenetics, but its use is limited, as it requires
high irradiances to evoke spikes, leading to temperature changes after sustained illumina-
tion [22,23]. In addition, it results in multi-spiking in interneurons due to the slow turn-off
kinetics (turn-off time ~12 ms) of its photocurrent [24,25]. Chronos, a blue and green light-
sensitive ultrafast opsin (turn-off time ~3.5 ms) that has been discovered, can overcome
these limitations, as it exhibits higher sensitivity and can evoke spikes with sub-millisecond
temporal precision [26,27]. In parallel, opsins with red-shifted activation wavelengths have
become important due to their suitability for deep excitation, as red-light can penetrate
deeper into the brain tissue in comparison to blue and green [28]. Most recently, a new
pump—like channelrhodopsin, namely ChRmine—was discovered. Although the turn-off
kinetics of the photocurrent in ChRmine (turn-off time ~50 ms) is relatively slow, it exhibits
several orders of magnitude higher photocurrent and light sensitivity at 590 nm [29,30]. De-
spite the different applications for these opsins, it remains unclear how they will respond to
light pulses of different temporal shapes. Further investigations are necessary to determine
the effect of temporal shaping of light pulses on the photocurrent amplitude, kinetics, and
spike timing in the optogenetic excitation of neurons expressing these different opsins.

The impact of temporally shaped light pulses in optogenetic excitation of the hip-
pocampus has provided new insights on memory and learning. To date, only a few studies
have reported the effect of optical stimulation with different pulse patterns on neural spik-
ing [16,18,19]. The different pulse patterns, including sinusoidal pulse, square pulse, ramp
pulse, forward-ramp pulse, backward-ramp pulse and Gaussian pulse, are used for vari-
ous applications in different light-sensitive opsin-expressing neurons [16,18,19]. Recently,
different waveforms have been used in CA3 and CA1 for memory replay extension and
synaptic weight formulation [19]. Rhythms in neural activity are observed across various
temporal and spatial scales and are referred to as oscillations. Earlier studies have shown
that these oscillations play an important role in neural communication, computation, and
cognition [17,31–33]. A comparative experimental study of different stimulation patterns
suggested that pulsed and sinusoidal stimulations induce highly synchronous spiking with
higher variability over the stimulation period [34].

Heating is an important issue while delivering high-intensity light pulses for long
durations [35,36]. In most of the experiments, square-shaped pulses are used to evoke
spikes using opsins with different turn-on and -off photocurrent kinetics. The kinetics
of photocurrents can be significantly changed on changing the temporal shape of the
illuminating pulse. Hence, it is essential to uncover the effect of light shape in order to
maximize the photocurrent at minimum pulse energy.

The application of computational modelling in the field of optogenetics has signifi-
cantly enhanced our understanding of the intricate dynamics involved in the generation of
photocurrents within the opsin molecule and the subsequent spiking in opsin-expressing
neurons [9]. In recent years, various studies have delved into the computational modelling
of optogenetic systems, with initial efforts aimed at developing accurate models for the
ChR2 photocycle and light-to-spike conversion [37,38]. Another vital aspect that has been
examined in this area is to illuminate sub-cellular compartments and activation in scat-
tering tissue mediums [39–41]. In addition to these efforts, recent theoretical modelling
studies have reported the use of light-driven chloride pumps and channels for optogenetic
inhibition, excitation, and bidirectional control of different types of neurons [42–48]. These
investigations have led to a deeper understanding of the factors that impact the efficiency
and specificity of optogenetic tools in various biological contexts. Overall, computational
modelling in optogenetics has provided new avenues for exploring the complex interplay
between light and biology, paving the way for innovative approaches to manipulate and
understand biological processes.
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The selection of light pulses is important in optogenetic interrogation of the cellular
interactions and their contribution to coordinated activity patterns in neuronal networks.
However, there is no comprehensive study comparing the effect of different pulse patterns
on different light-sensitive opsins expressing neurons. The objective of this paper was to
theoretically study the impact of different temporal shaped pulses on the photocurrent
kinetics of ultrafast, fast and slow channelrhodopsins, excitation of hippocampal neu-
rons and fast-spiking neocortical interneurons and find optimized temporal shapes for
different applications.

2. Methods

All channelrhodopsins used in optogenetics sense light through the embedded retinal
molecule. Light-triggered photoisomerization in the opsin-bound retinal molecule results
in conformational changes in opsin structure that result in the opening of an ion-conducting
pore across the membrane [49–53]. Thus, ions flow across the membrane and result in
depolarization or hyperpolarization of membrane potential. Figure 1 shows a schematic of
an integrated biophysical model of optogenetic control of opsin-expressing neurons and
different temporal shapes of illuminating light pulses used in this study.
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Figure 1. Biophysical circuit model for optogenetic control of neurons and illuminating pulse shapes.
(a) 4-state model of opsin photocurrent. (b,c) Schematic of equivalent circuit diagram of opsin-
expressing (b) fast-spiking neocortical interneurons, and (c) hippocampal neurons. (d) Different
temporal shapes of illuminating light pulses, 1: Square, 2: Forward-Ramp, 3: Backward-Ramp, 4:
Triangular, 5: Right-Triangular, 6: Left-Triangular, 7: Gaussian, 8: Right-Gaussian, 9: Left-Gaussian,
10: Positive-Sinusoidal, 11: Left-Positive-Sinusoidal, and 12: Right-Positive-Sinusoidal [40,43,47,54].

2.1. Photocurrent Model

The light-induced ionic current (photocurrent) through the opsin channels (IOpsin) can
be expressed as,

IOpsin = gOpsin fϕ(ϕ, t)
(
V − EOpsin

)
(1)
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where gOpsin is the total conductance, fϕ(ϕ, t) is a normalized light-dependent function
that accounts for instantaneous population density of conducting state at time (t) and
depends on photon flux per unit area per unit time (ϕ), V is the neuron membrane
potential, and EOpsin is reversal potential for opsin channel [43,54]. ϕ is defined as λI/hc,
where h is Planck’s constant, I is irradiance, λ is wavelength, and c is the speed of light in
vacuum [45,54].

Reported experiments have shown that ChR2, Chronos, and ChRmine exhibit a bipha-
sic decay of their photocurrent, which needs at least two open states with different turn-off
kinetics to accurately describe the kinetics [24,26,29]. Thus, a four-state model with two
non-conducting closed C1 and C2 and two conducting open states O1 and O2 has been
considered for all three opsins (Figure 1a) [45,46]. In dark, the opsin molecule rests in the
closed ground state C1. On absorption of photons, the opsin excites to the first open state
O1. From O1, it either decays to the second open state O2, which is less conductive but has
a longer lifetime, or to C1. Similarly, from O2, it either transits back to O1 or decays to the
second closed state C2. The reversible transitions between O1 and O2 states are both light-
and thermal-induced. From closed state C2, it either thermally relaxes to closed state C1,
which is a very slow process called recovery, or is photo-excited back to O2 [45,46,54].

If C1, O1, C2, and O2 denote instantaneous fractions of population density in each of the
four states, the rate of change can be described by the following set of differential equations,

.
C1 = Gd1O1 + GrC2 − Ga1(φ)C1 (2)

.
O1 = Ga1(φ)C1 + Gb(φ)O2 −

(
Gd1 + G f (φ)

)
O1 (3)

.
O2 = Ga2(φ)C2 + G f (φ)O1 − (Gd2 + Gb(φ))O2 (4)

.
C2 = Gd2O2 − (G r + Ga2(φ))C2 (5)

where C1 + O1 + O2 + C2 = 1. Ga1, Ga2, Gd1, Gd2, G f , Gb and Gr are the rate constants for
transitions C1 → O1 , C2 → O2 , O1 → C1 , O2 → C2 , O1 → O2 , O2 → O1 and C2 → C1 ,
respectively, determined from experimental data and defined as Ga1(φ) = k1φp/(φ p + φ

p
m),

Ga2(φ) = k2φp/(φ p +φ
p
m), G f (φ) = G f0 + k f φ

q/(φ q + φ
q
m), Gb(φ) = Gb0 + kbφq/(φ q + φ

q
m)

[43,54]. Since two open states are considered in the four-state model, fφ(φ, t) = O1 + γO2,
where γ = gO2/gO1. g01 and g02 are the conductances of states O1 and O2, respec-
tively [43,54]. The values of model parameters were determined from reported exper-
imental results (Table 1) [24,26,29,45,46,54].

Table 1. Parameters for ChR2, Chronos and ChRmine [24,26,29,45,46,54].

Parameter Chronos ChR2 ChRmine

Gd1 (ms−1) 0.278 0.09 0.02
Gd2 (ms−1) 0.01 0.01 0.013
Gr (ms−1) 1.2 × 10−3 0.5 × 10−3 5.9 × 10−4

g0 (nS) for photocurrent 39 5.9 110
g0 (mS/cm2) for hippocampal neurons 0.88 0.65 1.9

g0 (mS/cm2) for neocortical interneurons 0.176 0.12 0.38
Φm (ph·mm−2·s−1) 8 × 1015 4 × 1016 2.1 × 1015

k1 (ms−1) 1.8 3 0.2
k2 (ms−1) 0.01 0.18 0.01

G f 0 (ms−1) 0.05 0.015 0.0027
Gb0 (ms−1) 0.08 0.005 0.0005
k f (ms−1) 0.1 0.03 0.001
kb (ms−1) 0.01 0.003 0

γ 0.05 0.05 0.05
p 0.8 1 0.8
q 0.9 1 1

λ (nm) 470 470 590
E (mV) 0 0 5.64
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2.2. Model for Optogenetic Excitation of Opsin-Expressing Neurons

To compute the change in membrane potential due to the ionic photocurrent through
the expressed opsin molecules, an integrated model of optogenetic control was formulated
by integrating the photocurrent into the biophysical models, namely the Wang–Buzaski
interneuron model (for fast-spiking neocortical interneurons) and Hemond neuron model
(for hippocampal neurons) (Figure 1b,c) [55–57].

The rate of change in membrane potential in these opsin-expressing neurons and
interneurons can be expressed as follows:

Cm
.

V = −Iionic + IDC + Iopsin (6)

where Cm is the membrane capacitance, IDC is the constant direct electric current that
controls the excitability. Iionic is a sum of natural voltage-gated ionic currents through
different ion channels embedded within the neuron membrane.

For hippocampal neurons, Iionic is defined as,

Iionic= INa+IKdr+IH+ICaL+IKA+IKM+IL (7)

where each ionic current was modelled as I f = g f mphq
(

V − E f

)
, where g f is the maximum

conductance, m and h are the activation (with exponent p) and inactivation gating variables,
respectively, and E f is the reversal potential, except IL = gL(V − EL). Each gating function
x (m or h) obeys the first-order kinetics as

.
x = (x∞ − x)/τx, where the x∞ and τx are the

voltage-dependent functions given in Table 2 [46,55,56]. Other model parameters are given
in Table 3 [46,55,56].

Table 2. Gating function parameters of ion channels in Hemond neuron circuit model [46,55,56].

Iionic Gating Variable α β x∞ τx(ms)

INa

p = 3
−0.4(V+6)

exp
[
−
(

V+6
7.2

)]
−1

0.124(V+6)

exp
[

V+6
7.2

]
−1

α
α+β

0.4665
α+β

q = 1
−0.03(V+21)

exp
[
− (V+21)

1.5

]
−1

0.01(V+21)

exp
[

V+21
1.5

]
−1

1
exp

[
V+21

4

]
+1

0.4662
α+β

IKdr p = 1 exp[−0.113(V − 37)] exp[−0.0791(V − 37)] 1
1+α

50 ∗ β
1+α

IH q = 1 exp[0.0833(V + 75)] exp[0.0333(V + 75)] 1
exp

[
V+73

8

]
+1

β
0.0575(1+α)

ICaL p = 2
15.69(−V+81.5)

exp
[
−V+81.5

10

]
−1

0.29 ∗ exp
(
− V

10.86

) α
α+β

2 ∗ exp(0.00756(V−4))
1+exp(0.0756(V−4))

IKA

p = 1 exp

[
−0.0564(V − 35)− 0.0376(V−35)

exp
(

V+16
5

)
+1

]
exp

−0.0315(V − 35)− 0.021(V−35)(
exp

(
(V+16)

5

)
+1
)
 1

1+α
3.045 ∗ β

1+β

q = 1 exp[0.0113(V + 32)] - 1
1+α

0.26(V + 26)

IKM p = 1
0.016

exp
[
−(V+52.7)

23

] 0.016
exp

[
V+52.7

18.8

] 1

exp
[
−(V+16)

10

]
+1

60 + β
0.003(1+α)

Table 3. Hemond neuron model parameters [46,55,56].

Parameter Unit Value

gNa mS/cm2 22
gKdr mS/cm2 10
gH mS/cm2 0.01

gCaL mS/cm2 0.01
gKA mS/cm2 20
gKM mS/cm2 0.5
gL mS/cm2 0.04
EH mV −30
ENa mV 55
EK mV −90
EL mV −70
τCa ms 100
IDC µA/cm2 0
Cm µF/cm2 1.41
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For fast-spiking neocortical interneurons, Iionic can be expressed as,

Iionic= INa+IK+IL (8)

where INa = gNam3
∞h(V − ENa), IK = gKn4(V − EK), and IL = gL(V − EL). gNa, gK

and gL are the maximal conductance, and ENa, EK and EL are the reversal potential for
the sodium, potassium and leakage ionic currents, respectively [57]. h and m∞ are in-
activation and activation variables for sodium current, respectively, and n is the inac-
tivation variable for potassium current. The gating variable x (n or h) obeys the first-
order kinetics,

.
h = η[αh(1− h)− βhh ,

.
n = η[αn(1− n)− βnn], and m∞ = αm/(αm + βm)

(Tables 4 and 5) [45,57]. All of the simulations were performed using the fourth-order
Runge–Kutta method implemented in MATLAB R2019b.

Table 4. Gating function parameters of ion channels in Wang–Buzsaki interneuron circuit model
[45,57].

Iionic Gating Variable α β

INa

p = 3 −0.1(V+35)
exp[−( V+35

10 )]−1
4 ∗ exp

[
−(V+60)

18

]
q = 1 0.07 ∗ exp

[
−
(

V+58
20

)]
1

exp[ V+28
10 ]+1

IK p = 4
−0.01 ∗ (V+34)

exp
[
−(V+34)

10

]
−1

0.125 ∗ exp
[
−
(

V+44
80

)]

Table 5. Wang–Buzsaki interneuron model parameters [45,57].

Parameter Unit Value

gNa mS/cm2 35
gK mS/cm2 9
gL mS/cm2 0.1

ENa mV 55
EK mV −90
EL mV −65
η - 7

IDC µA/cm2 −0.51
Cm µF/cm2 1.41

Vrest mV −65

2.3. Temporal Shapes of Light Pulses

Different temporal shapes of illuminating light pulses are shown in Figure 1d. Mathe-
matical expressions of different temporal shapes of light pulses are given in Table 6.

Table 6. Temporal shapes of light pulses for optogenetic excitation of opsin-expressing neurons. t is
time. t1 and t2 are the times at which the light pulse is turned on and off, respectively [58–60].

Shape Name Shape Mathematical Expression for Pulse Amplitude (I)

Square pulse
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{

1,
0,

f or t1 < t < t2
otherwise

Forward-Ramp
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2.3. Temporal Shapes of Light Pulses 

Different temporal shapes of illuminating light pulses are shown in Figure 1d. Math-

ematical expressions of different temporal shapes of light pulses are given in Table 6. 

Table 6. Temporal shapes of light pulses for optogenetic excitation of opsin-expressing neurons. 𝑡 

is time. 𝑡1 and 𝑡2 are the times at which the light pulse is turned on and off, respectively [58–60]. 

Shape Name Shape Mathematical Expression for Pulse Amplitude (𝑰) 

Square pulse 
 

𝐼(𝑡) = {
1,
0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Forward-Ramp 
 

𝐼(𝑡) = {

1,

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Backward-Ramp 
 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

1,
0,

      

𝑓𝑜𝑟 𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑓𝑜𝑟
𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Triangular 
 

𝐼(𝑡) =

{
 
 

 
 𝑡 [

𝑡2 − 𝑡1
2

] ,⁄

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Left-Triangular 

 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄  

0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Right-Triangular 
 

𝐼(𝑡) = {
0,

1 −  𝑡 [
𝑡2 − 𝑡1
2

] ,⁄
     

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2

 

Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)/2

3.5
; 𝑐 =  (𝑡2 − 𝑡1)/2 

Left-Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)

3.5
; 𝑐 = 𝑡2 

I(t) =


1,

(t2 − t)/
[

t2−t1
2

]
,

0,

t1 < t < t2+t1
2

t2+t1
2 < t < t2
otherwise

Backward-Ramp
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2.3. Temporal Shapes of Light Pulses 

Different temporal shapes of illuminating light pulses are shown in Figure 1d. Math-

ematical expressions of different temporal shapes of light pulses are given in Table 6. 

Table 6. Temporal shapes of light pulses for optogenetic excitation of opsin-expressing neurons. 𝑡 

is time. 𝑡1 and 𝑡2 are the times at which the light pulse is turned on and off, respectively [58–60]. 

Shape Name Shape Mathematical Expression for Pulse Amplitude (𝑰) 

Square pulse 
 

𝐼(𝑡) = {
1,
0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Forward-Ramp 
 

𝐼(𝑡) = {

1,

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Backward-Ramp 
 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

1,
0,

      

𝑓𝑜𝑟 𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑓𝑜𝑟
𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Triangular 
 

𝐼(𝑡) =

{
 
 

 
 𝑡 [

𝑡2 − 𝑡1
2

] ,⁄

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Left-Triangular 

 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄  

0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Right-Triangular 
 

𝐼(𝑡) = {
0,

1 −  𝑡 [
𝑡2 − 𝑡1
2

] ,⁄
     

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2

 

Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)/2

3.5
; 𝑐 =  (𝑡2 − 𝑡1)/2 

Left-Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)

3.5
; 𝑐 = 𝑡2 

I(t) =


(t− t1)/

[
t2−t1

2

]
,

1,
0,

f or t1 < t < t2+t1
2

f or t2+t1
2 < t < t2

otherwise
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2.3. Temporal Shapes of Light Pulses 

Different temporal shapes of illuminating light pulses are shown in Figure 1d. Math-

ematical expressions of different temporal shapes of light pulses are given in Table 6. 

Table 6. Temporal shapes of light pulses for optogenetic excitation of opsin-expressing neurons. 𝑡 

is time. 𝑡1 and 𝑡2 are the times at which the light pulse is turned on and off, respectively [58–60]. 

Shape Name Shape Mathematical Expression for Pulse Amplitude (𝑰) 

Square pulse 
 

𝐼(𝑡) = {
1,
0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Forward-Ramp 
 

𝐼(𝑡) = {

1,

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Backward-Ramp 
 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

1,
0,

      

𝑓𝑜𝑟 𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑓𝑜𝑟
𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Triangular 
 

𝐼(𝑡) =

{
 
 

 
 𝑡 [

𝑡2 − 𝑡1
2

] ,⁄

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Left-Triangular 

 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄  

0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Right-Triangular 
 

𝐼(𝑡) = {
0,

1 −  𝑡 [
𝑡2 − 𝑡1
2

] ,⁄
     

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2

 

Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)/2

3.5
; 𝑐 =  (𝑡2 − 𝑡1)/2 

Left-Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)

3.5
; 𝑐 = 𝑡2 

I(t) =


(t− t1)/

[
t2−t1

2

]
,

(t2 − t)/
[

t2−t1
2

]
,

0,

t1 < t < t2−t1
2

t2−t1
2 < t < t2
otherwise

Left-Triangular
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2.3. Temporal Shapes of Light Pulses 

Different temporal shapes of illuminating light pulses are shown in Figure 1d. Math-

ematical expressions of different temporal shapes of light pulses are given in Table 6. 

Table 6. Temporal shapes of light pulses for optogenetic excitation of opsin-expressing neurons. 𝑡 

is time. 𝑡1 and 𝑡2 are the times at which the light pulse is turned on and off, respectively [58–60]. 

Shape Name Shape Mathematical Expression for Pulse Amplitude (𝑰) 

Square pulse 
 

𝐼(𝑡) = {
1,
0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Forward-Ramp 
 

𝐼(𝑡) = {

1,

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Backward-Ramp 
 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

1,
0,

      

𝑓𝑜𝑟 𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑓𝑜𝑟
𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Triangular 
 

𝐼(𝑡) =

{
 
 

 
 𝑡 [

𝑡2 − 𝑡1
2

] ,⁄

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Left-Triangular 

 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄  

0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Right-Triangular 
 

𝐼(𝑡) = {
0,

1 −  𝑡 [
𝑡2 − 𝑡1
2

] ,⁄
     

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2

 

Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)/2

3.5
; 𝑐 =  (𝑡2 − 𝑡1)/2 

Left-Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)

3.5
; 𝑐 = 𝑡2 

I(t) =
{ t−t1

t2−t1
,

0,
f or t1 < t < t2

otherwise

Right-Triangular
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2.3. Temporal Shapes of Light Pulses 

Different temporal shapes of illuminating light pulses are shown in Figure 1d. Math-

ematical expressions of different temporal shapes of light pulses are given in Table 6. 

Table 6. Temporal shapes of light pulses for optogenetic excitation of opsin-expressing neurons. 𝑡 

is time. 𝑡1 and 𝑡2 are the times at which the light pulse is turned on and off, respectively [58–60]. 

Shape Name Shape Mathematical Expression for Pulse Amplitude (𝑰) 

Square pulse 
 

𝐼(𝑡) = {
1,
0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Forward-Ramp 
 

𝐼(𝑡) = {

1,

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Backward-Ramp 
 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

1,
0,

      

𝑓𝑜𝑟 𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑓𝑜𝑟
𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Triangular 
 

𝐼(𝑡) =

{
 
 

 
 𝑡 [

𝑡2 − 𝑡1
2

] ,⁄

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Left-Triangular 

 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄  

0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Right-Triangular 
 

𝐼(𝑡) = {
0,

1 −  𝑡 [
𝑡2 − 𝑡1
2

] ,⁄
     

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2

 

Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)/2

3.5
; 𝑐 =  (𝑡2 − 𝑡1)/2 

Left-Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)

3.5
; 𝑐 = 𝑡2 

I(t) =
{

0,
t2−t
t2−t1

,
otherwise

f or t1 < t < t2

Gaussian
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Forward-Ramp 
 

𝐼(𝑡) = {

1,

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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2
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2
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𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝐼(𝑡) =

{
 
 

 
 𝑡 [

𝑡2 − 𝑡1
2

] ,⁄

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Left-Triangular 

 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄  

0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Right-Triangular 
 

𝐼(𝑡) = {
0,

1 −  𝑡 [
𝑡2 − 𝑡1
2

] ,⁄
     

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2

 

Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)/2

3.5
; 𝑐 =  (𝑡2 − 𝑡1)/2 

Left-Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)

3.5
; 𝑐 = 𝑡2 

I(t) =

exp
(
− (t−c)2

2σ2

)
,

0,

f or t1 < t < t2
otherwise ; σ =

(t 2−t1)/2
3.5 ;

c = (t 2 + t1)/2

Left-Gaussian
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1,

1 − 𝑡 [
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2
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𝑡1 < 𝑡 <
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2
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2
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2
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2

𝑓𝑜𝑟
𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Triangular 
 

𝐼(𝑡) =

{
 
 

 
 𝑡 [

𝑡2 − 𝑡1
2

] ,⁄

1 − 𝑡 [
𝑡2 − 𝑡1
2

] ,⁄

0,

      

𝑡1 < 𝑡 <
𝑡2 − 𝑡1
2

𝑡2 − 𝑡1
2

<  𝑡 <  𝑡2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Left-Triangular 

 

𝐼(𝑡) = {
𝑡 [
𝑡2 − 𝑡1
2

] ,⁄  

0,
     
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Right-Triangular 
 

𝐼(𝑡) = {
0,

1 −  𝑡 [
𝑡2 − 𝑡1
2

] ,⁄
     

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2

 

Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)/2

3.5
; 𝑐 =  (𝑡2 − 𝑡1)/2 

Left-Gaussian 

 

𝐼(𝑡) = {
exp (−

(𝑡−𝑐)2

2𝜎2
) ,

0,
 
𝑓𝑜𝑟 𝑡1 < 𝑡 < 𝑡2 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;  𝜎 =  
(𝑡2−𝑡1)

3.5
; 𝑐 = 𝑡2 I(t) =

exp
(
− (t−c)2

2σ2

)
,

0,

f or t1 < t < t2
otherwise ; σ =

(t 2−t1)
3.5 ; c = t2

Right-Gaussian
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3. Results 

The effect of temporal changes in light pulse shapes on photocurrent in different op-

sins on illuminating with short (5 ms) and long (1 s) light pulses has been studied in detail 

(Figure 2). The amplitude of light pulses has been considered to have two different condi-

tions: (i) iso-max (pulses having the same maximum irradiance), and (ii) iso-energy den-

sity (pulses having the same energy density). For generating iso-max pulses, the ampli-

tude of non-square light pulses is kept the same as the amplitude of the square pulse. For 

generating iso-energy density pulses, non-square light pulses of higher irradiances are 

used to match the area under the curve between pulse irradiance and time. The pulse 

irradiance for iso-energy density pulses is 1 mW/mm2 for square, 1.336 mW/mm2 for for-

ward-/backward-ramp, 2 mW/mm2 for triangular/left-triangular/right-triangular, 2.635 

mW/mm2 for Gaussian/left-Gaussian/right-Gaussian, and 1.575 mW/mm2 for positive-si-

nusoidal/left-positive-sinusoidal/right-positive-sinusoidal pulse. The energy density at 

these irradiances is 5 µJ/mm2 for a 5 ms light pulse and 1 mJ/mm2 for a 1 s light pulse. The 

wavelength of light is 470 nm for Chronos and ChR2 and 590 nm for ChRmine.  

The photocurrent in different opsins at short and long light pulses is shown in Figure 

2a. Corresponding values of peak photocurrent and time to peak at square, triangular, 

Gaussian and positive-sinusoidal pulse shapes are given in Table 7. At short iso-energy 

density pulses, the peak photocurrent maximally increases by 0.12 nA in Chronos and 

0.005 nA in ChR2, whereas it decreases by 0.56 nA in ChRmine on changing pulse shape 

from square to Gaussian. At short iso-max pulses, the peak photocurrent decreases maxi-

mally on changing the pulse shape from square to Gaussian as 0.18 nA in Chronos, 0.08 

nA in ChR2 and 1.15 nA in ChRmine. At short light pulses, time to peak photocurrent is 

longest for square pulse and shortest for Gaussian pulse in all three opsins under both iso-

max and iso-energy density pulses. It maximally decreases by 1.67 ms in Chronos, 1.08 ms 

in ChR2, and 0.32 ms in ChRmine on changing the pulse shape from square to Gaussian 

(Table 7). At a long light pulse (1 s), the photocurrent kinetics significantly change on 

changing the pulse shape (Table 7). Time to peak photocurrent maximally increases by 

305.7 ms in Chronos, 317 ms in ChR2, and 230.8 ms in ChRmine on changing the illumi-

nating pulse shape from square to Gaussian (Figure 2a). This is due to the slow turn-on of 

Gaussian pulses. As the change in photocurrent kinetics significantly changes the spike 

latency and evoked firing patterns, pulse shaping can be used as an additional means to 

generate different firing patterns with a single opsin. On illuminating with 1 s light pulse, 

the photocurrent at Gaussian pulse turns off slowly due to the slow turn-off of Gaussian 

light pulse, unlike the square pulse, which shows a stable plateau (Figure 2a). Since the 

firing rate of neurons corresponds to the amplitude of the input photocurrent, the turn-

off kinetics of the firing rate evoked by the Gaussian pulse would be smoother compared 

to that by the square pulse. 

 

I(t) =

exp
(
− (t−c)2

2σ2

)
,

0,

f or t1 < t < t2
otherwise ; σ =

(t 2−t1)
3.5 ; c = t1

Positive-Sinusoidal
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0.005 nA in ChR2, whereas it decreases by 0.56 nA in ChRmine on changing pulse shape 

from square to Gaussian. At short iso-max pulses, the peak photocurrent decreases maxi-

mally on changing the pulse shape from square to Gaussian as 0.18 nA in Chronos, 0.08 

nA in ChR2 and 1.15 nA in ChRmine. At short light pulses, time to peak photocurrent is 

longest for square pulse and shortest for Gaussian pulse in all three opsins under both iso-

max and iso-energy density pulses. It maximally decreases by 1.67 ms in Chronos, 1.08 ms 

in ChR2, and 0.32 ms in ChRmine on changing the pulse shape from square to Gaussian 

(Table 7). At a long light pulse (1 s), the photocurrent kinetics significantly change on 

changing the pulse shape (Table 7). Time to peak photocurrent maximally increases by 

305.7 ms in Chronos, 317 ms in ChR2, and 230.8 ms in ChRmine on changing the illumi-

nating pulse shape from square to Gaussian (Figure 2a). This is due to the slow turn-on of 

Gaussian pulses. As the change in photocurrent kinetics significantly changes the spike 

latency and evoked firing patterns, pulse shaping can be used as an additional means to 

generate different firing patterns with a single opsin. On illuminating with 1 s light pulse, 

the photocurrent at Gaussian pulse turns off slowly due to the slow turn-off of Gaussian 

light pulse, unlike the square pulse, which shows a stable plateau (Figure 2a). Since the 

firing rate of neurons corresponds to the amplitude of the input photocurrent, the turn-

off kinetics of the firing rate evoked by the Gaussian pulse would be smoother compared 

to that by the square pulse. 

 

I(t) =

{
sin
(

π(t−t1)
t2−t1

)
,

0,
f or t1 < t < t2

otherwise

Left-Positive-Sinusoidal
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3. Results

The effect of temporal changes in light pulse shapes on photocurrent in different
opsins on illuminating with short (5 ms) and long (1 s) light pulses has been studied in
detail (Figure 2). The amplitude of light pulses has been considered to have two different
conditions: (i) iso-max (pulses having the same maximum irradiance), and (ii) iso-energy
density (pulses having the same energy density). For generating iso-max pulses, the
amplitude of non-square light pulses is kept the same as the amplitude of the square pulse.
For generating iso-energy density pulses, non-square light pulses of higher irradiances
are used to match the area under the curve between pulse irradiance and time. The pulse
irradiance for iso-energy density pulses is 1 mW/mm2 for square, 1.336 mW/mm2 for
forward-/backward-ramp, 2 mW/mm2 for triangular/left-triangular/right-triangular,
2.635 mW/mm2 for Gaussian/left-Gaussian/right-Gaussian, and 1.575 mW/mm2 for
positive-sinusoidal/left-positive-sinusoidal/right-positive-sinusoidal pulse. The energy
density at these irradiances is 5 µJ/mm2 for a 5 ms light pulse and 1 mJ/mm2 for a 1 s light
pulse. The wavelength of light is 470 nm for Chronos and ChR2 and 590 nm for ChRmine.
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Figure 2. Photocurrent in ultrafast (Chronos), fast (ChR2), and slow (ChRmine) channelrhodopsins-
expressing neurons under patch clamp at −70 mV on illuminating with light pulses of different
temporal shapes at 470 nm for ChR2 and Chronos, and 590 nm for ChRmine. (a) Variation of
photocurrent with time on illuminating with 5 ms and 1 s light pulses of different shapes (left) at
same peak irradiance 1 mW/mm2 (iso-max), and (right) at same energy density 5 µJ/mm2 (for 5 ms
pulse) and 1 mJ/mm2 (for 1 s light pulse) (iso-energy density). Inset shows corresponding zoomed-in
variation of photocurrent with time at 5 ms pulse. The lower panel shows the variation of illuminating
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pulse irradiance with time. (b,c) Corresponding variation of (b) peak photocurrent, and (c) time to
achieve peak photocurrent with shapes of illuminating light pulses of (left) 5 ms and (right) 1 s under
both iso-max and iso-energy density conditions. The numbers on the x-axis indicate different pulses,
1: Square, 2: Forward-Ramp, 3: Backward-Ramp, 4: Triangular, 5: Right-Triangular, 6: Left-Triangular,
7: Gaussian, 8: Right-Gaussian, 9: Left-Gaussian, 10: Positive-Sinusoidal, 11: Left-Positive-Sinusoidal,
and 12: Right-Positive-Sinusoidal.

The photocurrent in different opsins at short and long light pulses is shown in Figure 2a.
Corresponding values of peak photocurrent and time to peak at square, triangular, Gaussian
and positive-sinusoidal pulse shapes are given in Table 7. At short iso-energy density
pulses, the peak photocurrent maximally increases by 0.12 nA in Chronos and 0.005 nA in
ChR2, whereas it decreases by 0.56 nA in ChRmine on changing pulse shape from square to
Gaussian. At short iso-max pulses, the peak photocurrent decreases maximally on changing
the pulse shape from square to Gaussian as 0.18 nA in Chronos, 0.08 nA in ChR2 and 1.15 nA
in ChRmine. At short light pulses, time to peak photocurrent is longest for square pulse
and shortest for Gaussian pulse in all three opsins under both iso-max and iso-energy
density pulses. It maximally decreases by 1.67 ms in Chronos, 1.08 ms in ChR2, and 0.32 ms
in ChRmine on changing the pulse shape from square to Gaussian (Table 7). At a long
light pulse (1 s), the photocurrent kinetics significantly change on changing the pulse shape
(Table 7). Time to peak photocurrent maximally increases by 305.7 ms in Chronos, 317 ms
in ChR2, and 230.8 ms in ChRmine on changing the illuminating pulse shape from square
to Gaussian (Figure 2a). This is due to the slow turn-on of Gaussian pulses. As the change
in photocurrent kinetics significantly changes the spike latency and evoked firing patterns,
pulse shaping can be used as an additional means to generate different firing patterns with
a single opsin. On illuminating with 1 s light pulse, the photocurrent at Gaussian pulse
turns off slowly due to the slow turn-off of Gaussian light pulse, unlike the square pulse,
which shows a stable plateau (Figure 2a). Since the firing rate of neurons corresponds to
the amplitude of the input photocurrent, the turn-off kinetics of the firing rate evoked by
the Gaussian pulse would be smoother compared to that by the square pulse.

The variation of peak photocurrent and time to reach peak photocurrent at different
temporal shapes and their subtypes is shown in Figure 2b,c. The peak photocurrent in all
three opsins at short light pulses is slightly smaller for non-square light pulses at iso-max,
while at iso-energy density pulses, it is larger for some non-square light shaped pulses
in ChR2 and Chronos (Figure 2b). At short light pulses, under iso-max condition, the
peak photocurrent is minimum at right-Gaussian light pulse in all three opsins, while it
is maximum in ChR2 and Chronos at left-Gaussian shaped light pulse under iso-energy
density condition (Figure 2b). On changing the pulse shape from square to left-Gaussian
pulse at the same energy density, the peak photocurrent increases from 1.24 nA to 1.41 nA
in Chronos, and 0.16 nA to 0.174 nA in ChR2, respectively.

At longer light pulses, there is no significant difference in the peak photocurrent on
switching between iso-max and iso-energy density conditions (Figure 2b). However, the
change in shape results in a much larger difference in peak photocurrent in all three opsins.
Under long duration pulses, the peak current is maximum for right-Gaussian pulses in all
three opsins (Figure 2b).

For evoking precise spiking, it is important to determine which pulse shape can
evoke a large photocurrent with fast turn-on kinetics. The variation of time to reach peak
photocurrent at different shapes of light pulse is shown in Figure 2c, which is almost similar
for both iso-max and iso-energy density pulses but significantly varies on changing the
pulse shape. At short light pulses, the fastest turn-on of photocurrent is achieved in all three
opsins on illuminating with right-Gaussian light pulse, at which the peak photocurrent
in Chronos and ChR2 is almost similar to the square pulse under the iso-energy density
condition (Figure 2c).
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Table 7. Effect of pulse shapes on peak photocurrent and time to peak in Chronos, ChR2 and ChRmine
at short (5 ms) and long (1 s) light pulse at 470 nm for Chronos and ChR2, and 590 nm for ChRmine
under iso-max and iso-energy density conditions.

Pulse Shape Square Triangular Gaussian Positive-
Sinusoidal

Condition
Irradiance/

Energy
Density

Pulse
Width

Ipeak
(nA)

tpeak
(ms)

Ipeak
(nA)

tpeak
(ms)

Ipeak
(nA)

tpeak
(ms)

Ipeak
(nA)

tpeak
(ms)

Chronos

Iso-max
1 mW/mm2 5 ms 1.24 5 1.10 3.7 1.06 3.6 1.18 3.9
1 mW/mm2 1 s 1.25 4.3 0.68 160 0.69 310 0.74 130

Iso-energy
density

5 µJ/mm2 5 ms 1.24 5 1.33 3.4 1.36 3.33 1.32 3.5
1 mJ/mm2 1 s 1.24 4.3 0.778 110 0.74 250 0.803 80

ChR2

Iso-max
1 mW/mm2 5 ms 0.16 5 0.098 4.42 0.08 3.92 0.11 4.5
1 mW/mm2 1 s 0.19 13 0.089 160 0.096 330 0.1 140

Iso-energy
density

5 µJ/mm2 5 ms 0.160 5 0.161 4.5 0.165 4.01 0.161 4.5
1 mJ/mm2 1 s 0.19 13.6 0.111 110 0.110 260 0.118 100

ChRmine

Iso-max
1 mW/mm2 5 ms 2.97 5 2.21 4.94 1.82 4.77 2.45 4.96
1 mW/mm2 1 s 5.65 29.2 4.50 120 4.11 260 4.74 100

Iso-energy
density

5 µJ/mm2 5 ms 2.97 5 2.76 4.92 2.41 4.68 2.8 4.93
1 mJ/mm2 1 s 5.65 28.1 4.88 90 4.34 210 4.98 80

The effect of change in light shapes on opsin photocurrent at different irradiances,
pulse widths and pulse frequencies was studied in detail (Figure 3). Variation of peak
photocurrent with irradiance on illuminating with 1 s light is shown in Figure 3a. It is
evident that for lower irradiance < 0.01 mW/mm2, the peak current in all three opsins
for square pulses is almost similar to the photocurrent for other shapes. However, above
0.01 mW/mm2, the difference significantly increases with irradiance (Figure 3a). Further,
the effect of change in pulse width on peak photocurrent is shown in Figure 3b. The effect
of change in pulse width has been studied at effective power density for 50% activation
(EPD50), which is 0.28 mW/mm2 for Chronos, 0.65 mW/mm2 for ChR2, and 0.04 mW/mm2

for ChRmine. Interestingly, the peak photocurrent saturates above a pulse width for the
square pulse and decreases with pulse width above a threshold for non-square shaped
pulses. The pulse width at which maximum photocurrent can be generated is 10 ms for
Chronos, and 50 ms for ChR2 and ChRmine (Figure 3b).

The return to baseline is an important factor to determine temporal resolution to evoke
spikes through multiple stimulations. In Figure 3c, the variation of return to baseline (RTB)
(%) with pulse stimulation frequency at different pulse shapes is shown. The RTB % is
lowest for the square-shaped pulse, whereas it is highest for the Gaussian-shaped pulse in
all three opsins (Figure 3c).

Light-evoked spiking in hippocampal neurons at different shapes of pulses is shown
in Figure 4. It is important to know the irradiance thresholds corresponding to each light
shape. The minimum irradiance threshold (MIT) to evoke action potential in different opsin-
expressing neurons changes on changing the shape of the light pulse due to differences
in amplitude and kinetics of the generated photocurrent. On illuminating with 5 ms light
pulse, MIT at different pulse shapes is shown in Figure 4a. MIT is lowest for square-shaped
pulses and highest for left-/right-Gaussian pulses in all three opsins. On changing the
pulse shape of the light pulse from square to left- or right-Gaussian, the MIT increases from
0.19 mW/mm2 to 0.75 mW/mm2 with Chronos, 0.58 mW/mm2 to 1.52 mW/mm2 with
ChR2, and 27 µW/mm2 to 91 µW/mm2 for ChRmine, respectively (Figure 4a).
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Figure 3. Effect of irradiance, pulse width and stimulation frequency on photocurrent evoked by
light pulses of different shapes in Chronos, ChR2, and ChRmine at 470 nm for ChR2 and Chronos,
and 590 nm for ChRmine. (a,b) Variation of peak photocurrent with (a) irradiance on illuminating
with 1 s light pulse, and (b) pulse width on illuminating at effective power density for 50% activation
(EPD50) corresponding to each opsin (0.28 mW/mm2 for Chronos, 0.65 mW/mm2 for ChR2, and
0.04 mW/mm2 for ChRmine. (c) Variation of return to baseline ratio (RTB) (%) with stimulation
frequency on illuminating with multiple 5 ms light pulses at 1 mW/mm2. Inset: Formula for
calculating RTB (%).

Figure 4b shows the corresponding minimum energy of light pulses at different pulse
shapes to evoke spikes. It is evident that the shape of the light pulse with the lowest
energy is square for Chronos, Gaussian for ChR2, and positive-sinusoidal or left-/right-
positive sinusoidal for ChRmine (Figure 4b). The minimum pulse energy decreases from
2.9 µJ/mm2 to 2.54 µJ/mm2 on changing the pulse from square to Gaussian with ChR2,
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and 0.13 µJ/mm2 to 0.1 µJ/mm2 with ChRmine on changing the pulse from square to
positive-sinusoidal, respectively (Figure 4b).
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Figure 4. Optogenetic excitation of Chronos-, ChR2- and ChRmine-expressing hippocampal neurons
using light pulses of different temporal shapes at 470 nm for ChR2 and Chronos, and 590 nm
for ChRmine. (a) Variation of minimum irradiance threshold to evoke action potential (AP) on
illuminating with 5 ms light pulse of indicated shapes. (b) Variation of normalized minimum energy
density of 5 ms light to evoke AP with pulse shape. (c) Variation of membrane potential with
time on illuminating with 5 ms light pulse of different shapes with iso-max at 0.75 mW/mm2 for
Chronos, 1.56 mW/mm2 for ChR2, and 0.091 mW/mm2 for ChRmine, and with iso-energy density at
3.75 µJ/mm2 for Chronos, 7.8 µJ/mm2 for ChR2, and 0.455 µJ/mm2 for ChRmine. (d) Variation of
first AP latency with light shape on illuminating with 5 ms light pulse with iso-max amplitude and iso-
energy density similar to (c). The numbers on the x-axis in (a,b,d) indicate pulses of different shapes,
1: Square, 2: Forward-Ramp, 3: Backward-Ramp, 4: Triangular, 5: Right-Triangular, 6: Left-Triangular,
7: Gaussian, 8: Right-Gaussian, 9: Left-Gaussian, 10: Positive-Sinusoidal, 11: Left-Positive-Sinusoidal,
and 12: Right-Positive-Sinusoidal.
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Spike timing is an important factor in information processing in the brain that plays a
crucial role in synaptic plasticity. The light-evoked spikes at different light shapes under
iso-max and iso-energy density conditions are shown in Figure 4c. It is evident that different
pulse shapes result in different spike latencies. The variation of spike latency at different
pulse shapes at iso-max and iso-energy density with each opsin is shown in Figure 4d. The
spike latency does not change significantly under the iso-energy density condition, while it
significantly changes in the iso-max condition. The most delayed spike is generated with a
left-Gaussian-shaped pulse for all three opsins (Figure 4d). The analysis reveals that spikes
of latencies ranging from 5.6 ms to 15.85 ms with Chronos, 7.05 ms to 17.9 ms with ChR2,
and 8.75 ms to 31.75 ms with ChRmine can be generated through the studied temporal
light shapes (Figure 4d).

Optogenetic excitation of fast-spiking neocortical interneurons was analyzed to study
the instantaneous variation of firing rate evoked through different shapes of light pulses
(Figure 5). Figure 5a shows the variation of instantaneous firing rate with time on illumi-
nating with pulses of different shapes. For light pulse shapes in which the pulse amplitude
decreases with time, the firing rates decrease in all three opsins. However, for light shapes
in which the pulse amplitude increases with time, the firing rates increase up to a certain
maximum frequency in all three opsins and subsequently saturate in ChRmine and de-
crease in Chronos and ChR2. The decrease in firing rate in Chronos and ChR2 is due to
fast desensitization of their photocurrent (Figure 5a). The timing of maximum firing at
each pulse shape is shown in Figure 5b. It is evident that ChR2 and Chronos-expressing
interneurons achieve their maximum firing rates significantly before the maximum light
pulse, and the difference increases for pulses with delayed maxima. In ChRmine, the firing
rate reaches its maxima after the maxima of the light pulse only when illuminated with
light pulses with fast turn-on. Different combinations of these temporal shapes can help in
generating naturalistic firing patterns, important to better decode information encoded in
natural firing patterns evoked through sensory inputs or spontaneous activity.

Further, the effect of frequency of stimulating waveforms of different shapes on the
firing rate in each opsin-expressing interneuron is shown in Figure 6. It is evident that the
firing rate varies smoothly on illuminating with light of non-square waveforms, which is
more naturalistic than illuminating with square waveforms (Figure 6a). In addition, the
firing rate variation in ChRmine is smoother in comparison to other opsins (Figure 6a). It
is due to the slowest turn-off kinetics of the photocurrent in ChRmine among the studied
opsins. The analysis also reveals that the contrast ratio (ratio of maximum and minimum
firing rates in each cycle of waveform) is lower for non-square pulses (Figure 6b). This
is due to the slow turn-off of the opsin photocurrent at non-square pulses (Figure 2a).
In comparison with ChRmine, ChR2 and Chronos exhibit better contrast at each type
of waveform. Under sustained illumination, the contrast ratio decreases with time in
Chronos and ChR2, whereas it increases in ChRmine (Figure 6b–d). The analysis also
reveals that in each opsin, the triangular waveform exhibits the lowest contrast among the
studied waveforms.
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Figure 5. Instantaneous firing rate in neocortical interneurons expressed with Chronos, ChR2 and
ChRmine on illuminating with 1 s light pulses of different temporal shapes at 470 nm for ChR2 and
Chronos, and 590 nm for ChRmine. (a) Variation of instantaneous firing rate (blue solid line for ChR2
and Chronos and red solid line for ChRmine) and normalized pulse irradiance (black dashed line) with
time on illuminating with light pulse of different temporal shapes at effective power density for 50%
activation (EPD50), i.e., 0.28 mW/mm2 for Chronos, 0.65 mW/mm2 for ChR2, and 0.04 mW/mm2

for ChRmine. (b) Corresponding variation of time to reach maximum firing rate (solid line) and
time to reach maximum irradiance (dashed line) on illuminating with pulse shape. The numbers on
the x-axis indicate pulses of different shapes, 1: Square, 2: Forward-Ramp, 3: Backward-Ramp, 4:
Triangular, 5: Right-Triangular, 6: Left-Triangular, 7: Gaussian, 8: Right-Gaussian, 9: Left-Gaussian,
10: Positive-Sinusoidal, 11: Left-Positive-Sinusoidal, and 12: Right-Positive-Sinusoidal.
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Figure 6. Instantaneous firing rate in neocortical interneurons expressed with Chronos, ChR2, and
ChRmine on illuminating with square, triangular, Gaussian and sinusoidal waveforms at 5, 10 and
20 Hz at 470 nm for ChR2 and Chronos, and 590 nm for ChRmine. (a) Variation of instantaneous
firing rate in interneurons on illuminating with iso-max waveforms of different shapes at frequency
(upper) 5 Hz, (middle) 10 Hz, and (lower) 20 Hz at 1 mW/mm2. Corresponding variation of applied
waveform amplitudes with time is shown below each firing rate plot. (b–d) Corresponding variation
of contrast ratio (ratio of maximum and minimum firing rate in each cycle of waveform) with time at
10 Hz.
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4. Discussion

In this paper, the effect of temporally shaped light pulses in optogenetic excitation
of hippocampal neurons and neocortical interneurons expressed with ultrafast, fast, and
slow channelrhodopsins was studied in detail. Different temporal shapes of light pulses,
including square, forward-/backward-ramp, triangular, left-/right-triangular, Gaussian,
left-/right-Gaussian, positive-sinusoidal, and left-/right-positive sinusoidal, resulted in
different types of firing patterns and action potentials with a wide range of latencies, which
are useful to study various processes in the brain. The analysis revealed that spikes can be
evoked at significantly lower energy than square light pulses for Gaussian-shaped pulses
with ChR2 and positive-sinusoidal pulses with ChRmine.

Spike timing and firing rate play important roles in various neurological phenomena
that include temporal spike coding, neural plasticity, pathology, spike timing-dependent
plasticity associated with memory and learning, induction of synaptic long-term poten-
tiation and depression, activity restoration in degenerated retina, auditory nerves, and
cortical areas, and prosthesis [19,27,61,62]. In most of the experiments, stimulus-driven
spikes were regular, and the relative timing between pre- and post-synaptic events was
constant, whereas the actual firing patterns in the cortex of the intact animal was found
to be irregular, and the timing between pre- and post-synaptic events varied [61,63]. In
the present study, it was shown that different temporal shapes of light pulses result in
different firing patterns (Figure 5). It was shown that by varying the temporal shape of
the light pulse under the iso-max condition, the spike latency can be varied from 5.6 ms
to 15.85 ms with Chronos, 7.05 ms to 17.9 ms with ChR2, and 8.75 ms to 31.75 ms with
ChRmine (Figure 4). These results are very useful for generating arbitrary sequences of pre-
and post-synaptic events with varying time differences.

Opsins with distinct kinetics generate different temporal patterns of evoked activity
and differently regulate cortical gamma-oscillations [64]. It is reported that rapid onset
kinetics of opsin photocurrent may facilitate the recruitment of highly precise initial spike
responses, whereas slow onset kinetics preclude synchronous spiking and result in delayed
peak responses [64]. The present study showed that temporal shaping of light pulses
is an additional means to control turn-on and -off rates of the opsin photocurrent and
corresponding firing rate (Figures 5 and 6).

Light-sensitive opsins exhibit a wide range of photocurrent kinetics and amplitudes
and photosensitivity. Chronos, with its ability to generate precise spikes at higher frequen-
cies, has enabled applications of optogenetics in temporal spike coding and the study of
auditory systems [26,65]. ChRmine, a recently discovered pump-like cation-conducting
channelrhodopsin, exhibits high sensitivity along with much larger photocurrents that
create new opportunities [29,30,66]. ChRmine has been used for low-power, deep and
large volume optogenetic excitation of neurons and has shown promising results in cardiac
pacing and vision restoration [14,67]. Although these opsins confer the ability to optically
mimic the full dynamic range of natural firing patterns without introducing artifacts, the
study of their photocurrent kinetics has been primarily limited to square-shaped light
pulses [25,26,29,68]. In this paper, a detailed comparison of photocurrents in ultrafast, fast
and slow channelrhodopsins under different temporally shaped light pulses provided
new insights. The study showed that on illuminating with similar pulse profiles, different
opsins resulted in different firing patterns (Figures 5 and 6). Thus, the opsin kinetics play
an additional role along with the pulse shape in generating firing patterns in optogenetics,
which is an important feature to improve recently reported computational studies [18,19].

In optogenetics, light-driven chloride pumps are widely used for precise suppression
of ongoing electrical activity in the targeted neurons [44,69–71]. These pumps include
NpHR, a halorhodopsin from the archaeon Natronomonas pharaonis, eNpHR2.0/3.0, modi-
fied versions of NpHR for enhanced membrane targeting, and Jaws, cruxhalorhodopsin
extracted from Haloarcula (Halobacterium) salinarum (strain Shark) [69–71]. Sustained acti-
vation of these pumps changes the intracellular chloride concentration, which subsequently
changes the amplitude and/or polarity of naturally occurring chloride channels. After
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the turn-off of light, rebound of chloride results in post-illumination excitation [71,72].
To overcome the limitation, it has been reported that the post-illumination firing can be
minimized using a ramp-like turn-off of the light pulse [45,71]. The present study showed
that non-square waveforms result in slow turn-on and -off of photocurrent and firing
rate, which would directly affect the rate of chloride rebound (Figure 2 and 5). Chloride
channels suppressed the ongoing electrical activity of neurons on sustained illumination
with light [73]. However, pulsed illumination results in excitation of electrical activity with
these chloride channels due to more positive reversal potential than resting membrane
potential [73]. A detailed theoretical study of the effect of different pulse shapes on the
photocurrent kinetics in halorhodopsins and light-gated chloride channels would provide
insights to efficiently suppress neuronal activity.

Heating is an important issue when sustained firing patterns are generated through
optical excitation of a large neuronal population. It has been reported that commonly
used photo-stimulation conditions change the targeted tissue temperature by 0.2–2 ◦C,
sufficient to suppress spiking in multiple brain regions and affect various physiological
processes inside the brain [35,36]. The study suggests that pulse duration and duty cycle
play an important role in minimizing heating effects. In this paper, we have explicitly
shown that fast opsins result in larger photocurrent when illuminated with left-Gaussian-
shaped pulses of the same duration and same energy in comparison to square-shaped
pulses (Figure 2b). Additionally, there is an optimal pulse width for non-square-shaped
pulses to achieve maximum photocurrent, i.e., 10 ms for Chronos and 50 ms for ChR2
and ChRmine (Figure 3b). Furthermore, the study has shown that Gaussian-shaped light
pulses with ChR2 and positive-sinusoidal-shaped light pulses with ChRmine evoke spikes
in hippocampal neurons at much lower energy in comparison to square pulses (Figure 4b).

5. Conclusions

The present study of optogenetic excitation of ultra-fast, fast and slow
channelrhodopsin-expressing neurons using square- and different non-square-shaped
pulses allowed us to generate a wide range of spiking patterns, which are needed to mimic
and investigate natural firing patterns in different brain regions. The detailed theoretical
analysis explicitly showed how temporal shaping of light pulses changes photocurrent
kinetics and amplitudes, spike latency, the minimum energy threshold to evoke spikes,
firing pattern shapes, and contrast under sustained illumination. These findings provide
valuable insights for the development of new optogenetic strategies to better simulate
and manipulate neural activity patterns in the brain, with the potential to improve our
understanding of cognitive processes and the treatment of neurological disorders.

The present study considered a four-state model of the opsin photocycle that accurately
simulates the opsin photocurrent. However, the experimentally reported photocycles of
these channelrhodopsins have shown additional intermediate states [74]. Although new
models with a higher number of states will further enhance the accuracy, they would
also result in increased complexity and computational time. The study also considered
single compartment biophysical circuit models of neurons and interneurons. However,
different neuronal compartments have different ion-channel compositions and density;
hence, the use of multicompartmental models is better to simulate the optogenetic response
of neurons [75].

The use of non-square light pulses with lower energy would be helpful in minimizing
heating effects in targeted tissue. The generation of action potentials with different latencies
by temporal shaping of light pulses would provide an additional means to study spike
timing-dependent plasticity associated with memory and learning. The present theoretical
study considered models of ChR2, Chronos and ChRmine, and four type of pulse shapes
and their subtypes. Although the study provided significant information on how opsins
with different kinetics respond to different pulse shapes, the extension of these models
to other opsins and pulse shapes would lead to more insights. Multicompartmental and
network level modelling of neurons would further extend the scope of study on the
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effect of temporal pulse shaping on optogenetically evoked neuron firing patterns and
network dynamics.
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