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Abstract: This work presents the sensitive modal analysis of a long reflective multimode optical fiber
device for angle and temperature. The reflective multimode interference optical fiber device was
fabricated by splicing ~40 cm of multimode optical fiber (50/125). This structure provides a random
interference reflection spectrum; the wavelength sensitivity analysis indicates that estimating the
angle detection is impossible due to the several modes involved. However, by the phase analysis
of the Fourier components, it was possible to detect slight angle deflection. Here, three spectral
Fourier components were analyzed, and the maximal sensitivity achieved was 1.52 rad/◦; the
maximal angle variation of the multimode fiber was 3.4◦. In addition, the thermal analysis indicates
minimal temperature affectation (0.0065 rad/◦C). Moreover, it was demonstrated that there is a
strong dependence between the sensitivity and the m-order of the modes involved. Considering the
fiber optic sensor dimensions and signal analysis, this device is attractive for numerous applications
where slight angle detection is needed.

Keywords: angle detection; interferometer; multimode; optical fiber

1. Introduction

The study of multimode interference devices has produced several fiber optic sen-
sors [1–5]. This study aims to pursue reliable biosensing, structural health monitoring, and
robotics applications [6,7]. For biosensing applications, multimode interference devices
offer competitive sensitivity, considering metamaterials [8]. Some of these applications
involve slight angle deflection monitoring [9–11]. However, most fiber optic angle sensors
are based on interferometric techniques: Mach–Zehnder Interferometer [12,13], Michelson
Interferometer [14,15], Fabry–Perot Interferometer [16,17], Fiber Bragg Gratings [18,19],
and Tapered Fibers [20–22]. In some cases, their fabrication process is intricate, and the
interferometer dimension limits practical applications.

In contrast, multimode interference devices offer no intricate fabrication process
and high reproducibility. These devices have been reported in reflection mode opera-
tion [4,23,24]. Usually, this optical fiber device uses a short section of the multimode fiber
(less than 10 cm). As the length of the multimode optical fiber increases, the losses and the
number of modes excited make this structure challenging for some applications; Here, the
high sensitivity of long multimode interference devices has been demonstrated for vital
signs monitoring [25]. The high sensitivity implies measurement limited and unambiguous
measurement range. This trade-off can be overcome by phase analysis [26,27]. Furthermore,
this technique allows analyzing the modes involved; here, high-order models are expected
to show high sensitivity. Then, this characteristic is used for the sensitive modal analysis of
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a long reflective multimode optical fiber interferometer for angle detection. The several
modes involved generated a random interference reflection spectrum; as a consequence,
the wavelength sensitivity analysis indicates a nonlinear response for angle detection.
However, by using the phase analysis, it was possible to detect slight angle deflection
linearly. Furthermore, a strong dependence was demonstrated between the sensitivity and
the m-order of the modes involved.

2. Principle of Operation

As is well-known, when the light from an SMF is coupled to an MMF by a splice point,
multiple modes are excited in the MMF section. These modes have different propagation
constants; moreover, considering the circular cross-section geometry and the step refractive
index profile, the modes generated are linear polarization modes [28,29]. For a reflection
mode operation, these modes travel through the MMF’s length and are back-reflected by
the Fresnel’s relation. Then, it is possible to achieve a reflective multimode interferometer
(RMMI) when the reflected signal is coupled back to the SMF at the splice point. The
reflective multimode interferometer schematic and principle of operation are shown in
Figure 1.
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Figure 1. Structure diagram of a reflective multimode interferometer.

The excitation coefficient (Cm) of the generated modes (LPxy) is described by [4,28]:

Cm =

∫ ∞
0 Ei(r)Em(r)rdr(∫ ∞

0 |Ei(r)|2rdr
∫ ∞

0 |Em(r)|2rdr
)1/2 (1)

where Ei(r) and Em(r) represent the field profile of the incident mode from the SMF and
the m-th mode excited at the MMF, respectively; the modes with high coupling coefficients
ηm = (Cm)

2 will generate constructive or destructive interference when they are coupled
back at the SMF-MMF interface. This interference depends on the phase between the modes
involved (∆∅xy), and the following relation governs it [4,28]:

∆∅xy = (βy − βx) ∗ 2L =
λ
(

U2
y −U2

x

)
4πa2nco

2L (2)

where βx and βy are the longitudinal propagation constant related to the strongly excited
modes (LP0x and LP0y) propagated through the double-length (L) of the MMF, with a
radius “a” and refractive core index nco (see Figure 1). Furthermore, Ux and Uy are the
solutions of the zero-order Bessel function. Considering the multiple modes excited, the
reflected interference pattern will be irregular. In addition to the several modes involved,
the Fourier phase analysis offers the possibility to study the modal sensitivity for each
mode and avoid undesired effects from the wavelength spectrum, such as initial set point
calibration and cross-talk measurement [30]. Recently, a compressive theoretical and
numerical analysis indicated that the strongest radially symmetric modes are mainly
involved in the multimode interference effect [31].
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3. Experimental Setup

An RMMI was fabricated to analyze the modal sensitivity for temperature and angle
deflection using the setup shown in Figure 2. This interferometer was achieved using a
Fujikura splicer FSM-17S, configured in a multimode program; By this program, the optical
fibers are core alignment, and the splicer program parameters are as follows: cleave limit
5.0◦, loss limit 0.20 dB, cleaning arc 150 ms, re-arc time 800 ms, and arc power 20 bit. Here,
~40 cm of FG050UGA fiber is spliced at the end of an SMF-28 section. The interferometer
was evaluated for angle detection afterward; the thermal analysis was conducted using
chamber Felisa FE-340; here, the RMMI was in a vertical position.
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Figure 2. Sensing setup for small angle detection based on a reflective multimode interferometer.

The light signal from an amplified spontaneous emission (ASE) broadband source is
launched to the reflective multimode interferometer using an optical fiber circulator (OFC).
The optical spectrum analyzer (OSA), Anritsu, MS9740A, monitors the reflection signal
from the RMMI. The reflective multimode interferometer is set between two translation
stages: STG-XYZ and STG-Z. The micro displacements (Z) provided by translation stage
STG-Z generate a slight angle to the MMF.

The interference reflection spectrum of the RMMI can be observed in Figure 3. As it
was expected, the multiple modes involved generated a random interference reflection
spectrum with an oscillating free-spectral range and visibility. By using the Fast Fourier
Transform (FFT), it is possible to see the modes involved (please see Figure 3). The Fourier
component centered at 0 nm−1 represents the fundamental mode (LP01), and the other five
spectral components are members of the mode family LPxy [18]. Furthermore, other LPxy
members with lower-intensity contributions appear in the spectrum, and all the Fourier
peaks contribute to the final interference spectrum shown inset Figure 3.
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4. Results

Figure 4 shows the wavelength reflection spectrum and its Fourier transformation
when a slight angle deflection is applied. When the RMMI tilts an angle by using STG-Z,
the bending moment (Fixed-beam with sinking support) can be expressed by [32]:

M =
6IEZ

L2 (3)

where Young’s modulus (E), the moment of inertia (I), the vertical displacement (Z), and
the MMF fibers’ length (L) provide information about the strain under the assumption
that the stress is proportional to strain, for slight bending and neglecting the shear stresses.
Furthermore, due to the elasto-optic effect, the MMF’s core suffers a refractive index change
by [33,34]:

∆nco =
n3

co($12 − ν($11 + $12))ε

2
(4)

here, the strain (ε), the Poisson ratio of the fiber (ν) and Pockel’s coefficients ($12 and $11),
govern the modal properties described above for the propagated-reflected modes. As a
result, the frequency components shown in Figure 4 will be sensitive to the angle deflection
as the strain is induced.
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As can be appreciated inset Figure 4, the interference spectrum of RMMI shows a
nonlinear response in terms of intensity and wavelength shifting when the deflection an-
gle is increased; Here, for small angles, minimal wavelength shifting can be appreciated.
Moreover, when the angle increases, an overlap wavelength spectrum occurs between
the initial angles and the maximal angle variation (see inset Figure 4). In addition, the
nonlinear wavelength shifting is related to the several modes exited and their interaction
among them. In addition, the modes are significantly altered as the slight angle is modi-
fied. Furthermore, new modal components are generated, and these components interact
with the initial modes. In addition, in Figure 3, it can be appreciated that the distance
between the modes is minimal; as a result, they easily interact among them; however, this
interaction compromises a linear response in the wavelength spectrum when a physical
parameter is applied. It is important to notice that the Fourier spectrum is similar to
the expected transmission mode for multimode interferences devices; however, in the
reflection modes, the forward-backward light propagation provides a double optical
path.

In order to analyze the phase difference contribution of the modes involved, the
peak components with minimal changes in their position will be considered for a phase
signal analysis. Here, peaks centered at 0.2 (P1), 0.38 (P2), and 0.6 (P3) nm−1 of the
spatial frequency spectrum will be used for the phase signal analysis (see Figure 3). The
phase difference as the angle increase of the mentioned peaks is shown in Figure 5. Three
consecutive rounds were performed to evaluate the phase response; here, the angle was
increased from 0◦ to 6◦; the phase difference as the angle increased was computed using
the technique described by [26,30]; it is essential to notice that the analyzed peaks show a
similar polynomial response.
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Considering the polynomial response and the positive-negative deviation, the spectral
component P1 shows a sensitivity of 0.75 rad/◦ in the range of 2◦ to 6◦ (see Figure 5A).
Meanwhile, in the same angle range, the spectral peaks components P2 and P3 show a
sensitivity of 1.19 rad/◦ and 1.52 rad/◦, respectively (see Figure 5B,C). As can be observed,
the sensitivity increases for high-order modes; these modes are close to the core-cladding
interface of the MMF, where significant sensitivity to radial stress can be expected [35].

The thermal analysis is conducted to evaluate the temperature modal sensitivity and
the cross-sensitivities for each spectral peak component, showed in Figure 3. The thermal
effect over the wavelength spectrum is shown inset Figure 6; here, an apparent wavelength
shifting can be observed as the temperature increases for the central wavelength at 1537 nm,
then a sensitivity of 1.6 pm/◦C can be expected. The linear response can be attributed to
the thermo-optic effect and temperature distribution over the long MMF fiber section. It is
crucial to notice that the intensity of peak components for the thermal analyses (see Figure 6)
shows a slight difference in terms of intensity from the Fourier spectrum shown in Figure 3.
Here, it is essential to recall that the RMMI is set vertically under the chamber, then the
modes are affected by the process of fixing the RMMI. However, their position remains
centered at the same spectral frequency points. Furthermore, after three consecutive rounds,
the spectral peak components remain in the same spectral frequency: here, the temperature
ranges from 60 ◦C to 210 ◦C.
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The phase thermal responses of the peaks P1, P2, and P3 are shown in Figure 7; The
phase sensitivity of the modal components are 0.003 rad/◦C (P1), 0.0062 rad/◦C (P2) and
0.0065 rad/◦C (P3); As it was demonstrated for angle deflection the high order mode
centered at 0.6 nm−1 (P3) shows higher sensitivity than other components (P1 and P2).
However, this peak component compromises the practical temperature detection; due to its
lower intensity, the temperature changes dramatically affect its response (see Figure 7C).
The phase response of peaks P1 and P2 are similar (see Figure 7A,B). The cross-sensitivities
of the analyzed peaks are 0.004◦/◦C (P1), 0.005◦/◦C (P2) and 0.0043◦/◦C (P3).
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Considering the high sensitivity for angle detection and the minimal changes observed
in the Fourier spectrum during the thermal analysis, a one-way Analysis of Variance
(ANOVA) was carried out for P1, P2, and P3 for the angle deflection analysis; here, five
consecutive rounds were considered input data. The ANOVA analyses are shown in
Figure 8,the above mentioned peaks are analyzed: P1 (Figure 8A), P2 (Figure 8B) and
P3 (Figure 8C). As can be appreciated, the mean values for the angle variation between
0 to 2 ◦ are very similar; however, in the range from 2 to 5◦, the mean value increases
linearly. Besides, the data are dispersed from the mean value at 4◦ deflection. A statistically
significant difference in the range from 2 to 5◦ can be expected due to the following p-values
achieved: 1.013× 10−14 (P1), 3.975× 10−14 (P2), and 2.125× 10−14 (P3), only a few random
values were observed for P1 (see red dots inside Figure 8A), and the mean square errors
(MSE) were as follows: 0.09 (P1), 0.19 (P2), and 0.30 (P3); as can be observed, their proximity
to zero ensures a good prediction for slight angle deflection. The Limit of Detection was
estimated by the standard deviation and the sensitivity of each peak; as a consequence,
the following values were achieved: 4.88◦ (P1), 4.22◦ (P2), and 3.33◦ (P3). Moreover, the
resolution of each peak will be as follows: 1.62◦ (P1), 1.4◦ (P2), and 1.16◦ (P3). As a result,
P3 is the optimal spectral peak component for sensing purposes, which agrees with the
well-known high sensitivity shown in high-order modes.
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With the purpose of validating the stability, the long interferometer was set at the
initial deflection angle; afterward, the spectrum was monitored for 30 min using 5 min
intervals. This stability analysis is depicted in Figure 9. As can be observed, the peak
components suffer minimal changes in their position and during the stability analysis, it
can be appreciated the peak components suffer intensity changes; however, their central
frequency suffers minimal changes.
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5. Discussion

Considering prior works, the proposed technique and results are competitive; this
is summarized in Table 1. The dynamic range of the proposed device can be adjusted by
modifying the RMMI’s length; as a result, the angle variation can be similar to that reported
by [10]. Furthermore, the signal analysis offers high sensitivity, for instance, 1.52 rad/◦

(P3). The LOD can be improved by using a wide dynamic range; here, the length of the
RMMI must be increased. However, this work is devoted to analyses and demonstrating
the utility of the Fourier phase analysis for angle and temperature detection.

Table 1. Comparative table of some optical fiber structure in terms of sensitivity and physical
parameter.

Optical Fiber Structure Sensitivity of Angle
Detection

Angle Detection
Range

Sensitivity of
Temperature

Temperature
Range Ref.

Two Fabry-Perot
in parallel

0.909 nm/◦

to
35.96 nm/◦

±2.5◦

±0.2◦ x x [9]

Vertical cantilever beam
and dual FBGs ∼ 0.1 nm/◦ ± 30 ◦ x x [10]

Tapered fiber
Bragg grating

0.849 dBm/◦ and
0.583 dBm/◦ 0◦ to 90◦ 12 pm/◦C 0 ◦C to 90 ◦C [11]

Multimode Interference
using Square-Core Fiber x x −15.3 pm/◦C 30 ◦C to 80 ◦C [5]

Michelson 0.55 nm/◦ 0◦ to 50◦ x x [14]

Reflective Multimode
Interferometer (RMMI)

0.75 rad/◦,
1.19 rad/◦

and
1.52 rad/◦

0◦ to 3.4◦
0.003 rad/◦C,
0.0062 rad/◦C

and 0.0065 rad/◦C
60 ◦C to 210 ◦C This work

6. Conclusions

The modal analysis of a long reflective multimode interference device was conducted
for temperature and strain. The reflective device was fabricated by splicing ~40 cm of
multimode fiber with a core diameter of 50 µm at the end of the optical fiber circulator. The
reflective optical fiber device provides a random interference spectrum with a nonlinear
response for angle detection (wavelength spectrum); however, through the phase analysis
of the Fourier components, it was possible to detect slight angle deflection. Here, the three
spectral Fourier components were analyzed with the following sensitivities: 0.75 rad/◦

(P1), 1.19 rad/◦ (P2), and 1.52 rad/◦ (P3); these sensitivities were estimated for a total angle
variation of 3.4◦. In addition, the thermal analysis indicates minimal temperature affec-
tation; here, the reflective multimode fiber optic sensor shows the following sensitivities
0.003 rad/◦C (P1), 0.0062 rad/◦C (P2), and 0.0065 rad/◦C (P3), for a temperature range
variation of 150 ◦C. In addition, the thermal analysis indicates that minimal cross-sensitivity
can be expected: 0.004◦/◦C (P1), 0.005◦/◦C (P2), and 0.0043◦/◦C (P3). A signal filtering
stage will be studied in further work to improve the signal processing analysis. Further-
more, it was demonstrated that high-order modes are more sensitive to the parameters
applied. The dimensions and the signal analysis made this device a reliable alternative for
small-angle deflection detection.
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