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Abstract: We numerically investigate the dynamics of a ring consisting of three unidirectionally
coupled Erbium-Doped Fiber Lasers (EDLFs) without external pump modulation. The study focuses
on the system behavior as the coupling strength is varied, employing a six-dimensional mathematical
model that includes three variables for laser intensities and three variables for population inversions
of all lasers. Our primary objective is to understand the system evolution towards chaos from
a stable equilibrium in the ring, considering the impact of increasing coupling strength. To analyze
the system’s behavior, we employ various techniques such as time series analysis, power spectra,
Poincaré sections, bifurcation diagrams, and Lyapunov exponents. During the transition to chaos,
the system undergoes a Hopf bifurcation and a series of torus bifurcations. An essential aspect
of this study is the exploration of a rotating wave propagating along the ring, where the wave
nature (periodic, quasiperiodic, or chaotic) depends on the coupling strength. Additionally, we
observe the coexistence of periodic and chaotic orbits within a specific range of the coupling strength.
However, for very strong coupling, this bistability disappears, resulting in a monostable system with
a single limit cycle. This regime exhibits potential for applications that demand short laser pulses
with a substantial increase in peak power, reaching nearly 20 times higher levels compared to the
continuous mode when the lasers are uncoupled. This discovery holds particular importance for
optical communication systems, especially considering the attenuation optical signals experience
when transmitted over long distances.

Keywords: laser; network; ring; dynamics; coupling; synchronization; multistability

1. Introduction

In recent decades, there have been remarkable advancements in the research and
commercialization of fiber lasers. These lasers have undergone revolutionary progress,
fueled by their widespread utilization in various fields such as optical communications,
optical sensing, laser surgery, nonlinear optics, and optical materials [1–6]. Addition-
ally, fiber amplifier technology has emerged as an exceptionally practical platform for
industrial applications, primarily due to its compactness, robustness, reliability, and high
efficiency. The alignment-free structure and spatial beam profile further enhance its appeal
in industrial settings.

Among various types of fiber lasers, erbium-doped fiber lasers (EDFLs) offer several
advantages that make them highly suitable for optical communications [7]. The EDFL active
medium comprises an optical fiber doped with erbium ions. When the diode-pumped
laser light interacts with these erbium ions, it results in high gain and supports a single
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transverse mode, provided that the fiber parameters are appropriately chosen. First, EDFLs
can easily be integrated into optical communication networks due to the compact size
of their optical components. Second, the laser wavelength, particularly around 1550 nm,
is widely utilized in optical communication systems due to its minimal losses in optical
fibers [8]. Third, EDFLs exhibit a diverse range of dynamical behaviors, including period
doubling, chaos, and multistability [9,10]. Their dynamics can be controlled and leveraged
not only for chaotic communication [2,11] but also for numerous other applications, such as
spectral interferometry [12], optical coherence tomography [13], optical sensing [14], optical
metrology [15], industrial micromachining [16], LIDAR systems [17], and medicine [18].

Nonlinear effects in fiber lasers are typically considered undesirable due to their
potential to disrupt stable laser operation, introduce deviations from a Gaussian pulse
shape, and hinder the achievement of a diffraction limit [19]. However, recent studies have
revealed that nonlinear effects can be harnessed for certain applications. Consequently,
there has been significant research conducted on nonlinear phenomena in EDFLs [19–21],
with a specific focus on investigating multistability in these laser systems [9,10,22–26].

Multistability characterized by the coexistence of multiple stable states or attractors
under a specific parameter set, is a fascinating phenomenon observed in various fields
of science, including physics, engineering, chemistry, biology, and medicine (see [27] and
references therein). The ability to control multistability enables the selection of desired
attractors or the elimination of undesirable ones [28]. In the context, EDFLs subjected to
periodic modulation of the laser pump current or cavity losses exhibit the coexistence of up
to four periodic attractors. These attractors have different periodicity, with longer periods
corresponding to higher pulse energies. For instance, the laser pulse amplitude in the
period-5 regime is approximately 50 times higher than that in the period-1 regime [29].
High pulse power fiber lasers have found numerous applications, including in cutting,
welding, and surgery, and particularly in optical communications [7], where they enable the
long-distance transmission of optical signals without the need for frequent amplification.
Recently, by employing selective control of multistability, giant pulses were successfully
generated in an array of EDFLs [30].

While the dynamics of a solitary EDFL have been extensively studied [9,10,22–25],
there is still a lack of comprehensive investigation into the dynamics of coupled EDFLs
in different coupling configurations. The study of the dynamics of networks of coupled
oscillators has garnered significant attention across various scientific disciplines. When
multiple oscillators are coupled, the range of potential behaviors becomes more complex,
making the analysis of governing equations challenging. Each oscillator may only be
connected to a few immediate neighbors [31].

One of the simplest network configurations is a cycle ring of coupled oscillators [32].
The ring dynamics can be highly complex, particularly when the oscillators are coupled
unidirectionally, even if the individual uncoupled units exhibit stable equilibrium. Previous
works have explored interesting dynamics of ring-coupled oscillators, including chaotic
synchronization in three coupled electrical circuits [33], chimera states in nonlocally coupled
oscillators [34], and the generation of delays in coupled CMOS inverters [35], among others.

In addition, the ring configuration is particularly attractive because it allows rotating
phase waves to propagate along the coupled nodes [36–39]. Such waves were first found in
a ring reactor of reaction–diffusion systems [40,41]. Rotating waves arise when a homoge-
neous state becomes linearly unstable due to a Hopf bifurcation [42]. Later, Nekorkin and
colleagues [43] discovered traveling waves propagating in a ring of coupled bistable phase
oscillators with sinusoidal nonlinearity. It should be noted that unidirectional coupling is
of particular interest because a signal is transmitted from one subsystem to another without
receiving feedback. Moreover, unidirectional rings were explored in coupled electrical
circuits based on Chua [44], Lorenz [45,46], and Duffing [47,48] models where rotating
waves were also discovered. Transitions from a stable equilibrium through quasiperiod-
icity to chaos and hyperchaos with respect to the coupling strength were observed in the
rings of unidirectionally coupled Lorenz [45,49], Duffing [50], and Rulkov [51] oscillators.
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The mechanism leading to such transitions was studied in detail in coupled autonomous
Duffing oscillators [47,52–54].

When studying dynamics in ring-coupled lasers, it is important to acknowledge
that previous investigations have predominantly focused on semiconductor lasers [55–57].
These studies have demonstrated that when operating in an uncoupled state, semicon-
ductor lasers operate in a continuous-wave regime. However, once the coupling strength
surpasses a certain threshold, the lasers transform into an oscillatory state. As the cou-
pling strength further increases, the dynamics follow a route to chaos through a series of
Hopf bifurcations, leading to periodic, quasiperiodic, and chaotic oscillations. Within the
chaotic range, various synchronization states, ranging from asynchronous behavior to
phase synchronization, have been observed.

In this paper, we study, for the first time to our knowledge, the behavior of a ring of
EDFLs as the coupling strength is increased, aiming to address the following key questions:
What is the route to chaos observed in the EDFL ring? How do the lasers achieve synchro-
nization along this route? By answering these questions, we can gain valuable insights
into the collective behavior of coupled EDFLs and make informed decisions regarding
optimal laser parameters and configurations for network performance. Since fiber and
semiconductor lasers belong to the same class-B lasers [58], we anticipate observing a sim-
ilar route to chaos in the ring of coupled EDFLs. Through the application of time series
analysis, bifurcation diagrams, Poincaré sections, power spectra, and Lyapunov exponents,
we demonstrate that while the dynamics of this ring share similarities with other coupled
oscillators [50], it also possesses distinctive characteristics inherent to EDFLs.

Long ago, Landau and Hopf discovered a transition to turbulence via a sequence
of successive Hopf bifurcations [59,60]. Later, Newhouse, Ruelle, and Takens (NRT) [61]
proved that the 3D torus decays into a strange chaotic attractor immediately after the third
successive Hopf bifurcation, due to the effect of an arbitrarily small perturbation of the
so-called NRT scenario. Although several validations of this effect were verified in a large
family of frameworks, little attention was paid to a study of the NRT scenario in optical
systems such as lasers, and especially in fiber lasers. Therefore, one of the aims of this work
is to analyze this scenario in a cyclic ring of three diffusively coupled EDFLs.

This paper is structured as follows. In Section 2, we present the model of a single EDFL
with pump modulation. In Section 3, we introduce the model of a ring of three coupled
EDFLs. In Section 4, we investigate the dynamics of the system through the analyses of time
series, bifurcation diagrams, Poincaré sections, power spectra, and Lyapunov exponents.
Finally, in Section 5, we summarize the main conclusions drawn from our study.

2. Laser Model

To describe the dynamics of diode-pumped EDFLs, we employ the power-balance
approach, which accounts for excited state absorption (ESA) in erbium at the 1.5 µm
wavelength. This approach also considers the averaging of population inversion along the
pumped active fiber. By incorporating these factors, the model captures the underlying
mechanisms that give rise to intrinsic oscillations in the laser, even in the absence of external
modulation, as observed experimentally [10,23].

The balance equations for the intracavity laser power, denoted as P and expressed in
units of s−1 (representing the sum of powers of the contra-propagating waves inside the
cavity), and the averaged population y of the upper level (referred to as “2” and ranging
from 0 to 1 as a dimensionless variable), are derived as follows:

Ṗ =
2L
Tr

P{rwα0(y[ξ − η]− 1)− αth}+ Psp (1)

ẏ = −σ12rwP
πr2

0
(ξy− 1)− y

τ
+ Ppump, (2)

where σ12 is the cross-section of the absorption transition from the ground state “1” to the
upper state “2”. We suppose that the cross-section of the return stimulated transition σ12 is
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practically the same in magnitude that gives ξ = (σ12 + σ21)/σ12 = 2, η = σ23/σ12 being
the coefficient that stands for the ratio between ESA σ23 and ground-state absorption cross-
sections at the laser wavelength. Tr = 2n0(L + l0)/c is the lifetime of a photon in the cavity
(l0 being the intra-cavity tails of FBG-couplers), α0 = N0σ12 is the small-signal absorption
of the erbium fiber at the laser wavelength, N0 = N1 + N2 is the total concentration of
erbium ions in the active fiber), αth = γ0 + nL(1/R)/(2L) is the intra-cavity losses on the
threshold (γ0 being the nonresonant fiber loss and R the total reflection coefficient of the
FBG-couplers), τ is the lifetime of erbium ions in the excited state “2”, r0 is the fiber core
radius, w0 is the radius of the fundamental fiber mode, and rw = 1 + exp[2(r0/w0)

2] is the
factor addressing a match between the laser fundamental mode and erbium-doped core
volumes inside the active fiber.

The population of the upper laser level “2” is given as

y =
1

n0L

∫ L

0
N2(z)dz, (3)

where N2 is the population of the upper laser level “2”, n0 is the refractive index of a “cold”
erbium-doped fiber core, and L is the active fiber length),

Psp =
10−3y

τTr

λg

w0

r2
0α0L

4π2σ12
(4)

is the spontaneous emission into the fundamental laser mode, and the pump power is

Ppump = Pp
1− exp[−βα0L(1− y)]

n0πr2
0L

, (5)

where Pp is the pump power at the fiber entrance and β = αp/α0 is the ratio of absorption
coefficients of the erbium fiber at pump wavelength λp and laser wavelength λg. We assume
that the laser spectrum width is 10−3 of the erbium luminescence spectral bandwidth. Note
that Equations (1) and (2) describe the laser dynamics without external modulation.

The parameters used in our simulations correspond to the real EDFL with an active
erbium-doped fiber of L = 70 cm. Other parameters are n0 = 1.45, l0 = 20 cm, Tr = 8.7 ns,
r0 = 1.5 cm, and w0 = 3.5× 10−4 cm. The last value was measured experimentally and
it was a bit higher than 2.5× 10−4 cm given by the formula for a step-index single-mode
fiber w0 = r0(0.65 + 1.619/V1.5 + 2.879/V6), where the parameter V relates to numerical
aperture NA and r0 as V = 2πr0NA/λg, while the values r0 and w0 result in rw = 0.308.

The coefficients characterizing resonant-absorption properties of the erbium-doped
fiber at lasing and pumping wavelengths are α0 = 0.4 cm−1 and β = 0.5, respectively,
and correspond to direct measurements for heavily doped fiber with erbium concentra-
tion of 2300 ppm, σ12 = σ21 = 3× 10−21 cm2, σ23 = 0.6× 10−21 cm2, ξ = 2, η = 0.2,
τ = 10−2 s [10], γ0 = 0.038, and R = 0.8 that yields αth = 3.92× 10−2. Finally, the genera-
tion wavelength λg = 1.56× 10−4 cm (hν = 1.274× 10−19 J) is measured experimentally,
while the maximum reflection coefficients of both FBGs are centered on this wavelength.
The pump parameters are the excess over the laser threshold ε defined as Pp = εPth, where
the threshold pump power

Pth =
yth
τ

n0Lπw2
p

1− exp[−α0Lβ(1− yth)]
(6)

and the threshold population of the level “2”

yth =
1
ξ

(
1 +

αth
rwα0

)
(7)
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with the pump beam radius taken, for simplicity, to be the same as that for generation
(ωp = ω0).

3. Normalized Equations

To simplify the laser model and generalize it in a dimensionless form, we transform
Equations (1) and (2) into the simple form (all parameters and other details can be found
in [62]):

dx1

dθ
= ax1y1 − bx1 + c(y1 + rw), (8)

dy1

dθ
= −dx1y1 − (y1 + rw) + e

{
1− exp

[
−βα0L

(
1− y1 + rw

ξ2rw

)]}
, (9)

where x1 is the laser intensity and y1 is the population inversion with parameters

a = 2L
(

τsp

Tr

)(
ξ1

ξ2

)
α0 = 6.620× 107,

b =

{
2L
(

τsp

Tr

)[
αth −

α0(ξ1 − ξ2)

ξ2
rw

]}
= 7.4151× 106,

c =
(

τsp

ξ2rw

)
= 0.0163,

d =

(
τspξ2rwσ12

πr2
0

γ

)
= 4.0763× 103,

e = Pp
τspξ2rw

N0πr2
0L

= 506.

By numerically solving the system of Equations (8) and (9) using the fourth-order
Runge–Kutta method, we generate time series. To simulate the laser dynamics, we utilize
parameters that are close to those employed in the experimental study [22]. Specifically, we
set the initial pump power P0

p to 7.4× 1019 s−1, resulting in the laser relaxation oscillation
frequency f0, equal to fr = 28.724 kHz. This frequency is determined from the power
spectrum of the damped oscillations presented in Figure 1a. It is evident that solving
the laser Equations (8) and (9) leads to a stable fixed point. Although the period of these
oscillations is not constant, we determine the dominant frequency fr in the spectrum shown
in Figure 1b, which corresponds to the average frequency of relaxation oscillations. This
frequency closely aligns with the laser’s fundamental frequency, and we adopt this value
for our simulations.

Figure 1. (a) Time series with relaxation oscillations and (b) power spectrum with relaxation oscilla-
tion frequency fr of EDFL given by Equations (8) and (9).
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4. Dynamics of the Ring of Three Unidirectionally Coupled EDFLs

Ring-coupled oscillators can be conceptualized as a recurrent cycle of interactions [63].
Even with just three oscillators, this simple network motif can exhibit thirteen distinct
configuration patterns [64], distinguished by various combinations of unidirectional and
bidirectional couplings. In this study, our primary focus is on the configuration with
unidirectional coupling, as depicted in Figure 2. In this configuration, each laser acts as
both a slave and a master oscillator simultaneously. The dynamics of this ring can be
mathematically described by two differential equations representing the laser intensity xj
(j = 1, 2, 3) and the population inversion yj, given as follows:

dxj

dθ
= axjyj − bxj + c(yj + 0.3075), (10)

dyj

dθ
= dxjyj − (yj + 0.3075) + Ppmodj

{
1− exp

[
−18

(
1−

1− (yj + 0.3075)
0.6150

)]}
(11)

with pumping
Ppmodj

= 506
[
1 + k(xj−1 − xj)

]
, (12)

where k is the coupling coefficient.

Figure 2. Schematic diagram of a unidirectional ring of three diffusively coupled EDFLs.

With the ring configuration’s inherent symmetry, the dynamics of each laser within
the ring are identical. In Figure 3, we present the bifurcation diagram illustrating the peak
amplitude of a single laser (x1) and the largest Lyapunov exponent λ as functions of the
coupling strength k. The bifurcation scenario approaches the Landau route, characterized
by the transition from a stable equilibrium to chaos through quasiperiodicity via successive
Hopf bifurcations [59,60]. However, another scenario was described by Newhouse, Ruelle,
and Takens (the so-called NRT scenario [61]), who found that just after the third Hopf
bifurcation, a chaotic attractor appears in the form of a three-dimensional torus. Remarkably,
our model described by Equations (10) and (11) exhibits a similar scenario, displaying
a transition to hyperchaos as the coupling strength k is increased.

The term k(xj−1 − xj) represents a diffusive coupling, which refers to the difference
in intensities between neighboring lasers. Experimentally, the coupling between adjacent
lasers can be realized as follows. First, the laser intensities are measured with photodetec-
tors. Then, the difference between these intensities is multiplied by the desired coupling
strength k, and finally the light with the resulting intensity is injected into the neighbor-
ing laser.
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Figure 3. (a) Bifurcation diagram of the peak intensity (in arbitrary units) and (b) largest Lyapunov
exponent as a function of k.

The time series and Poincaré sections depicted in Figure 4 provide a detailed visual-
ization of the dynamic regimes observed on the route from a stable fixed point to chaos.
As the coupling strength is increased from k = 0 to approximately k1 ≈ 2.58, the system
undergoes a Hopf bifurcation, transforming the equilibrium state (Figure 1) into a limit
cycle (Figure 4a). During this transition, the largest Lyapunov exponent approaches zero,
indicating the onset of a periodic behavior. This periodic regime persists within a relatively
small range of 2.58 < k < 3.81.

Subsequently, at k2 = 3.82, the limit cycle undergoes a transition to a quasiperiodic
regime characterized by a two-dimensional (2D) torus, as depicted in Figure 4b. This
transition is observed when the second largest Lyapunov exponent approaches zero. It
should be noted that within the 2D torus region, the Lyapunov exponent occasionally takes
positive values. This occurrence can be attributed to the disparity in step sizes employed
by Wolf’s algorithm [65]. However, these positive values are transient, as the Lyapunov
exponent returns to zero in subsequent steps.

As the coupling strength further increases, a three-dimensional (3D) torus emerges
at k3 = 5.49 (Figure 4c), and the third largest Lyapunov exponent approaches zero. Thus,
within the region 5.49 < k < 5.83, the system exhibits a quasiperiodic regime.

At the critical value k4 = 5.84, the system enters a chaotic regime (Figure 4d), charac-
terized by a positive largest Lyapunov exponent. Another critical point occurs at k = 13.2,
where an inverse crisis bifurcation emerges. In this scenario, a stable periodic orbit arises
from the initial chaotic regime, resulting in a bistable behavior for the particular value of
k, featuring both periodic oscillations and chaos. As the coupling strength continues to
increase, a stable limit cycle is once again established at k6 = 14.81 (Figure 4e), as indicated
by the return of the largest Lyapunov exponent to zero.
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Figure 4. (i) Time series and (ii) Poincaré sections at (a) k = 2.58 (periodic orbit), (b) k = 3.82 (2D
torus), (c) k = 5.49 (3D torus), (d) k = 5.84 (chaos), and (e) k = 14.81 (periodic orbit).

4.1. Rotating Wave

An intriguing phenomenon known as rotating wave occurs at certain values of the
coupling strength. This rotating wave arises from the phase difference between neigh-
boring lasers and propagates along the ring structure. In the time series depicted in
Figure 4b–d, the rotating wave is evident as a slowly evolving envelope, showcasing peri-
odic, quasiperiodic, or chaotic behavior. It serves as a distinctive dynamical feature of the
ring-coupled oscillators.

The existence of a periodic rotating wave was initially discovered in a ring of coupled
Chua oscillators [66,67], and later in the rings of coupled Lorenz [49,68] and Duffing oscilla-
tors [47,54,69]. The rotating wave operates in a similar manner to external modulation, inducing
low-frequency oscillations. When the periodic rotating wave interacts with the local limit cycle
of each oscillator, a local 2D torus is formed, resulting in quasiperiodic dynamics (Figure 4c).

As the coupling strength is further increased, the local 2D torus interacts with the
quasiperiodic rotating wave, leading to the emergence of a local 3D torus (Figure 4d).
With continued increases in the coupling strength, the rotating wave interacts with the
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local 3D torus and undergoes a transition to chaotic behavior (Figure 4e). Finally, for very
strong coupling, the interaction between the rotating wave and the chaotic orbit results in
the stabilization of a limit cycle.

The oscillatory regimes are depicted through time series plots in Figure 5 for four distinct
coupling strengths: k = 2.58, k = 3.82, k = 5.49, and k = 5.84. In these plots, the only
variation among the oscillators lies in their initial phase, resulting in phase shifts at each
successive node. Consequently, this leads to the formation of a rotating wave within the
cyclic ring. The left column of the figure showcases the two-dimensional time series patterns
of the three oscillators, clearly revealing oblique stripes that represent the existence of rotating
waves. The inclination of these stripes indicates the propagation of phase waves along
the ring of oscillators. The right column of the figure illustrates the phase portraits of the
corresponding attractors, which are identical for all oscillators due to the system’s symmetry.
Notably, as the coupling strength is increased, the size of the attractor expands. In the right
column, the one-dimensional time series of the three lasers are presented, providing further
evidence of the rotating wave by depicting the phase difference between the lasers.
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Figure 5. (i) Rotating wave (ii) phase portraits and (iii) time series for (a) k = 2.58, (b) k = 3.82,
(c) k = 5.49, and (d) k = 5.84. The color in the left column indicates the laser intensity.
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4.2. Power Spectrum Analysis on the Route to Chaos

Power spectrum analysis utilizing the fast Fourier transform (FFT) is a valuable tool
in various scientific and engineering disciplines for investigating system dynamics [70,71].
This analysis complements traditional qualitative and quantitative research techniques in
the study of dynamical systems, including Poincaré maps, bifurcation diagrams, and Lya-
punov exponents.

In Figure 6, we present a bifurcation diagram showcasing the dominant frequency in
the power spectra of x1 as a function of the coupling strength k. Furthermore, in Figure 7,
we provide illustrative power spectra for fixed values of k. Upon inspecting the bifurcation
diagram depicted in Figure 6, it becomes evident that the first Hopf bifurcation occurs at
k1, signifying the transition from a stationary to a periodic solution. In the power spec-
trum displayed in Figure 7a, a solitary peak corresponding to the fundamental oscillation
frequency Ω0 emerges.

Figure 6. Bifurcation diagram of the dominant frequency in the power spectra of x1 as a function of
the coupling strength k.

As the coupling strength is further increased, we encounter the second Hopf bifur-
cation at k2, leading to the transformation of the limit cycle into a quasiperiodic solution
characterized by two incommensurate frequencies, namely Ω0 and Ω1 (refer to Figure 7b).
The existence of a 2D torus is observed until the subsequent Hopf bifurcation at k3, which
gives rise to a transition towards a quasiperiodic solution with three frequencies, resulting
in a 3D torus. In the power spectrum displayed in Figure 7d, the emergence of a third
independent frequency Ω2 becomes prominent. The dominance of the 3D torus is observed
within the interval k3 < k < k4. While the power spectrum in Figure 7c appears broad-
band and indicative of chaotic behavior, a comparison between the Poincaré sections in
Figure 4c(ii),d(ii) clearly reveals the distinction between the 2D and 3D tori.

A continued increase in the coupling strength k eventually leads to the destruction
of the 3D torus, resulting in a direct transition to chaos within the range of k4 < k < k5.
The chaotic response is evident in the power spectrum, displaying numerous frequency
peaks that are randomly distributed with varying amplitudes. This type of behavior has
been observed in other dynamical systems as well. For instance, Sánchez et al. [49] studied
a ring of unidirectionally coupled Lorenz oscillators and observed the transition from
a periodic rotating wave to a chaotic rotating wave via quasiperiodicity. Additionally,
Borkowski et al. [53] reported the observation of a rotating wave in a ring of seven uni-
directionally coupled Duffing oscillators using spectral and bifurcation analyses. These
examples highlight the presence of similar phenomena in different dynamical systems.
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Figure 7. Power spectra for (a) k = 3.25, Ω0 = 28 kHz (periodic orbit), (b) k = 4.15, Ω0 = 52.32 kHz,
Ω1 = 25.83 kHz (2D torus), (c) k = 5.65, Ω0 = 25.83 kHz, Ω1 = 49.01 kHz, Ω2 = 74.83 kHz (3D
torus), and (d) k = 10 (chaos).

4.3. Coexistence of Attractors

In the course of the transition from a stable fixed point to chaos, a region of bista-
bility emerges within a narrow range of the coupling strength, specifically k5 < k < k6.
Within this range, two distinct attractors coexist. Figure 8 showcases the phase portraits and
corresponding power spectra of these coexisting periodic and chaotic regimes for a specific
value of k = 14.08. Recently, a similar phenomenon of multistability was observed in the
dynamics of a ring of three fractional-order double-well Duffing oscillators [72]. In that
study, the interplay between the fractional order index and coupling strength led to the
coexistence of stable fixed points, limit cycles, 2D and 3D tori, as well as chaotic behavior,
with the specific outcome depending on the initial conditions.

In our system, for coupling strengths in the range of 13 < k6 < 14.81, a stable
limit cycle coexists with chaos, as depicted in the bifurcation diagram shown in Figure 3.
The chaotic and periodic orbits interact with the rotating wave, resulting in the emergence
of a monostable limit cycle. This observation bears a resemblance to findings reported
in other studies (e.g., [73,74]), where multistability was controlled through a secondary
sinusoidal perturbation. In our case, the rotating wave functions analogously to the sec-
ondary sinusoidal perturbation, effectively amplifying the laser pulse power. As a result,
the lasers operate in a pulsed regime, emitting extremely short pulses with substantial
amplitudes. It is important to note that this regime differs fundamentally from traditional
Q-switching, which typically requires cavity quality losses, such as an intra-cavity sat-
urable absorber [75,76]. In our case, the pulsed regime arises solely from the increasing
coupling strength.
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Figure 8. (i) Phase portraits and (ii) power spectra of coexisting (a) stable limit cycle and (b) chaos at
k = 14.08.

4.4. Synchronization

The rotating waves in the ring of coupled oscillators can be analyzed from the per-
spective of synchronization. Specifically, phase synchronization between a pair of EDFLs (i
and j) can be quantitatively characterized by the difference between their instantaneous
phases [64]:

∆φi,j = φi − φj, (13)

φi,j = arctan

(
yi,j

xi,j

)
. (14)

At the same time, identical synchronization between a pair of EDFLs can be determined
by the synchronization error

εij =
√
(xi − xj)2 + (yi − yj)2. (15)

Figure 9 illustrates the synchronization scenarios described by Equations (13) and (14).
The plot demonstrates the dependence of time-averaged phase synchronization and average
synchronization error on the coupling strength k. It reveals the synchronization pattern
transitioning from a stable equilibrium to chaos.

Within the interval k1 < k < k2, a stable limit cycle is observed, characterized by phase
locking near zero or perfect phase synchronization between the ∆φ1 and ∆φ2 phases of x1
and x2, respectively. As the coupling strength is increased, the system enters the ranges of
k2 < k < k3 and k3 < k < k4, where phase locking is lost, and two additional frequencies
Ω1 and Ω2 emerge, leading to the formation of 2D and 3D tori, respectively. Moving into
the range of k4 < k < k6, phase synchronization is completely lost, resulting in chaotic
behavior. Finally, for k > k6, the phase locking regime reappears.
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Thus, the phase difference between the coupled EDFLs gives rise to the phenomenon of
the rotating wave, which propagates along the ring in a periodic, quasiperiodic, or chaotic
manner. Consequently, achieving identical synchronization becomes unattainable, as evi-
denced by the nonzero average synchronization error depicted in Figure 9, down.
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Figure 9. (Up) Averaged phase synchronization and (down) synchronization error versus coupling
strength k.

5. Conclusions

In this study, we conducted a numerical investigation into the dynamics of a sys-
tem consisting of three unidirectionally ring-coupled EDFLs as a function of the coupling
strength. By employing a six-dimensional mathematical model that accounts for laser
intensities and population inversions of all lasers, we extensively examined the system’s
behavior on the route from a stable equilibrium to chaos in the ring. Our analysis encom-
passed various tools including time series analysis, bifurcation diagrams, power spectra,
Poincaré sections, and Lyapunov exponents. A key focus of our study was the exploration
of the rotating wave propagating along the ring, which exhibited periodic, quasiperiodic,
or chaotic behavior depending on the coupling strength.

Furthermore, we made a noteworthy observation regarding the coexistence of periodic
and chaotic rotating waves within a specific range of coupling strength. As the coupling
strength increased, this bistability ceased to exist, and the system became monostable,
characterized by a single limit cycle. We explained this stabilization mechanism as the
interaction between the chaotic and periodic orbits with the rotating wave, where the
rotating wave acted as a secondary sinusoidal perturbation, leading to the annihilation of
the chaotic attractor.

Of particular interest was the significant increase in the peak power of laser pulses
due to phase locking under strong coupling conditions. In fact, for coupling strengths
exceeding k6, all EDFLs operated in the pulsed mode, producing very short high-amplitude
pulses. This finding has promising implications for applications requiring high-power laser
pulses. We achieved a nearly 20-fold increase in peak power compared to the continuous
mode observed in the absence of coupling. This outcome holds considerable significance
in optical communication, where optical signals experience significant attenuation during
propagation along optical fibers. The utilization of optical amplifiers based on the nonlinear
properties of EDFLs allows for the generation of sufficiently high power in transmitted
optical signals. The coexistence of different pulsed regimes with varying pulse amplitudes,
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along with the proper control of bistability, offers valuable opportunities for obtaining
high-power laser pulses.

It is important to acknowledge the limitations of this study. Our investigation primarily
concentrated on the simplest configuration of a three-laser ring, and as such, the conclu-
sions drawn may not directly extrapolate to larger laser networks. However, we hold
the belief that certain dynamical characteristics exhibited by our system could poten-
tially extend to larger laser networks, thereby warranting further investigation in future
research endeavors.
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