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Abstract: In terahertz communication systems, amplifiers and other components can induce non-
linear distortion in terms of amplitude and phase, resulting in system performance degradation. This
paper presents a terahertz metamaterial waveguide to mitigate amplitude and phase distortions in
some terahertz systems. A simple method based on free-space analysis is proposed for designing
metamaterial waveguides in an enclosed space. The quasi-periodic metamaterial structures, which
feature I-shaped resonant patterns, are integrated onto the inner walls of rectangular waveguides.
The phase and amplitude of electromagnetic waves within the waveguide can be modulated by
varying the dimensions and number of these resonators. Utilizing the effective medium theory and
the equivalent circuits, the metamaterial waveguide’s phase and absorption modulation mechanisms
are analyzed. Based on the proposed structure, a metamaterial waveguide with I-shaped resonators
is designed and fabricated, and its abilities to modulate the phase and absorption of terahertz waves
around 0.2 THz are demonstrated.
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1. Introduction

Terahertz technology has exhibited significant potential in high-speed wireless com-
munication [1,2], high-precision imaging [3,4], and astronomical detection [5]. Various
terahertz devices have been developed, including filters [6], mixers [7], absorbers [8], and
polarizers [9]. However, in the terahertz communication system, distortion in both ampli-
tude and phase can be caused by large gain fluctuations and nonlinear phase variations
in some components like power amplifiers [10,11], thereby decreasing communication
performance. Therefore, it is necessary to design a terahertz modulator that can regulate
and compensate for both the amplitude and phase.

Electromagnetic metamaterials, consisting of periodically arranged artificial microstruc-
ture arrays, can enable unique electromagnetic properties and manipulate electromagnetic
waves [12]. Many investigations on the properties and applications of metamaterials
have been reported, including terahertz magnetic response [13], negative refraction [14],
microwave electromagnetic cloak [15], super-lenses [16], and perfect absorbers [8,17,18].
Additionally, broadband metamaterial absorbers with fractal geometric structures have
been proposed, such as a hexagonal nano-ring fractal configuration [19], a Pythagorean-tree
fractal geometry [20], and an elliptical arrangement of metallic rings in a fractal struc-
ture [21]. Furthermore, some terahertz phase modulators [22–24] based on metamaterials
have been developed for manipulating radiation. However, most reported metamaterial
devices are simulated, designed, and operated in free space. It is difficult to eliminate
the scattering effects in free space, which can introduce measurement errors and increase
the losses of metamaterial devices. Furthermore, integrating the metamaterial devices
operating in free space with terahertz systems is also challenging.
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In terahertz systems, rectangular waveguides are important transmission lines for
designing passive devices such as filters, power splitters, and couplers. They can confine
electromagnetic waves entirely within an enclosed space [25]. Rectangular waveguides are
also considered as the most suitable interface for terahertz packages due to their low loss,
wide bandwidth, and durability. Therefore, integrating metamaterials with rectangular
waveguides to form an enclosed metamaterial waveguide can avoid free-space scattering
and facilitate the integration and interconnection with terahertz systems. Despite the
reports of incorporating metasurfaces in photonic integrated circuits to control guided
waves [26,27], integrating metamaterials into metallic waveguides differs significantly
from photonic integrated devices regarding the circuit structure, characteristics, operating
frequency bands, and application domains.

In recent years, a variety of metamaterial waveguides have been proposed to achieve
different functionalities and applications, including waveguide filters [28], a customizable
equalizer [29], terahertz waveguide modulators [30], a susceptible permittivity sensor [31],
and light storage [32]. These studies have brought promising prospects to the field of
metamaterial waveguides. However, research on metamaterial waveguides operating in
the 0.2 THz band remains relatively limited. This particular frequency band is located in the
so-called atmospheric window, where the propagation attenuation is minimized, allowing
superior wireless transmission [33]. High-speed wireless communication systems operating
in the 0.2 THz frequency band have been developed [34,35]. However, there remains a
lack of corresponding metamaterial waveguides that can achieve simultaneous phase and
absorption modulation. As illustrated in Figure 1, this type of metamaterial waveguide
can be utilized in 0.2 THz satellite communication systems to regulate both amplitude
and phase, thereby enhancing system performance. As depicted in Figure 2, the nonlinear
transmission characteristics exhibited by the metamaterial waveguide can be regarded as
an inversion of the system’s transmission response in both amplitude and phase, thereby
allowing the system to maintain a linear phase and a flat amplitude response.

In this study, a metamaterial waveguide capable of achieving phase and absorption
modulation has been proposed to address amplitude and phase distortions in terahertz
systems. The metamaterial waveguide is constructed by placing a quartz substrate with
quasi-periodic structures on the inner wall of the rectangular waveguide. Simple I-shaped
resonators are utilized as the fundamental resonant structures in the metamaterial waveg-
uide. By altering the number and dimension of the I-shaped resonators, control over the
phase and absorption of electromagnetic waves within the waveguide can be achieved.
Consequently, a corresponding metamaterial waveguide can be designed to improve the
amplitude and phase distortions based on the characteristics of the terahertz communica-
tion system. In addition, an equivalent media model and an equivalent circuit model of the
metamaterial waveguide are established in the second section to analyze the modulation
mechanisms of the waveguide’s phase and absorption. The metamaterial waveguide is
also explored through full-wave electromagnetic simulation in the third section. Finally,
the phase and amplitude modulation of the metamaterial waveguide around 0.2 THz is
demonstrated through fabrication and measurement.
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Figure 1. Applications of metamaterial waveguides in satellite communication systems to mitigate
amplitude and phase distortions.
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2. Principle and Design

In free space, it has been demonstrated that metamaterials based on artificial pe-
riodic structures can manipulate electromagnetic waves in the terahertz bands [12]. A
metal–dielectric–metal laminated structure [36] is one of the most commonly used struc-
tures in metamaterial design. The top layer consists of sub-wavelength resonant patterns
arranged periodically, the middle layer is a dielectric layer, and the bottom layer is a
metal plane. Based on the metal–dielectric–metal laminated structure, a simple method
is proposed to design the metamaterial from infinite free space transformation to an en-
closed space. Additionally, metamaterials often employ symmetric resonant structures
in free space to ensure their consistent response to electromagnetic waves incident from
any direction [19]. However, in the rectangular waveguide, the propagation direction and
polarization state of electromagnetic waves are constrained by the geometric structure
and remain fixed [37]. Therefore, there is no necessity to use symmetric resonators in the
metamaterial waveguide design.

Figure 3 illustrates the proposed terahertz metamaterial waveguide’s design and
evolution process diagram. A two-dimensional (2D) metamaterial is first designed and
simulated in free space and subsequently degraded into a one-dimensional linear array
and integrated into a rectangular waveguide. As shown in Figure 3a, a quartz substrate is
selected as the dielectric layer, and a simple I-shaped metallic line is initially chosen as the
top resonant pattern. Then, a gap is introduced in the I-shaped line to facilitate resonance
excitation, splitting it into two symmetric halves. The metallic gap of the I-shaped resonator
forms an equivalent gap capacitor, enhancing the resonance effect. To improve the I-shaped
resonator’s performance in absorbing and manipulating electromagnetic waves, a resistive
loss material is added to the metallic gap [29]. The added loss material is a TaN thin-film
resistor with a resistance R0 of 50 or 100 ohms in a square shape of any size. The resistance
value of the thin-film resistor is determined by its width and length and can be calculated
with the formula R = R0 × (g/wR). The geometrically simple structure of the I-shaped
resonator can also simplify the design and manufacturing.
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Next, as depicted in Figure 3b, arranging the I-shaped resonators periodically in a
2D plane creates a metamaterial operating in free space. Simulations are performed by
directing the incident wave perpendicular or nearly parallel (θ = 88◦) to the plane to obtain
the metamaterial’s absorption and phase modulation characteristics under the TE and
TM polarization states. Maintaining a small elevation angle during parallel incidence
ensures that the electromagnetic waves can act on the metamaterial during simulation. The
simulation results in Figure 3b demonstrate that, in free space, this 2D metamaterial can
modulate the phase and amplitude of TM-polarized electromagnetic waves that are nearly
parallel to the plane.

Finally, an enclosed-space metamaterial structure is established by degrading the 2D
metamaterial structure into a quasi-periodic linear array and integrating it into a metal
waveguide. Figure 3c shows that the quartz substrate is placed on the broad bottom face of
the rectangular waveguide, and the propagation direction of the electromagnetic waves
within the waveguide is parallel to the substrate. This configuration can ensure that the
proposed metamaterial waveguide has similar absorption and phase characteristics to
the 2D metamaterial. Moreover, the fundamental transmission mode of the rectangular
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waveguide is the TE10 mode, in which the electric field is always perpendicular to the
xz-plane, with no electric field in the propagation direction [37,38]. Consequently, the
polarization direction of the electromagnetic wave is always perpendicular to the xz-plane.
The field of the TE10 mode can be decomposed into two plane waves of equal amplitude
propagating in two different directions in the xz-plane [37], as illustrated in Figure 3(c). The
angle between the propagation direction and the z-axis is given by θ10 = tan−1 (kx10/kz10),
where the kx10 and kz10, respectively, denote the propagation constants of the TE10 mode
along the x-axis and the z-axis. Therefore, the propagation direction and polarization state
of electromagnetic waves are fixed in the metamaterial waveguide.

Figure 4a displays the cross-sectional view of the terahertz metamaterial waveguide.
The width and height of the WR-4.3 standard rectangular waveguide are, respectively,
1092 µm and 546 µm. The substrate comprises a 50 µm thick quartz layer, two 4 µm thick
layers of gold, and approximately 40 nm thick TaN thin-film resistors. The dielectric
constant of the quartz substrate is 3.82, and the refractive index is 1.95. The conductivity of
the gold is 4.1 × 108 S m−1.
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Based on the equivalent medium theory [39,40], periodically arranged I-shaped res-
onators can be regarded as an equivalent homogeneous ferrite layer, as illustrated in
Figure 4b. According to Maxwell’s equations and previous research [37,38,41], transverse
electromagnetic fields within the waveguide induce currents throughout the I-shaped
resonators. These induced currents stimulate an induced magnetic field, and the magnetic
field’s intensity |Hind| is determined by the dimensions of the metallic and thin-film
resistors. This physical process can be equivalently described as follows: when a magnetic
field is applied to a ferrite material, the magnetic moments within the ferrite are rearranged
to produce an induced magnetic field [37,38]. Therefore, the metamaterial structure can be
equivalent to a ferrite–dielectric–gold laminated structure.

In our previous work [41], the authors demonstrated that the phase constant β of
a metamaterial waveguide, based on the equivalented ferrite–dielectric–gold laminated
structure, is correlated with the induced magnetic field intensity |Hind|. Meanwhile, the
intensity of the induced magnetic field is determined by the dimensions of the metallic and
thin-film resistors within the I-shaped resonators. Therefore, the relationship between the
phase constant and the dimensions of the I-shaped resonators can be expressed as follows:

β ∼|Hind|∼ w, g, l, (1)

which suggests that adjusting the dimensions of the I-shaped resonators makes it possible
to modulate the phase of electromagnetic waves within the waveguide.

To analyze the physical mechanism of electromagnetic wave absorption, an equivalent
circuit model of the I-shaped resonator is illustrated in Figure 5. For the I-shaped resonator,
the equivalent circuit model includes two planar capacitance Cmi, two inductive inductance
Lmi, two ohmic resistance of the gold wires Rmi, a thin-film resistor Rei, and a gap capacitance
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Cei. The expressions for the equivalent circuit parameters [25] of the I-shaped resonator are
listed in Table 1. In this table, µ0 is the permeability of air, εr is the dielectric constant of
the quartz substrate, ε0 is the dielectric constant of the air, ρ represents the resistivity of the
gold, ts is the thickness of the quartz substrate, and tm is the thickness of the gold wire.
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Table 1. The expressions for the equivalent circuit parameters in Figure 5.

Parameters Lmi Cei Cmi Rmi

Expression 2 µ0ts
wi

li
πε0wi

2 ln(gi/tm)
ε0εrwi

ts
li ρ li

witm

A 3D model and a cross-sectional view of a metamaterial waveguide with multiple
I-shaped resonators are shown in Figure 6a. Its equivalent circuit model [42,43] is depicted
in Figure 6b. The equivalent circuit of a single I-shaped resonator can be simplified as an
RLC resonant circuit. Figure 7a depicts the opposing currents within the quartz substrate’s
upper and lower metal layers. As illustrated in Figure 7b, the existence of the opposing
currents is further validated by the electric field distribution in the xy-plane. Figure 7c
shows the magnetic field distribution of the metamaterial waveguide in both the xy-plane
and yz-plane. The reverse currents in the substrate’s upper and lower metal layers create
magnetic dipoles and magnetic resonance. The quartz substrate absorbs energy under
the effect of magnetic resonance, resulting in dielectric loss RO [44,45]. Furthermore, Ri
represents the total equivalent resistance of a resonator, including film resistors and the
ohmic resistance of the gold wire. Li is the total self-induced inductance and can be
expressed as [25,46]:

Li = 2Lmi = 2
µ0ts

wi
li, i = 1, 2, 3, · · · , n. (2)

Additionally, the total capacitance Ci, including two planar capacitance Cmi and a gap
capacitance Cei, can be expressed as [25,46]:

Ci =
CeiCmi

2Cei + Cmi
, i = 1, 2, 3, · · · , n. (3)

Then, the resonant frequencies of the equivalent circuit model of the I-shaped meta-
material waveguide can be expressed as follows:

fi =
1

2π
√

LiCi
, i = 1, 2, 3, · · · , n. (4)

The analysis of the equivalent circuit model and Equations (2)–(4) suggest that the
absorption frequency and magnitude can be controlled by adjusting the dimensions of the
I-shaped resonators. The power losses of the total equivalent resistance and dielectric loss
determine the absorption magnitude.
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From the analysis in this section, by adjusting the dimensions of the gold wires and
thin-film resistors within the I-shaped resonators, it is possible to manipulate the phase and
amplitude of electromagnetic waves within the metamaterial waveguide. The following
section will verify these findings through full-wave electromagnetic simulations.

3. Simulation and Analysis

A simulation model of the metamaterial waveguide with multiple I-shaped resonators
is established in a high-frequency structure simulator (HFSS), as shown in Figure 8. A
full-wave electromagnetic simulation was conducted on HFSS to validate the effectiveness
of the proposed metamaterial waveguides. The dielectric constant of the 50 µm thick quartz
substrate is 3.82, and its dielectric loss tangent is 0.005. The conductivity of the 4 µm thick
layers of gold is 4.1 × 108 S m−1, and the resistivity of the thin-film resistance is 100 Ω sq−1.
To simplify the simulation model, all the I-shaped resonators were set to the same size. The
spacing between the units was set to s = 0.6 mm. The initial dimensions of the metamaterial
were as follows: w = 150 µm, l = 335 µm, g = 110 µm, lsub = 4400 µm, and wsub = 1052 µm.
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Second, with the number of resonators fixed at six, the effects of altering the dimensions 
of the gold wires and thin-film resistances on the phase and absorption are further investi-
gated. As illustrated in Figure 10, by increasing the length of the gold wire from 305 µm to 
345 µm, the absorption frequency significantly decreases, and the absorption amplitude 
gradually increases, with a maximum addition of 5.8 dB. Moreover, the phase change near 
each absorption frequency increases. According to Equations (2)–(4), it is evident that as the 
length of the gold wire increases, both the self-inductance and the planar capacitance increase, 

Figure 8. Simulation model on HFSS of the I-shaped metamaterial waveguide. (a) A 3D model.
(b) The top view of the quartz substrate.

First, the phase and absorption of the metamaterial waveguide with different I-shaped
resonator numbers are investigated in Figure 9a,b. As the number of resonators increases
from 0 to 8, phase changes on both sides of 0.209 THz occur in opposite directions, while
the amplitude of S21 gradually decreases. As a result, the phase and absorption of the
metamaterial waveguide can be configured by controlling the number of resonators. The
electric field distributions of the waveguide with N = 6 at 0.2 THz and 0.209 THz are
exhibited in Figure 9c,d. Compared to the result at 0.2 THz, the electric field intensity at the
output port experiences a significant reduction at 0.209 THz, indicating a greater degree of
absorption at this frequency.
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Figure 9. Simulated (a) phase and (b) S21 curves under different I-shaped unit numbers. (c) E-field
distribution at 0.2 THz. (d) E-field distribution at 0.209 THz.

Second, with the number of resonators fixed at six, the effects of altering the dimen-
sions of the gold wires and thin-film resistances on the phase and absorption are further
investigated. As illustrated in Figure 10, by increasing the length of the gold wire from
305 µm to 345 µm, the absorption frequency significantly decreases, and the absorption
amplitude gradually increases, with a maximum addition of 5.8 dB. Moreover, the phase
change near each absorption frequency increases. According to Equations (2)–(4), it is
evident that as the length of the gold wire increases, both the self-inductance and the
planar capacitance increase, leading to a decrease in absorption frequency. Meanwhile, the
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induced current and magnetic field intensity increase, resulting in an increase in both phase
and absorption.
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resistance increases, the induced current reduces, and the loss of resistance and dielectric 
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Figure 10. Simulated phase and absorption curves under different l. (a) Phase. (b) S21. (f represents
the absorption frequency).

Then, the effect of the gold wire width on phase and absorption is simulated in
Figure 11. With an increase in the width of the gold wire from 120 µm to 180 µm, the phase
gradually increases, reaching a maximum change of 28◦ at 209.6 GHz. Meanwhile, the
absorption amplitude gradually increases, with a maximum increase of 5.8 dB at 208.7 GHz.
The increase in the width of the gold wire leads to a corresponding increase in the induced
current and magnetic field intensity, which in turn leads to greater coupling and interference
of the electromagnetic waves within the metamaterial waveguide, resulting in a larger
phase change. Furthermore, the increase in induced current elevates the losses of the
thin-film resistance and dielectric, leading to increased absorption.
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Next, the influence of the length of thin-film resistance on phase and absorption is
investigated in Figure 12. When the length of the thin-film resistor increases from 90 µm to
130 µm (the resistance value also increases gradually), the absorption frequency decreases,
and the absorption amplitude gradually decreases, with a maximum reduction of 9.4 dB.
Moreover, the phase change also gradually decreases. The reason is that when the thin-film
resistance increases, the induced current reduces, and the loss of resistance and dielectric
decreases, thus reducing absorption. At the same time, the induced magnetic field intensity
also decreases, leading to a reduction in the phase change. Moreover, with an increase in
the length of the thin-film resistance, the gap capacitance increases, as per Equations (2)–(4),
which leads to a decrease in the absorption frequency.
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In the above analysis, the I-shaped resonators are all set to the same size to simplify the 
HFSS model. However, a broadband response curve can be achieved when each I-shaped 
resonator has different dimensions and absorption frequencies. As depicted in V 13, the 
lengths of the six resonator unit cells increase sequentially from 275 µm to 325 µm, resulting 
in an accordingly leftward shift in their absorption frequencies. Figure 13b displays the sim-
ulated responses of the individual resonator units and the overall metamaterial wave-
guide. It can be observed that by strategically designing the absorption frequencies of each 
resonator unit cell, a broadband absorption curve is realized. In practical applications, 
adjusting each resonant unit’s length, width, and gap dimensions can achieve more com-
plex phase and absorption curves to meet the system’s requirements. 
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Figure 13. (a) The metamaterial consisting of I-shaped resonators with sequentially increasing lengths. 
(b) Simulated curves of each resonator and whole metamaterial waveguide. 
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the phase and absorption but can also change the absorption frequency. The width of the 
gold wire can adjust the phase and absorption but has li le effect on the absorption fre-
quency. Moreover, cascading multiple resonators with different dimensions makes it pos-
sible to achieve broadband phase and absorption characteristics. Based on these conclu-
sions, the metamaterial waveguides can be designed according to the characteristics of the 
teraher  system, thereby achieving the desired phase and absorption. However, the pro-
posed metamaterial waveguide has a limited phase shift range, and its phase is correlated 
with the absorption amplitude. Consequently, its applicability is also constrained and un-
able to meet the requirements of all teraher  systems. The presented metamaterial wave-
guide is primarily suitable for systems that require moderate phase correction while also 
necessitating energy absorption to improve amplitude flatness.  

Figure 12. Simulated phase and absorption curves under different g. (a) Phase. (b) S21.

In the above analysis, the I-shaped resonators are all set to the same size to simplify the
HFSS model. However, a broadband response curve can be achieved when each I-shaped
resonator has different dimensions and absorption frequencies. As depicted in Figure 13,
the lengths of the six resonator unit cells increase sequentially from 275 µm to 325 µm, re-
sulting in an accordingly leftward shift in their absorption frequencies. Figure 13b displays
the simulated responses of the individual resonator units and the overall metamaterial
waveguide. It can be observed that by strategically designing the absorption frequencies
of each resonator unit cell, a broadband absorption curve is realized. In practical applica-
tions, adjusting each resonant unit’s length, width, and gap dimensions can achieve more
complex phase and absorption curves to meet the system’s requirements.
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(b) Simulated curves of each resonator and whole metamaterial waveguide.

To summarize, the lengths of the gold wire and thin-film resistance not only control
the phase and absorption but can also change the absorption frequency. The width of
the gold wire can adjust the phase and absorption but has little effect on the absorption
frequency. Moreover, cascading multiple resonators with different dimensions makes
it possible to achieve broadband phase and absorption characteristics. Based on these
conclusions, the metamaterial waveguides can be designed according to the characteristics
of the terahertz system, thereby achieving the desired phase and absorption. However,
the proposed metamaterial waveguide has a limited phase shift range, and its phase is
correlated with the absorption amplitude. Consequently, its applicability is also constrained
and unable to meet the requirements of all terahertz systems. The presented metamaterial
waveguide is primarily suitable for systems that require moderate phase correction while
also necessitating energy absorption to improve amplitude flatness.

Additionally, further investigations have been carried out to explore the properties of
metamaterial waveguides when replacing the I-shaped resonators with other shapes. As
shown in Figure 14, the I-shaped resonators in the proposed metamaterial waveguide are
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replaced with square-ring and cross-shaped resonators, respectively. The resistivities of
the thin-film resistors in the resonators are 100 Ω sq−1. All the square-ring or cross-shaped
resonators are set to the same size. The designed dimensions of these two metamate-
rial waveguides are as follows: wr = 100 µm, lr = 335 µm, gr = 100 µm, sr = 1170 µm,
lsub1 = 7000 µm, wc = 100 µm, lc = 330 µm, gc = 130 µm, sc = 1100 µm, lsub2 = 6500 µm,
and wsub = 1052 µm. The simulated results of these two metamaterial waveguides are
depicted in Figure 15. Compared to the I-shaped resonators, the metamaterial waveguide
with square-ring resonators exhibits dual absorption bands within the frequency range
of 0.17 to 0.26 THz. Moreover, the metamaterial waveguide with cross-shaped resonators
demonstrates higher absorption amplitude. Therefore, by introducing resonators of dif-
ferent shapes into the metamaterial waveguide, the characteristics can be altered, thereby
expanding its range of applications.
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4. Experiments and Discussion

In terahertz communication systems, some devices, such as traveling-wave tube am-
plifiers, exhibit significant gain fluctuations and nonlinear phase variations, resulting in am-
plitude and phase distortion. Based on the previous analysis and simulation, the principle
and characteristics of the proposed terahertz metamaterial waveguide have been obtained.
In practical applications, corresponding metamaterial waveguides can be designed based
on terahertz systems’ characteristics to reduce amplitude and phase distortion.
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An I-shaped metamaterial waveguide is designed and fabricated to verify its ability
to regulate phase and absorption. According to the simulation analysis, the number of
I-shaped resonators is selected as six, as shown in Figure 16a. The resistivities of the
thin-film resistors in the resonators are 50 Ω sq−1. The designed and optimized dimensions
of the metamaterial are as follows: wI = 150 µm, lI1 = lI2 = lI3 = lI5 = 335 µm, lI4 = 345 µm,
lI6 = 330 µm, sI = 600 µm, wR = gI = 110 µm, lsub = 8000 µm, and wsub = 1052 µm. In order to
enable fabrication with other quartz substrates with different lengths on the same wafer, the
quartz substrate of this design contains a section of blank dielectric for length adjustment.
The influence of this blank dielectric on the performance of the metamaterial waveguide
is negligible.
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Figure 16. (a) Dimension identification of the designed quartz substrate. (b) Photographs of the
fabricated metamaterial waveguide module.

The photograph of the fabricated metamaterial waveguide module is depicted in
Figure 16b. The split blocks of the WR-4.3 waveguide are machined from aluminum alloy
with computer numerical control (CNC) technology. The 50 µm thick quartz substrate is
directly bonded to the waveguide’s inner wall through silver epoxy. The length of the
waveguide is 32 mm, while that of the quartz substrate is 8 mm. Two rows of threaded
holes were added outside the narrow walls of the waveguide, which can be considered as
electric walls to reduce electromagnetic energy leakage [37].

Figure 17 displays the schematic diagram and the photograph of the measurement
system for evaluating the fabricated module’s performance. A vector network analyzer
(ZVA67, Rohde & Schwarz, Munich, Germany) with two WR-4.3 (0.17–0.26 THz) frequency
extenders was used to measure the phase and S parameters of the fabricated module.
The measured and simulated curves are shown in Figure 18. The maximum absorption
amplitude of the fabricated metamaterial waveguide is 19.6 dB, occurring at 0.2055 THz.
Compared with the simulation result, the measured S21 curve of the I-shaped metamaterial
waveguide exhibits an approximately 3 dB decrease and a leftward shift of 2.3 GHz in
the absorption frequency. The phase curve is consistent with the simulation results, but
the frequency at which the phase shifts occur exhibits similar offsets as the absorption
frequency. Additionally, the measured return loss of the metamaterial waveguide is better
than 13 dB. Despite the discrepancy between the measured and simulated curves, the results
confirm the feasibility of the proposed terahertz metamaterial waveguide in achieving the
modulation of the absorption and the phase.

The differences between the measured and simulated results in Figure 18 are mainly
caused by insufficient fabrication precision, thin-film resistance errors, and insertion losses
of the H-plane splitting waveguides and quartz substrates. Due to the limitations of
fabrication processes, thin-film resistance can possess a maximum error of ±10%, leading
to deviations in the phase, amplitude, and absorption frequency. Moreover, the waveguide
is split on its H-plane to facilitate the placement of the quartz substrate, which disrupts the
surface currents of the waveguide and increases insertion loss. Furthermore, the inaccurate
dielectric constant and loss tangent of the quartz substrate around 0.2 THz also cause
shifts in the absorption and phase. In future research, these issues could be addressed by
enhancing the processing precision of thin-film resistors, introducing more precise model
parameters, and conducting iterative design improvements.
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Table 2 compares the proposed metamaterial waveguide in this work and other re-
ported metamaterial waveguides. Most of the reported metamaterial waveguides primarily
focus on energy absorption, equalization, and modulation, without considering their con-
trol over the phase. The metamaterial waveguide proposed in [41] achieves simultaneous
control over absorption and phase. However, its usage of an alumina ceramic substrate
with a relatively high dielectric constant and loss tangent makes it challenging to extend its
application to higher frequencies.

Table 2. Comparison to other reported metamaterial waveguides.

Reference Device Type/Function Frequency (THz) Substrate Loss Material Resonator

[28] Absorber 0.1 Alumina ceramic N.A. * Circular patch

[29] Energy equalizer 0.1 Alumina ceramic Film resistor Square ring

[30] Amplitude modulator Terahertz/infrared Graphene N.A. N.A.

[41] Phase and absorption
modulation 0.1 Alumina ceramic Film resistor Square ring

This work Phase and absorption
modulation 0.2 Quartz Film resistor I-shaped line

* N.A. represents not applicable.

Compared with other reported metamaterial waveguides, this work utilizes a low-loss
and low-dielectric constant quartz substrate, combined with simple I-shaped resonators, to
achieve phase and absorption control in the 0.2 THz band. Moreover, this study introduces a
method for designing one-dimensional metamaterial waveguides in enclosed spaces based
on the analysis results of two-dimensional metamaterials in free space. The metamaterial
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waveguide’s equivalent medium and circuit models are analyzed. Additionally, this work
examines the dimensions of I-shaped resonators and the implementation of resonators
of other shapes, analyzing their impact on phase and absorption. The fabrication and
measurement of the metamaterial waveguide also provide a positive pre-verification for its
potential application in future 0.2 THz communication systems.

5. Conclusions

In summary, this paper proposes a metamaterial waveguide with I-shaped resonators
to address terahertz systems’ phase and amplitude distortions. A simple and effective
approach is presented to design one-dimensional metamaterial in an enclosed space based
on the analysis results of a two-dimensional metamaterial in free space. By modifying
the size and number of the I-shaped resonators, the phase, absorption, and absorption
frequency can be effectively adjusted. An analysis of the metamaterial waveguide’s phase
and absorption control mechanisms is conducted by establishing the equivalent medium
model and equivalent circuits. The metamaterial waveguide is designed, fabricated, and
measured, and the results show that it has effective phase and amplitude modulation
capabilities near 0.2 THz. Additionally, the flexible modulation, simple structure, and easy
manufacturing of the proposed metamaterial waveguide make it highly promising for
applications in future high-performance terahertz communication systems.
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