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Abstract: Many solutions for imaging through a scattering medium are sensitive to noise, which can
lead to degradation or even to a failure of the image quality. This is especially the case in practical
application scenarios, which are always filled with changing ambient light interference; as such, the
traditional methods are difficult to practically apply. Therefore, in this paper, a spatial-frequency dual-
domain learning neural network is designed for reconstructing the target of a speckle pattern under
different intensities of ambient light interference. The network is mainly based on two modules. One
module is designed from two perspectives, frequency domain denoising and the spatial-frequency
spectrum of the speckle pattern. Another module is a dual-feature fusion attention module, which
is used to improve the accuracy of the network. The experimental results demonstrate that the
network is capable of reconstructing complex targets with high quality under varying intensities
of interfering light. Furthermore, it is not constrained by the optical memory effect, exhibiting
remarkable robustness and generalizability. The research based on this paper provides a feasible path
for the practical application of scattering imaging methods.

Keywords: imaging through a scattering medium; ambient light interference; deep learning

1. Introduction

A scattering medium or rough surfaces cause light to scatter, thus distorting the infor-
mation carried by the light and making it difficult to observe and detect objects. Imaging
through a scattering medium is a challenging problem in many fields, involving nonde-
structive testing, autonomous driving, biological tissues, etc. Therefore, accurate imaging
in a scattering medium has high scientific value and application prospects. To solve this
challenge, researchers have proposed and developed many scattering imaging techniques
to solve the issue, ranging from the wavefront shaping of scattered light [1–3], transmis-
sion matrix measurements [4,5], the speckle autocorrelation technique [6,7], spectroscopic
analysis of multiple scattered light [8], to angular domain imaging [9], etc. However, these
techniques are often sensitive to external noise, which can come from aspects such as the
camera, dust, imaging distance, and ambient light. Among these factors, ambient light
interference is one of the most important factors affecting the performance of imaging algo-
rithms. This is especially the case in industrial production with complex and changeable
environments, where it is easy to cause a degradation in the imaging effects, and even a
failure in the reconstruction process. Therefore, overcoming interfering light is a key issue
in the practical application of scattering medium imaging technology, which needs further
research and solutions.

To solve this problem, Li et al. used the Zernike polynomial-based method and the
improved low-rank and sparse decomposition technique to separate the strong background
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noise from the speckle autocorrelation, and then utilized the phase retrieval algorithm
for target reconstruction [10]. Niu’s team used the singular value decomposition for the
removal of ambient light noise, as well as to improve the contrast of speckle autocorrelations;
then, they introduced an additional guiding point in the object plane, through which they
indirectly reconstructed the target from the speckle autocorrelation [11]. Ma et al. proposed
a plug-and-play algorithm based on the generalized alternating projection optimization
framework; this was then combined with neural networks and the Fienup phase retrieval
method fo the purposes of recovering the imaging through a scattered medium in disturbed
environments [12]. Cheng et al. used speckle autocorrelation information, as physical
constraints, and deep learning to propose a two-stage neural network for background light
denoising and object reconstruction [13]. The above studies were all based on the nature
of speckle autocorrelation, whereby the imaging field of view is limited and most of the
imaging quality is not high.

As a data-driven algorithm, deep learning has been widely used in many fields,
such as computer vision, natural language processing, autonomous driving, etc., with
its powerful representation in learning ability and its high generalization ability. In the
field of optics, the application of deep learning has also received increasing attention and
has shown great potential. At present, deep learning has been successfully applied to
solve problems in the field of computational imaging such as phase imaging [14], super-
resolution imaging [15], and polarization imaging [16]. Therefore, using deep learning to
solve some optical problems is a particularly promising method.

Deep learning is currently used for imaging through a scattering medium, generally
for target reconstruction, and mainly in the original spatial domain. However, under com-
plex noise conditions, learning only through the spatial domain leads to the problem of
insufficient detail enhancement in the reconstructed target, which reduces the contrast and
signal-to-noise ratio of the reconstructed image (or even reconstruction failure). In this
work, we refer to frequency domain denoising and the spatial frequency spectrum of the
speckle pattern to propose SFM—a joint spatial and frequency domain learning module
that extracts more features and details from the complex background optical noise. DFFAM,
a dual-feature fusion attention module was also constructed so as to improve the accuracy
of the network. The network based on these two modules not only reconstructs the target
under different levels of ambient light interference, but also has a good recovery capability
for more complex targets. Based on the model for imaging through a scattered medium,
there is no need to be limited by the optical memory effect (OME); in addition, the network
has good robustness and generalization.

2. Principles and Methods
2.1. Physical Principles

The speckle autocorrelation technique is one of the most important solutions for
imaging through a scattered medium, and it is characterized by non-invasive and fast
imaging. Based on the speckle autocorrelation theory, the relationship between the speckle
pattern and object is expressed as per the following equation [17] (whereby the Fourier
transform of speckle autocorrelation is equal to the speckle power spectral density by
Wiener Sinchen’s theorem [18]):

I ? I = (O ∗ S) ? (O ∗ S) = (O ? O) ∗ (S ? S) = (O ? O) + C = FFT−1
{
|FFT{I}|2

}
(1)

where the symbol ? is the autocorrelation operation; ∗ is the convolution operation; I and
O denote the camera-captured speckle pattern and the spatial-domain target, respectively;
S denotes the PSF; C is the background noise; and FFT and FFT−1denote the Fourier
transform and inverse Fourier transform, respectively.

Based on the above formula, the speckle autocorrelation can be obtained. In the case
of no interfering light, the traditional algorithm uses some phase retrieval algorithms to
recover the target from speckle autocorrelation. For example, HIO [19], ADMM-based [20],
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and prGAMP [21]. But these algorithms take a long time to calculate, and the accuracy of
reconstruction for the target is not high.

Especially as ambient light interference gradually intensifies (as manifested by the
increasing factor C in Equation (1)), the complexity of factor C also increases. Intricate noise
further hinders the accuracy of valuable information. Consequently, researchers often use
Singular Value Decomposition (SVD), Zernike polynomials, and Fourier transformation
techniques to separate interference noise from the speckle autocorrelation signal. Then, a
phase retrieval algorithm reconstructs the target. While these methods partially isolate the
noise components, they do not fully eliminate residual noise. This deficiency could result
in inadequate reconstruction quality. Furthermore, these algorithms are limited by OME.

Meanwhile, the speckle autocorrelation technique generally employes an incoherent
light source. This choice is based on the principle that higher incoherence results in a
closer resemblance between the autocorrelation of the speckle pattern and that of the object
itself [17]. As the coherence of the light source increases, interference among different point
spread functions arises, contributing to speckle contrast and subsequently intensifying the
complexity of image reconstruction [22]. However, even under coherent light irradiation
conditions, the spatial frequencies of the object remain well preserved within the spatial
frequency spectrum of the speckle pattern [23].

Building upon the aforementioned concepts, it is valuable to explore the information in
the speckle frequency domain under conditions of coherent or incoherent light. Therefore,
in this paper, we utilize the powerful learning capabilities of deep learning to fuse the
frequency domain information of speckle with its spatial domain, creating a neural network
model that addresses the limitation of the speckle autocorrelation technique in the presence
of ambient light interference.

2.2. Module Design and Network Framework
2.2.1. SFM and DFFAM

Based on the above principle, the frequency domain information of the speckle
pattern implies the spatial frequency details of the object, regardless of whether it is under
conditions of coherent or incoherent light. Simultaneously, we consider the frequency
domain denoising perspective. We embed the process of Fourier transform into the neural
network, and utilize the powerful feature extraction capability of deep learning to extract
information and learn directly from the frequency domain, and also learn features from the
spatial domain. Learning from two dimensions can enhance the denoising and learning
ability of the network. Therefore, we propose the spatial frequency dual-domain joint
learning module, SFM. The structure of the SFM is shown in Figure 1a.

The structure of the SFM is divided into two parts. One part is the spatial domain
part which performs feature extraction learning on the input feature map through a 3 × 3
convolutional block. The other part is the frequency domain part. In this part, first
the Fourier transform is performed on the feature map to generate the spectrogram, the real
part of which is extracted for feature extraction learning and the imaginary part of which is
dimensionally transformed using a convolutional block with a convolutional kernel of 1 × 1.
After the feature extraction in the frequency domain, the frequency feature is switched
to the spatial domain by using the inverse Fourier transform. The features learned in the
spatial and frequency domains are then summed to obtain a richer and more integrated
feature representation. The module helps to improve the representation and performance
of the model.

To further improve the accuracy and generalization ability of the model, we also
design a dual-feature fusion attention module, DFFAM, which is designed to suppress
non-correlated regions in the input feature maps during the up-sampling process while
highlighting specific local regions of salient features to improve the accuracy of the model
prediction. The module structure is shown in Figure 1b.

This module has two input branches. One input is the feature map from the encoder
and the other is the feature map obtained from the previous layer decoder. First, the feature
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fusion of the two is performed to generate a new feature map in which channel attention
and positional pixel attention are computed by using CABlock [24]. It is then dimensionally
transformed using a convolutional block with a convolutional kernel of 1 × 1, and ulti-
mately becomes a weight matrix with a channel number of 1. The weight matrix is finally
multiplied with the feature map obtained from the previous layer decoder and is used to
highlight the useful information in the previous layer decoder’s feature map and to inhibit
the useless information to increase the network accuracy.
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Figure 1. (a) SFM Structure Diagram. FFT and IFFT represent the Fourier transform and inverse
Fourier transform, respectively; Add denotes the addition operation; Real and Imag denote the real
and imaginary parts of the complex numbers, respectively. (b) DFFAM Structure Diagram. Cat
denotes the tensor splicing operation; Mul denotes the multiplication operation.

2.2.2. Model Design

Based on the two modules of SFM and DFFAM, we design a network that can not
only recover the image of the speckle pattern under different intensities of interference
light, but also reconstruct complex objects with good quality. The proposed model consists
of several encoders and decoders. Each encoder consists of a CABlock and an SFM. The
CABlock is a channel and position attention mechanism. Although the speckle image
is disordered, the adjacent pixels all have a certain relationship and a certain degree
of redundancy [25]. By introducing the position attention mechanism, the information
of the speckle can be well extracted and the accuracy of the network can be improved.
The DACBlock [26] module and the ASPP [27] module are used as a bridge between the
encoder and decoder, because ASPP and DACBlock can capture contextual information,
provide multi-scale information, and have good results in various visual tasks. The decoder
consists of DFFAM and SFM. The specific network is shown in Figure 2.

The network input is speckle patterns under ambient light interference of different
intensities with a speckle pattern size of 256 × 256. The input first passes through an
encoder stage for multiple downsampling. After downsampling, it passes through the
bridging module for multi-scale information extraction. It then enters the decoder stage,
which performs multiple upsampling. Each upsampling connects the output of the previous
module with the output of the respective encoder after residual concatenation prior to
feature extraction and learning. After upsampling, the final output of the 256 × 256
prediction map is passed through the network header.
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Figure 2. Network structure diagram.

For network training, we use DSSIM [28] as the loss function of the network. The ex-
pression is as follows:

Loss = DSSIM =
1− SSIM(X, Y)

2
, (2)

SSIM(X, Y) = 1− (2uXuY + c1)(2σXY + c2)(
u2

X + u2
Y + c1

)(
σ2

X + σ2
Y + c2

) , (3)

where Y denotes the predicted image; X denotes the real image; uX and uY denote the
mean of X and Y, respectively; σ2

X and σ2
Y are the variances of images X and Y, respectively;

σXY is the covariance of the X and Y, and c1, c2 denote the stabilizing constant.
In the experiment, the signal-to-noise ratio (SNR) is utilized to measure the ratio of

the intensity of the target signal to the intensity of the ambient light, which is calculated
by formula

SNR
(
x0, xp

)
= 10× log10

(
x0

xp

)
. (4)

In the formula, x0 and xp represent the light intensity measured by the light meter
without ambient light interference and the light intensity measured when the ambient light
intensity is p. In general, the lower the ambient light interference, the higher the SNR,
the better the image quality, and vice versa.

To quantitatively evaluate the imaging performance of the model, the structural
similarity SSIM and the root mean square error, RMSE, are used to measure its imaging
quality; SSIM is up to 1. The higher the image quality, the better; the lower the RMSE,
the better the image quality. The formula of RMSE is as follows.:

RMSE(X, Y) =

√
1
N

n

∑
i=1

(Xi −Yi)
2. (5)

Here, Y represents the predicted image, X represents the real image, N represents the
total number of image pixels, and i represents the ith pixel.

2.3. Measurement System

To demonstrate the effectiveness of our approach, we test the proposed model by
acquiring real optical datasets using the optical path system shown in Figure 3. A laser
(LR-TRL-635, CHANGCHUN LASER TECHNOLOGY) with a wavelength of 635 nm is
used as the light source to generate a Gaussian beam. The Gaussian beam is expanded by a
beam expander, then the expanded beam is passed through a horizontal polarizer and is
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split into two parts by a beam splitter. One part of the beam is incident upon the reflective
phase-only SLM (PLUTO, Holoeye), the pixel size of which is 8.0 µm. We sample all target
objects to 256 × 256 and then load them into the SLM. After the beam is reflected by the
SLM, it carries the corresponding object information. After that, the beam is scattered
through the scattering medium (Ground Glass Diffuser, 220grid, GCL-201101, DHC), and
the distance from the SLM to the scattering medium is 30 cm. Finally, the scattered light is
captured by an industrial camera (BFS-U3-123S6CC, FILR) to record the speckle pattern,
and the pixel size of the camera is 3.45 µm, and the distance from the scattering medium to
the CMOS is 10 cm. During data acquisition, an LED (GCI-060411, DHC) with adjustable
light intensity is placed next to the scattering medium as an interfering light source, and
the light emitted from the LED either enters the camera indirectly through the scattering
medium, or enters the camera directly. We adjust the light intensity of the LED step by
step from minimum to maximum to obtain the speckle pattern under different interference
intensities and use a light meter (ZTW1701A, CHNT) to measure the intensity value of the
current ambient light during recording.

Figure 3. The experimental setup: BE, beam expander; P, horizontal polarizer; BS, beam splitter; S,
turbid medium; LM, light meter; CMOS, industrial camera.

To fully evaluate our proposed network, we load different types of images into the
SLM, all of which are grayscale. First, the speckle patterns of MNIST handwritten digits
under different ambient light intensities are captured, with a total of 9 different interference
intensities, increasing irregularly from 0 lux to 1200 lux, where 1200 lux is the maximum
light intensity emitted from the LEDs measured by the light meter at a fixed position.
The light intensity of the light source before reaching the camera is measured to be 40 lux
with no interference from the ambient light, so that the SNR of the maximum interference
intensity is calculated to be −15 dB. A total of 1000 speckle patterns are available for each
interference light intensity; the first 900 images are used as the training set of the network
and the last 100 images are used as the validation set. Second, the FASHION dataset
is collected, with a total of 5 groups of different interfering light intensities, each with
1000 speckle patterns, and the same 0.9:0.1 ratio is used to divide the dataset. This dataset
is collected to evaluate the universality of the network’s imaging. Finally, to validate that
the method is free from the limitation of the OME, a double-digit dataset is constructed
based on the MNIST handwritten digits. The double-digit dataset has a total of 9 groups of
1000 images each. The model is trained and tested in Pytorch version 1.12 under Ubuntu
16.04. The hardware specifications of the workstation are two NVIDIA GeForce 3090RTX
devices and an Intel Core i9-10990X central processor.

3. Results and Discussion
3.1. Imaging Recovery under Different Interference Intensities

In this study, we assess the network’s accuracy by examining five groups of speckle
patterns generated under varying interference intensities. These groups exhibit SNRs of
−5 dB, −8 B, −11 dB, −12 dB, and −13 dB. The image type is MNIST handwritten digits.
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The network is first trained and then evaluated with a validation set. The final result of the
network is shown in Figure 4.

SNR
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Speckle 

Output

-5dB -8dB -11dB -12dB -13dB

S
S

IM

Samples Samples

R
M

S
E

(a)

(b) (c)

Figure 4. Quantitative evaluation of networks: (a) Target reconstruction under different intensities
of ambient light interference. GT, ground truth; Output, result of the network prediction. (b) SSIM
for reconstruction accuracy of any 30 samples per interference intensity. (c) RMSE for reconstruction
accuracy of any 30 samples per interference intensity.

Figure 4a is a sample display of speckle imaging recovery under different ambient
light interference by the network, including speckle images under different SNR values,
and examples of their corresponding real labels and prediction results. It can also be
seen that the imaging accuracy of the network through the scattering medium under
different intensities of interfering light shows good performance. To more accurately
represent the accuracy of the network, we randomly select 30 samples from the validation
set of each group of speckle patterns under different interference intensities for prediction.
To quantitatively evaluate the image quality, we adopt SSIM and RMSE as evaluation
metrics. Figure 4b,c display the image quality evaluation of the validation outcomes. It is
evident that the model exhibits fluctuations in the target reconstruction accuracy for each
group. The optimal SSIM for each group can exceed 0.96, while the optimal RMSE can
drop to approximately 7.0. On the other hand, the poorest SSIM within each group can fall
below 0.83, and the highest RMSE can reach 40.0 or higher. The average accuracy of each
validation set is very similar, with their average SSIM as high as 0.91 and average RMSE as
low as 21.3.

To enhance the evaluation of the network’s performance, we conduct experiments by
training other neural networks using the same training dataset. Specifically, we employ
three conventional networks, namely UNet, NestedUNet, and ResUNet++. We compare
the outcomes obtained from these networks with the outcomes achieved by the network
proposed by us.

Table 1 presents the comparative results, providing a quantitative assessment of the
networks’ performance. The evaluation metrics used for this analysis are SSIM and RMSE.
The table displays the performance of these networks in relation to the accuracy of the
entire validation set. Our analysis of the results reveals that the network designed in this
paper exhibits superior accuracy in terms of both SSIM and RMSE when compared to
the conventional networks. The quantitative data presented in Table 1 provides further
evidence to support our observation and underscores the improved performance of the
proposed network in terms of overall validation set accuracy.
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Table 1. Results of different network comparisons.

Model SSIM RMSE

UNet [29] 0.82 40.8
NestedNUet [30] 0.79 44.8
ResUNet++ [31] 0.87 27.4

Ours 0.91 20.0

3.2. Complex Target Imaging under Different Interference Intensities

To demonstrate that the designed network is capable of reconstructing targets with
high quality in the absence of the OME or outside the field of view of the OME, we chose
coherent light as the light source and measure the OME range of the system. We refer to the
method in the references to measure the OME range [32–34]. First, we place a 5 × 5 pixel
square on the object plane. At 0.02 mm intervals, the relative position between the square
and the scattering medium is slightly changed using a displacement stage. The final
correlation coefficient curve is shown in Figure 5a, so the effective radius of the OME
range of our system is measured to be 0.36 mm. Based on the effective radius of the OME
range and the SLM pixel size, the OME range of the SLM on this system is 90 × 90 pixels.
Thus, as long as the width and height of the non-zero portion of our dataset is larger than
90 pixels, we can demonstrate that our network is not affected by OME when reconstructing
the target.

Based on the measured range of OME, we chose a double-digit dataset to load into the
SLM, with a two-digit size larger than 90 pixels. We use the two-digit dataset to capture
several groups of speckle patterns under different ambient light intensities. We select
five datasets to train the network, and their SNRs are −5 dB, −8 dB, −11 dB, −12 dB,
and −13 dB, respectively.The training results are shown in Figure 5.
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Figure 5. (a) Correlation coefficient curves for the OME range of the optical system. (b) Double-digit
reconstruction with different intensities of background light interference. (c) SSIM for reconstruction
accuracy of any 30 samples per interference intensity. (d) RMSE for reconstruction accuracy of any
30 samples per interference intensity.

As shown in Figure 5b, the network consistently maintains good accuracy for the double-
digit dataset under different ambient light intensities. As can be seen from Figure 5c,d,
among the randomly selected samples, SSIM has the highest target reconstruction accuracy
of 0.98 with a low RMSE of 8.0, while the worst SSIM stays above 0.92 with the highest
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RMSE of about 26. In addition, the average sum of accuracies for these five validation sets
is also very good, with the average SSIM and the average RMSE values of 0.96 and 15.8,
respectively. Thus, the network designed by us continues to exhibit excellent imaging quality
when reconstructing complex targets in complex scenes without the limitation of OME.

To further test that the model can still be effective in more complex scenes, we use the
FASHION dataset with more complex target shapes and more disordered gray distributions
to train the network with a wider range of SNRs. It also does not satisfy the condition of
the OME. In the dataset collected by the experiment, there are a total of five groups with
different interference intensities, and their SNRs are−5 dB,−9 dB,−12 dB,−13 dB,−15 dB,
respectively. After training the network, the results of these five groups of validation sets
are shown in Figure 6.

From Figure 6, it can be seen that the network designed in this paper still has good
accuracy for the reconstruction of complex targets in complex scenes. Especially from
Figure 6b,c, it can be seen that the network has high accuracy for most of the targets
reconstruction, and the maximum SSIM of single sample accuracy can be as high as 0.94,
and the minimum RMSE can be as low as 11.0. While the reconstruction accuracy for
some more complex targets is not high, with SSIM as low as 0.5 and RMSE as high as 60.0.
In this paper, we first argue that this happens because the original complex target has a
complex pixel distribution. Second, even if the target is sampled from 28 × 28 pixels to
256 × 256 pixels when it is loaded into the SLM, its pixel details are still severely lost after
passing through the optical path system. Especially when imaging through a scattering
medium, some particularly complex details are indeed difficult to recover. Overall, however,
the overall accuracy of SSIM for the five validation sets is as high as 0.77 and the RMSE is
as low as 28.7, indicating that the network still maintains a certain degree of effectiveness
when dealing with images of more complex shapes.

(a)

(b) (c)
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Figure 6. (a) Complex target reconstruction under different ambient light interference intensities.
(b) SSIM for reconstruction accuracy of any 30 samples per interference intensity. (c) RMSE for
reconstruction accuracy of any 30 samples per interference intensity.

3.3. Network Robustness and Generalization

To evaluate the network’s generalizability and assess its resistance to interference,
we choose two distinct datasets: MNIST handwritten digits and double-digit images.
These datasets are used to examine how well the network can generalize and maintain its
performance under varying conditions. The network is trained with five sets of speckle
patterns for each dataset type. The SNRs of these five sets of speckle patterns are −5 dB,
−8 dB, −11 dB, −12 dB, and −13 dB, respectively. The network trained with these five
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groups is employed to predict the validation sets of the additional four groups, which are
not included in the network’s training process, and their respective SNRs are 0 dB, −9 dB,
−14 dB, and −15 dB. The reconstruction accuracies of the validation sets for these two
types of datasets are illustrated in Figure 7.
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Figure 7. (a) Target reconstruction for four groups of MNIST handwritten digits. (b) The validation
accuracy for four groups of MNIST handwritten digits. (c) Target reconstruction for four groups of
double-digit images. (d) The validation accuracy for four groups of double-digit images.

As depicted in Figure 7, it is evident that the network maintains a certain level of
quality in reconstructing the respective four groups of untrained speckle patterns, both for
the MNIST handwritten digits and double-digit images. Within the trained intensity range
and without trained interference intensity, SNR = −9 dB, the accuracy of the validation set
remains comparable to that achieved with the trained speckle patterns. For the interference
intensity below the trained intensity range (SNR = 0 dB), the overall target reconstruction
accuracy remains acceptable, albeit with a slightly lower validation set SSIM. As for the
interference intensity above the trained intensity range (SNR = −14 dB and SNR = −15 dB),
the network is still capable of reconstruction to a certain extent. However, it is worth noting
that our reconstruction accuracy gradually decreases as the ambient light intensity increases.
It is worth emphasizing that, even under the challenging SNR = −15 dB condition where
the information is significantly masked by ambient light, the designed network can still
extract valid information and achieve effective reconstruction. This performance surpasses
the reconstruction accuracy of the physical method. Therefore, from the above analysis, it
can be seen that the network can sufficiently learn from the existing dataset and reconstruct
the dataset without training and beyond the interference range, indicating that the network
is resistant to interference and possesses strong generalization and robustness.

4. Conclusions

In this paper, we draw on the frequency domain denoising principle and the spatial
frequency spectrum of the speckle pattern to design the SFM to retrieve the hidden target
and spatial information more easily. This is conducive to the further popularization of the
scattering imaging technique in practical applications. We also design DFFAM to improve
the model perception and prediction performance for complex scenes. The network,
designed by combining these two modules, can perform intricate target reconstruction
using a single speckle pattern, addressing the challenge of recovering scattering imaging
data under varying ambient light intensities. Notably, this network showcases exceptional
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generalization and robustness, even in the presence of intricate ambient light fluctuations. It
is not constrained by the OME and maintains strong performance in reconstructing complex
targets, even at a SNR as low as −15 dB. In future research endeavors, we intend to further
refine these two modules and the network structure to tackle even more complex scenes and
objects. Additionally, we aim to explore their applicability in other computational imaging
tasks, such as phase imaging, computational ghost imaging, and image super-resolution.
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