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Abstract: The great success of artificial intelligence (AI) calls for higher-performance computing
accelerators, and optical neural networks (ONNs) with the advantages of high speed and low
power consumption have become competitive candidates. However, most of the reported ONN
architectures have demonstrated simple MNIST handwritten digit classification tasks due to relatively
low precision. A microring resonator (MRR) weight bank can achieve a high-precision weight matrix
and can increase computing density with the assistance of wavelength division multiplexing (WDM)
technology offered by dissipative Kerr soliton (DKS) microcomb sources. Here, we implement a car
plate recognition task based on an optical convolutional neural network (CNN). An integrated DKS
microcomb was used to drive an MRR weight-bank-based photonic processor, and the computing
precision of one optical convolution operation could reach 7 bits. The first convolutional layer was
realized in the optical domain, and the remaining layers were performed in the electrical domain.
Totally, the optoelectronic computing system (OCS) could achieve a comparable performance with
a 64-bit digital computer for character classification. The error distribution obtained from the
experiment was used to emulate the optical convolution operation of other layers. The probabilities
of the softmax layer were slightly degraded, and the robustness of the CNN was reduced, but the
recognition results were still acceptable. This work explores an MRR weight-bank-based OCS driven
by a soliton microcomb to realize a real-life neural network task for the first time and provides a
promising computational acceleration scheme for complex AI tasks.

Keywords: optical neural networks; microring resonator weight bank; soliton microcomb; optical
convolution; car plate recognition

1. Introduction

In recent years, the rapid development of artificial intelligence (AI) has achieved
remarkable success [1,2] and has brought automatic driving, face recognition, and medical
diagnosis into reality [3–6]. In order to meet the strict requirements of practical appli-
cations such as autonomous driving, a system needs to have faster response speeds to
make robust decisions and lower power consumption to provide longer battery life [7].
Currently, traditional electronic chips still dominate the computing field, such as graphics
processing units (GPUs), application-specific integrated circuits (ASICs), neural network
processing units (NPUs), and so on [8–10]. However, Moore’s Law is facing failure [11],
and the transistor size of electronic chips is approaching the physical limit. Improving chip
integration and performance through semiconductor technology is still difficult to meet the
growing computing needs.

Light has the inherent nature of low power consumption, low latency, large bandwidth,
and high parallelism [12]. The modulation rate of a silicon photonic integrated circuit
is several times higher than the clock frequency of an electronic processor, which can
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significantly improve computing speed. Furthermore, silicon photonic technology is
compatible with existing standard complementary metal oxide semiconductor (CMOS)
manufacturing, which makes optical neural networks (ONNs) on silicon very competitive
and promising accelerator candidates in the post-Moore era [13]. However, since neural
network layers are connected by synaptic weights, errors accumulate when noisy signals
propagate from one layer to the next, and the computing precision determines the scale
of a deep neural network [14,15]. Recently, ONNs have made significant progress in high
computing speed, high computing power, and large-scale integration [16–22], but the
precision of most of them is typically about 5 bits, which restricts their application to
only simple MNIST handwritten digit classification tasks [23–25] and others like these.
Therefore, ONNs still face challenges in handling advanced AI applications, such as real-life
computer vision tasks.

MRR arrays based on “broadcast-and-weight” architectures can generate a real-valued
matrix [21,26] and have been proved to perform multiply-accumulation calculations more
efficiently than traditional electronics [27–29]. Compared with the Mach–Zehnder inter-
ferometer (MZI) mesh and diffractive neural network, whose precision is susceptible to
fabrication error [30–35], an MRR weight bank can achieve higher computing precision.
MRR synapse was recently reported to achieve a 9-bit precision [15], which heralds it
potential to handle advanced AI tasks. In addition, MRR weight banks have the merit to
improve parallel information-processing capability through wavelength division multi-
plexing technology [21]. Recently, an optoelectronic computing system (OCS) based on
wavelength division multiplexing has successfully demonstrated parallel optical convolu-
tion operations using Kerr microcombs that generate equidistant optical frequency lines as
the multiwavelength source [21,36]. Therefore, using an optical frequency comb to drive
an MRR weight-bank-based OCS is expected to greatly improve computing density.

On the other hand, convolutional neural networks (CNNs) inspired by the biological
visual cortex system have a strong ability to extract features and are widely used in image
recognition, language processing, and other fields [37,38]. Car plate recognition is an
important part of autonomous driving, and it should have higher prediction accuracy and
robustness using a CNN [39,40].

Here, combining the advantages of a microcomb-driven MRR array and CNNs, we
propose and experimentally demonstrate a microcomb-driven optical convolution scheme
to realize Chinese car plate recognition. An integrated Kerr soliton microcomb drives an
MRR weight-bank-based photonic processor to perform convolution operations, and the
computing precision of one optical convolution operation reaches 7 bits. Experimentally,
the mathematical operation of the first convolutional layer is realized through optical con-
volution, and other operations are performed in the electrical domain. We experimentally
tested 10 car plates, and the recognition results of the OCS are highly consistent with those
of 64-bit computers. Even when the statistical error of the optical convolution is counted
into the rest of the convolution layers for 10 car plate samples, the classification results of
the softmax layer are acceptable with tiny degradation. This manifests an essential step
forward in promoting optical computing for complex real-life tasks.

2. Principle and Device Design

Figure 1 schematically illustrates the principle of car plate recognition using optical
convolution kernels. Figure 1a depicts a simplified model structure diagram of the CNN
employed in our experiments. It included two convolutional layers, one pooling layer,
and two fully connected layers. The input image was a matrix with a size of 18 × 18. The
two convolutional layers had 16 and 72 convolution kernels, respectively, and the size
of these convolution kernels was 3 × 3. Followed by the downsampling pooling layer
were the fully connected layer and the output layer. The output layer had 34 neurons,
which were the basis of the classification results of the car plate characters. The first
convolutional layer marked by the red box was implemented in the optical domain. In
order to convert the convolution into matrix-vector multiplication, the input image data
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needed to be specifically encoded. The encoding rules are shown in Figure 1b. We took
out all three columns of data corresponding to the convolution window (it can be seen
as the convolution window sliding down), then slid one stride horizontally to the next
position, took out the data in the same way, and stacked them behind the data taken out
in the previous step, repeating the above steps until the last sliding position. This rule
adapted to the computing method of the matrix kernel and improved the data utilization
efficiency. The image data were encoded as input vectors and loaded to a modulator, the
weight matrix of the convolution kernel was loaded to an MRR weight bank as a matrix
kernel, and the multiplication results detected with a balanced photodetector (BPD) were
reconstructed as an output feature map of the convolution layer. The reconstruction rule
of the convolution result was to sum all the elements in the k-th diagonal of the matrix
multiplication result Yi as the convolution result, whose index was the (k + 1)-th row of
each column (the main diagonal of k = 0). The reconstruction rule could be expressed
as follows:
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where Yi is the matrix product corresponding to the i-th column of the convolution results.
Figure 1c shows a schematic diagram of the experimental setup for convolution operation
in a real-valued domain, which mainly included three parts: optical frequency comb
generation, data loading control, and optical power detection. An on-chip microcomb
pumped with a continuous-wave tunable laser served as the multichannel optical source.
Combs matched with the microring resonant peak were regrouped with a wavelength
division demultiplexer, and the modulated comb lines flowed to the MRR weight bank
through the wavelength division multiplexer. A customed field-programmable gate array
(FPGA) transformed the input vector and matrix weights into voltages applied to an
intensity modulator and MRR array via a digital-to-analog conversion circuit, which could
achieve programmable voltages with 16-bit resolution to manipulate the precise movement
of the microring spectrum. The differential optical power of the through port (THRU) and
drop port (DROP) of the MRR weight bank was detected using the BPD, and the electrical
signal was transmitted to the FPGA for weight evaluation.

To generate a dissipative Kerr soliton (DKS) microcomb that could offer hundreds
of equally spaced frequency lines, an integrated Si3N4 MRR with a free spectral range
(FSR) of 100 GHz and a loaded Q-factor of above 5 × 105 was utilized, as shown in the
upper part of Figure 2a. The generation of the DKS was based on the dual balance between
Kerr nonlinearity and cavity dispersion, as well as parametric gain and loss [41,42]. A
continuous-wave tunable laser was used to generate pump light, which was amplified
with an erbium-doped fiber amplifier and then launched into a silicon nitride MRR. The
auxiliary-laser-heating approach was adopted. Firstly, the auxiliary light launched from the
opposite direction was frequency-tuned to the blue-detuned region close to the resonance
peak. Subsequently, the wavelength of the pump light was scanned to keep the cavity in
thermal equilibrium, the pump light smoothly entered the red-detuned regime from the
blue-detuned regime, and the Kerr microcomb evolved from a chaotic state to a dissipative
soliton state. Finally, by fine tuning the wavelength of the pump light, a stable single-
soliton frequency comb with a smooth envelope was generated. Figure 2c shows the optical
spectrum of a single DKS microcomb with a spacing of 100 GHz.
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Figure 1. Schematic of the principle of car plate recognition using optical convolution kernels.
(a) Simplified model structure diagram of the CNN employed in our experiments. (b) Encoding
rules of the input image and a sketch of the convolution principle. (c) Conceptual schematic of the
experimental setup for the convolution operation. A DKS microcomb served as the multiwavelength
source and was pumped using a continuous-wave (CW) laser.
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Figure 2. Characterization results of MRR weight bank and Kerr microcomb. (a) Upper: picture of
the packaged Si3N4 microcomb chip. Lower: photo of the packaged MRR array chip with periphery
circuits. (b) Micrograph of the microring weight bank and detailed zoom-in micrograph of an
individual microring. (c) Measured spectrum of a single DKS comb state with 100-GHz spacing.
(d,e) are the optical responses of the modulator and microring to the voltage. (f) Measured optical
spectrum of one row of microrings at the THRU and DROP ports and 3 comb lines selected from a
single-soliton frequency comb.
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The lower part of Figure 2a shows a packaged MRR array chip and peripheral circuits.
The device was fabricated on a silicon-on-insulator (SOI) wafer with 220 nm of top silicon
and 2 µm of buried oxide substrate. Both wirebonding and vertical grating coupling were
already packaged for electrical and optical input/output (I/O). A thermo-electric cooler
(TEC) was equipped below the integrated MRR weight bank to keep the environmental
temperature stable. A micrograph of the MRR weight bank and the detailed zoom-in
micrograph of an individual MRR are shown in Figure 2b. The weight bank consisted of
9 MRRs in an add/drop configuration in which the radius of the rings in each row was
designed to be gradually varied to avoid resonance peak collision. To precisely control
kernel weight, thermo-optic phase shifters made of TiN heaters were implemented to tune
the resonances of the MRRs. For the 3 ×3 MRR weight bank, three comb lines were used
in the experiment, corresponding to the resonant peaks in the spectrum. The resonant
peaks of one row of MRRs and the selected comb lines measured using an optical spectrum
analyzer (OSA) are shown in Figure 2f. The MRRs could be independently configured
by employing thermal isolation trenches between each microring of the MRR arrays to
minimize the thermal cross-talk. To realize the matrix multiplication operation, it was
necessary to obtain the precise response of the system to the voltage, which consisted of
two steps: first, establishing the mapping lookup table between the modulator voltage
and the input vector; and second, building the mapping lookup table between the MRR
voltage and the kernel weight. The three channels were opened independently in turn,
and a modulator voltage sweep program applied to a high-precision voltage source was
developed and implemented to achieve calibration of the input vector. As the voltage
increased within an appropriate range, the input vector could be normalized to an interval
[0, 1], as shown in Figure 2d. Then, a normalized one-valued voltage was applied to the
modulator to fix the power of the input light, and the voltage of each MRR was scanned to
achieve the calibration of the kernel weight so that the optical power difference between
the through port and the drop port could be normalized to an interval [–1, 1]. The MRR
weight–voltage (W–V) lookup table is shown in Figure 2e.

3. Results

We successfully implemented car plate recognition using an OCS based on a silicon
MRR weight bank driven by DKS microcombs, and the optical recognition results of seven
characters per car plate were comparable to those of a 64-bit computer. On the basis of the
characteristics of Chinese license plate characters, the first character, the second character,
and the remaining five characters of a car plate need to be divided into three categories.
The datasets of these three categories were a dataset containing 31 Chinese characters, a
dataset containing 26 letters, and a dataset containing 24 letters (excluding I and O) with
10 numbers. The entire dataset was split into training (24,000 pictures) and testing sets
(6000 pictures). The groups of weight data were trained using the same CNN model for
three categories of characters. The CNN used in our experiments was pretrained using
a computer to obtain the weight data of each layer of neurons. In the inference process,
the first convolutional layer was implemented in the optical domain, and the feature map
obtained from the experiment was sent to other subsequent layers executed in the electrical
domain. The MRR performed the linear part of the convolutional layer, and the nonlinear
activation function processing was performed using the computer. Taking into account
the characteristics of the hardware, the convolution operation was transformed into third-
order matrix-vector multiplication with specific encoding rules. The gray-scale values of
the character pictures were normalized as the input vector datastream and loaded to the
intensity modulator, and the weights of 16 convolution kernels were extracted as matrix
kernels and matched to the MRR weight bank. Then, the optical convolution results were
sent to the computer after being received by the BPD. It can be seen that there was almost
no difference between the optical feature map obtained through the experiment and the
feature map obtained using the digital computer (see Figure 3a,b). However, since it was
analog computing, in fact, there were small errors between the experimentally obtained
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feature map and the computer feature map, and the error distribution of each pixel position
of the feature map is presented in Figure 3c.
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Figure 3. Comparison between the optical feature map and the electrical feature map. (a,b) are the
16 feature maps obtained using optical convolution and digital computer, respectively. (c) The error
distribution of each pixel position between the electrical feature map and optical feature map.

To quantify the statistical distribution of computing errors, we performed a statistical
analysis on the errors of the 16 feature maps. Figure 4a exhibits the computing precision of
the convolutional layer, where the horizontal axis is the theoretical calculation value, and
the vertical axis is the experimental measurement value. The bit precision was estimated
using the standard deviation of the computing error and then converted to the expression
of bit precision with a revised equation from Ref. [15]:

precision = log2

(
weightmax(3)− weightmin(−3)

std(error)

)
. (2)
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Figure 4. Experimental error analysis. (a) Quantitative statistical analysis of computing error. The
scatter plot shows a 7-bit precision. (b) Comparison of the maximum and submaximum probabilities
of the softmax layer for optical computing and electrical computing.

We observed that the sample scatter points were tightly concentrated on the diagonal
and distributed in the light green area, which indicates a 7-bit computing precision (the
closer the sample scatter points were distributed along the diagonal, the higher the comput-
ing precision). The pink inset graph shows the frequency histogram of the error. In order to
explore the impact of computing error on character classification results, we compared the
per-category probabilities of the softmax output layer inferred from the experimental data
with the theoretical calculated results. The softmax layer contained 34 classification outputs,
among which the output of the maximum probability category was almost absolutely
dominant compared with other outputs. Therefore, we only extracted the maximum and
submaximum outputs among the 34 outputs. These two could already represent all the
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useful information of the classification results when the classification was correct. Figure 4b
shows the classification probabilities of seven pictures of the first car plate in Figure 5a,
in which the blue and green bars are the maximum and submaximum probabilities of the
corresponding classification output of the electronically calculated softmax layer, while the
orange and red bars are the counterparts obtained with optical computing. The comparison
results show that the maximum value of the optical computing was basically close to that of
the electrical computing, which indicates that the error induced by the optical convolution
of the first convolutional layer did not cause classification errors. In fact, this error only
had a slight impact on a few pictures whose maximum values and submaximum values of
the softmax layer were in the same order of magnitude in theoretical calculation but had
no effect on pictures whose maximum values were close to one and whose submaximum
values were several orders of magnitude smaller or even negligible.
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In the experiment, we recognized 10 car plates in total, and the computer recognition
results of these 10 car plates are shown in Figure 5a, corresponding to the light blue box.
The CNN had a high correct rate, and only three characters marked in dark orange were
misrecognized (note that the recognition accuracy of the electrical CNN model was above
95%). For these 10 car plate pictures, the classification results of the optical convolution in
the light orange box were the same as those of the computer. Figure 5b shows the statistical
distribution of computing errors for these 10 car plates, that is, the standard deviation and
mean value of each car plate. The results indicate that the average computing errors of all
the characters of each car plate were within the range of 0.05. The hundreds of thousands
of sets of error data used during the experiment with the 10 car plates were statistically
analyzed as a whole, and the average error of one convolution operation was calculated
to be 0.016 with a standard deviation of 0.0342. To simulate the second convolutional
layer calculated with the photonic CNN processor, we introduced the ideal Gaussian noise
conforming to this error distribution into the forward-propagation calculation of the second
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convolutional layer so that the classification results of all the convolutional layers executed
using optical convolution could be estimated. Figure 5c shows the comparison of the
estimated maximum and submaximum probabilities with the ideal ones, and the analysis
rules were consistent with the previous ones. It can be seen that the estimated classification
results of the softmax layer were slightly degraded. The output of the maximum probability
category decreased, and the probability of the second maximum increased significantly,
which means that the errors introduced by the second layer reduced the robustness of
the CNN, posing a potential risk of misclassification. Nevertheless, the classification
results of most images were still correct, which illustrates that the classification result of
all the convolutional layers executed using optical computing was acceptable. From the
experimental and simulation results, we observed that the performance of the OCS was
comparable to that of a 64-bit computer in computer vision tasks based on a CNN. This
work verifies the feasibility of optical computing in practical applications and also shows
that it has promising applications for other real-world, more complex AI tasks.

4. Discussion

In general, the computing precision of ONNs has rarely been considered compared to
computing speed and energy consumption. Thanks to a 7-bit precision, we successfully
verified a car plate recognition task using an MRR weight-bank-based OCS. Compared with
previous simple MNIST dataset classification tasks, we took a big step toward practicality.
In the future, the computing precision can be further improved by optimizing devices
or employing more advanced techniques and, hopefully, implementing more complex
neural network tasks in real-world scenarios. Since optical computing is analog computing,
system noise is inevitable due to the actual values represented by the nonideal devices
deviating from the ideal ones. In fact, the main factors that limit the further improvement
of the computing precision in the OCS include the instability of the light source power, the
poor consistency of the modulator, the cross-talk of the MRRs, the environment fluctuation,
and the detection noise of the photodetector. Precise MRR control is still a challenge due to
fabrication variance. The static resonance peaks of each MRR are not ideally distributed
in the spectrum or even overlap, and a reference voltage needs to be applied to make it
redshift to a suitable position. Despite the use of TEC temperature control and thermal
isolation trenches, once the applied voltage is too high, thermal cross-talk still occurs. In
order to precisely control an MRR, we can employ more advanced manufacturing processes,
as well as optimize the design of photonic devices to reduce loss and obtain higher spectral
uniformity. For other factors, we can minimize the error caused by system noise using
more sophisticated experimental equipment.

Higher computing speed and computing density are the mainstream pursuits of
optical computing. Assuming our OCS operates at a 100-GHz photodetection rate, the
computation speed is approximately 0.9 TOPS. The system in this study still has great
potential for improvement in terms of integration and computing speed. A superior
integration technique provides a realistic basis for fully integrated systems [43]. One can
integrate a modulator on the chip to reduce the footprint and improve the integration
of a system. Thermo-optic modulators can be replaced by ultra-high-speed electro-optic
integrated modulators on SOI platforms or thin-film lithium niobate platforms to greatly
enhance computing speed [44,45]. Moreover, an MRR is rationally designed so that the
next FSR resonance peak of the MRR can match the comb line of the Kerr microcomb, and
an MRR weight bank can be upgraded to a tensor core with higher parallelism to further
improve the computing density.

This work demonstrated that convergence of optics and electronics is required for
an OCS to achieve more complex neural network tasks. Thanks to the recent significant
progress in the hybrid integration of photonic chips and electronic circuits [46], it is ex-
pected that digital control circuits and silicon-based platform photonic devices will be
monolithically integrated in the future. A monolithic system combines the high speed
and large bandwidth of photonic computing with the flexibility of electronic computing
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and could constitute a high-performance OCS with more compactness and more energy
efficiency to complete complex practical AI tasks, such as autonomous driving, medical
diagnosis, and real-time video recognition [47].

5. Conclusions

In summary, we successfully demonstrated optical convolution-based car plate recog-
nition using an MRR weight-bank-based photonic processor driven by an on-chip Kerr
soliton microcomb source. The precision of one optical convolution operation reached 7
bits, and the car plate recognition results of the OCS were comparable to those of electronic
computers. Using the error distribution obtained from a large amount of experimental
data, the optical computing of subsequent convolutional layers with the same error was
simulated, and the simulated classification results were also acceptable. This is the first
time that car plate recognition, a complex, real-life application, has been realized with an
optical CNN chip. Our work provides a feasible scheme with great potential for an MRR
weight-bank-based OCS driven by a microcomb to realize complex neural network tasks.
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