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Abstract: Conductive graphitized grooves on the dielectric surface of diamond have been created by
KrF excimer laser radiation. The advantages of such a circuit board in high-field applications is rather
limited because the crystal surface has a relatively low electrical breakdown threshold. To increase the
electrical strength, a method of encapsulating surface conductive graphitized structures by chemical
vapor deposition of an epitaxial diamond layer has been proposed and realized. The quality of the
growth diamond is proved by Raman spectroscopy. A comparative study of the electrical resistivity
of graphitized wires and the breakdown fields between them before and after diamond growth was
carried out. The proposed technique is crucial for diamond-based high-field electro-optical devices,
such as THz photoconductive emitters.
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1. Introduction

Diamond is a unique material with a number of record-breaking properties. Its
electrical breakdown threshold is up to 2–10 MV/cm [1–3], making it attractive for high-
voltage applications, such as field electron transistors [4–8], switching diodes [9–13], high-
energy particle trapping [14–18], photoconductive antennas [19–22] and others. The thermal
conductivity of diamond (24 W/cm·K) [23] is even higher than that of copper, which allows
it to effectively dissipate heat [24–28]. Recently, diamond heat sinks have demonstrated
high efficiency in reducing the temperature of GaN-based transistors [29]. Diamond has
high transparency and radiation resistance over the whole UV-to-mm range, which is used
for the fabrication of optics for high-power laser sources [30,31]. The high-quality diamond
crystals show excellent transport properties: electron and hole mobilities reach 4500 and
3800 cm2/V·s, respectively, at room temperature [32], and carrier saturation velocity reaches
2.7 × 107 cm/s [33,34]. Another quite important advantage of diamond is the possibility to
locally regulate its conductivity. Diamond is an sp3 hybridized carbon allotrope. Its band
gap is relatively large (5.4 eV), which makes undoped diamond an excellent insulator: the
resistivity of pure crystals can exceed 1016 Ohm·cm [35]. On the other hand, there is the
counterpart of diamond—graphite. It is another sp2 hybridized crystalline modification
of carbon and normal semimetal. The typical basal plane resistivity of highly oriented
pyrolytic graphite (HOPG) is 40 µOhm·cm [36]. Surprisingly, the diamond lattice can
be relatively easily transformed into a graphitic lattice by external action. Intense laser
radiation is the most suitable and prospective tool to locally modify the carbon structure
on the diamond surface or even in the bulk [37–39]. Laser irradiation allows one to create
complex conductive patterns in diamond and opens new fields for optical and electronic
applications of diamond material. All-carbon detectors of ionized radiation have been
fabricated by the laser direct write technique and successfully tested in the registration
of β-particles [40]. The same technique has been used to fabricate diamond/graphite
metamaterials in the IR [41] and THz [42,43] regions.

Photonics 2024, 11, 10. https://doi.org/10.3390/photonics11010010 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics11010010
https://doi.org/10.3390/photonics11010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-3724-8005
https://orcid.org/0000-0002-9190-5766
https://orcid.org/0000-0002-5926-2393
https://orcid.org/0000-0002-8241-9440
https://orcid.org/0000-0002-7951-0139
https://doi.org/10.3390/photonics11010010
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics11010010?type=check_update&version=1


Photonics 2024, 11, 10 2 of 11

Another application where it is desirable to utilize all of the unique properties of
diamond, especially the high electric breakdown field, is THz photoconductive generation.
The first diamond-based photoconductive antenna (PCA) was fabricated and tested about
20 years ago [19]. Recently, this field has received a new impetus. Diamond doping
allowed the use of commercially available IR fs-laser sources for the optical pumping of
PCAs [21,22] instead of the complex UV fs-lasers that would have to be used to generate
the photocarriers in pure diamond. However, the demonstrated power of the generated
THz radiation is still far from the maximum available. The main limiting factor is that the
electrodes forming the E-field in the diamond substrate of the PCA were located on the
diamond surface, and the level of the bias voltage was limited by the electrical breakdown
on the diamond surface or in air (Esurf < 20 kV/cm). An obvious solution to dramatically
increase the electric field in the PCA is to bury the conductive wires in the substrate. One
way of doing this is to create graphitic structures by direct laser writing within the diamond
bulk. This technique has been successfully tested and found to be flexible and effective [22].
However, it is mostly limited by the minimum distance between adjacent channels and
does not allow the creation of paths with sufficient conductivity [44]. Special efforts should
be made to write arbitrary structures and increase their conductivity [45].

In this work, we describe a completely different approach, also using laser microstruc-
turing of diamond. A new two-step technique for fabricating the buried conductive
structures has been demonstrated. First, the graphitized wires were produced on the
surface of single-crystal diamond by laser ablation, and then they were encapsulated by
chemical vapor deposition (CVD) of the diamond layer. It should be mentioned that a
similar approach was first realized by Yoneda et al. [2]. They grew the polycrystalline
film covering the Pt-patterned diamond surface. Polycrystalline wafers were found to
be ineffective in terms of THz generation [21]. Therefore, in this work, we studied the
possibility of epitaxially growing single-crystal diamond above the conductive structures.

For the first time, we have investigated the epitaxial growth of a diamond film on a
high-pressure, high-temperature (HPHT) substrate with laser-graphitized grooves. There
are two main issues to be addressed in the development of encapsulated graphitic electrode
technology. Here, we focused on the first, which is the preservation of the electrodes, in
particular, the high conductivity of the graphitized material. A gas discharge plasma, which
disrupts the methane molecules and provides the diamond growth, is a fairly aggressive
environment and is thought to etch all carbon phases including diamond. The preservation
of the graphitized material in the CVD process is, therefore, a crucial task, as it is of little
value to cover the tracks with an insulating protective layer and at the same time ruin the
conductive network and the functionality of the device. The second task is to minimize
surface leakage and increase the inter-electrode electrical strength many times over. This
is a major task, and a number of possible limitations should be thoroughly investigated,
including the thickness of the diamond protective layer, the effect of defect generation in
the diamond around the graphitized material [46], etc. Here, we report the first results on
this problem by comparing the electrical conductivity and breakdown threshold before and
after the CVD encapsulation process.

2. Materials and Methods

Surface graphitization of the HPHT sample was performed using a commercial KrF
excimer laser (λ = 248 nm, τ = 20 ns) (CL7100, Optosystems Ltd., Moscow, Russia). We
chose ns pulse duration for the track formation to increase its conductivity. It is known
that the conductivity of the graphitized layer induced by ns-irradiation is larger than that
induced by fs-irradiation [47]. The laser beam uniformly illuminated a square mask of
400 × 400 µm2, which was then projected onto the sample surface with a demagnification
factor of 1:20 using a homemade objective (NA = 0.3). Laser writing was performed by
moving the sample on a three-axis translational stage. The laser spot-ablated the diamond
surface to form grooves 24 µm wide and 125 µm deep, with the graphitized phase at the
bottom. Such a deep crater was produced with a laser fluence of 27 J/cm2 and 400 laser
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pulses per spot. A sketch of the graphitized tracks on the diamond surface is shown in
Figure 1.
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Figure 1. Schematic of graphitized wires with pads (#1, #2, and #3) for measurements of electrical
breakdown threshold.

The structure of the graphitized material was analyzed by Raman set-up (Horiba
LabRAM HR-800 spectrometer, Kyoto, Japan, equipped with a diode-pumped solid-state
laser at λ = 473 nm) in a confocal configuration with a spatial resolution of 1 µm and an
accuracy of the Raman line position detection down to 0.2 cm−1. The spectrometer was
calibrated using a high-quality natural type IIa diamond crystal. The reference spectrum
showed the diamond Raman peak at 1332.5 cm−1 with a full width at half maximum
(FWHM) of 2.9 cm−1. The laser power was 2.2 mW.

The resistivity of the graphitized wires was characterized using a source measure unit
(2635B, Keithley, Cleveland, OH, USA). The unit was terminated with two tips attached
to the micromanipulators and controlled by an optical microscope. For testing, these tips
were touched into 100 × 100 µm2 graphitized pads on the diamond surface (#1 and #2
in Figure 1), providing ohmic contact with the graphitized wires. The inter-electrode
electrical strength was studied in air and at room temperature by applying high voltage
(HV) to the two 100 × 100 µm2 graphitized pads (#1 and #3 in Figure 1) and using the
same tip targeting technique as for the resistivity measurements. The circuit diagram for
the breakdown voltage measurements is shown in Figure 2. Electrical breakdown was
monitored with a 500 MHz oscillograph (Tektronix, Beaverton, OR, USA). A DC voltage
applied by an HV power supply (Stanford Research Systems, Sunnyvale, CA, USA, model
PS370) had been increased until a strong leakage current appeared, which was displayed
on the oscilloscope as a sharp voltage drop.
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HPHT single crystal substrate of 2.9 × 2.7 × 0.4 mm3 with graphitized tracks was per-
formed using a microwave plasma CVD system ARDIS-300 (Optosystems Ltd., Russia,
6 kW, 2.45 GHz) [48]. The diamond deposition process was carried out at a pressure of
177 Torr, microwave power of 5.1 kW and total flow rate of 500 sccm using a gas mixture
of H2(96%)/CH4(4%). The substrate temperature of 920 ◦C was maintained during a 5-h
deposition run, as measured with a SensorTherm M322 two-color pyrometer at the side
of the sample through a special tunnel in the substrate holder. The growth rate during
epitaxial growth was monitored using the low-coherence interferometry method. In this
method, a device based on a Michelson interferometer records the change in the optical
length of the growing crystal (nd) vs. (t). In the linear parts of the nd(t) dependence, the
tangent of the slope of the line gives the growth rate, which is calculated by the program
several times per second, averaged and displayed on the computer monitor. The epitaxial
diamond growth rate was about 8 µm/hour. The thickness of the diamond sample before
and after growth was measured with a micrometer screw gauge. By the difference of
values, the thickness of the grown layer was calculated, which amounted to 40 µm. After
the diamond growth, the surface above the test pads was ablated again with an excimer
laser. The epitaxially grown layer was removed to locally open the buried pads and obtain
contacts for applying high voltage or controlling the conductivity of the buried wires. The
surface morphology was analyzed using an Axiotech 25HD optical microscope (Carl Zeiss,
Jena, Germany).

3. Results and Discussion
3.1. Optical Characterization of Laser Structured and Epitaxially Grown Diamond Surface

The optical image of the T-shaped interconnection of graphitized grooves under the
grown diamond layer was obtained in the transmission regime of illumination and focusing
in depth of material (Figure 3a). The dark stripes correspond to the graphitized structures,
which had a width of about 24 µm (about the same as before the CVD process) and still
had a fairly clean edge. Surprisingly, the homogeneity of the diamond layer grown over
the grooves was quite high. The image in Figure 3b was obtained by focusing on the
diamond surface. The underlying T-shaped intersection of the graphitized grooves is barely
visible. Overall, the surface appears perfectly flat—all surface relief features are clearly
visible, as they lie within the depth of field of the 50× objective. The epitaxial growth of
the groove walls was unexpectedly effective and resulted in closing the gap above the
groove. Note the appearance of surface steps perpendicular to the grooves. An obscured
T area above the T-connected grooves corresponds to the junction between the diamond
crystals grown from opposite walls of the groove. The layers from both walls converge at
the junction, forming a shallow groove only a few micrometers deep and about 10 µm wide.
The presence of relief steps on the growth side indicates epitaxial growth of diamond, and
they are always formed during epitaxial growth of mosaic diamond on the clean surface
and lateral overgrowth of diamond substrates patterned by conventional photolithographic
methods [49–51].
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3.2. Confocal Raman Spectroscopy of Deposited Diamond Layer and Encapsulated
Graphitized Structures

Raman mapping was used to evaluate the quality of the diamond material in the
deposited layer. The obvious critical zone is the vicinity of the graphitized groove and, in
particular, the interface between the crystals growing towards each other. The scattered
light was collected by focusing on the surface of the grown layer. The Raman spectra were
recorded along the direction perpendicular to the junction with a step of 1 µm. The position
and width of the diamond peak as a function of distance along the scan line are shown
in Figure 4a,b, respectively. The scan length was 40 µm, and the zero point in Figure 4
corresponds to the position of the junction line. The diamond Raman peak in the obtained
spectra was fitted with a Lorentzian line shape to estimate its position and FWHM.
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along the scanning line. The vertical dotted line at zero point corresponds to the junction position;
horizontal dotted line corresponds to the reference diamond peak position at 1332.5 cm−1.

As the data in Figure 4 show, the Raman peak appeared to be shifted to higher
frequencies, up to 1332.9 cm−1, in a zone of about 3 µm width around the junction point.
Beyond this range, the peak position decreased to 1332.2 cm−1 in a zone of about 5 µm,
and so on, forming an oscillation around the reference position of the diamond peak at
1332.5 cm−1. The deviation of the diamond peak position from the reference value is a
well-known effect and is caused by mechanical stress, which in turn is a result of structural
defects within the grown crystal. The positive shift corresponds to compressive stress and
the negative shift corresponds to tensile stress [52].

Thus, Raman spectroscopy reveals strong and localized compressive stress in a 3 µm
wide zone around the junction interface and its gradual relaxation extending to about 20 µm
outside the junction zone. The Raman peak width (Figure 4b) reaches a maximum value of
6 cm−1 at the junction and then gradually returns to the reference value of 2.9 cm−1. The
broadening of the Raman peak is a result of the spatial inhomogeneity of the stress along
the scan line direction. The broadening mechanism can be described as follows. Differently
strained locations within an analyzed volume result in a number of slightly shifted Raman
peaks. The spectrometer detects the superposition of these shifted Raman peaks, causing
the inhomogeneous broadening of the Raman line. Thus, the width of the stressed zone
around the interface can be estimated from the Raman data to be ~40 µm (Figure 4), which
is slightly wider than the gap between the groove walls (24 µm). It is noteworthy that
outside the strain region, the Raman spectra of the CVD epitaxial layer show a narrow
diamond peak at 1332.5 cm−1 with an FWHM of 2.9 cm−1 (Figure 5), which correspond to
the reference values of a high-quality natural type IIa diamond crystal.
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Figure 5. The Raman spectra of the CVD epitaxial diamond layer recorded outside the strain region.

Raman spectroscopy was also used to analyze the structure of the graphitized ma-
terial. The spectrum of the diamond surface collected after the laser writing presented
in Figure 6 (bottom gold dots) shows the typical features of laser-graphitized diamond,
commonly attributed to sp2-bonded nanocrystalline carbon [53,54]. The two main bands
are at 1360 cm−1 (D) and 1580 cm−1 (G). No signal of the diamond line at 1332 cm−1 was
detected, as expected, because the modified layer is thick enough and strongly absorbs both
the pumping radiation and the scattered signal from the underlying diamond substrate.
Using the typical absorption coefficient for graphite, the thickness of the graphitized layer
at the bottom of the groove was estimated to be more than 250 nm [55].
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Figure 6. Raman spectra of the graphitized track before (bottom, gold dots) and after (top, black dots)
CVD encapsulation. The spectra are shifted vertically for clarity. Experimental spectra were fitted
using D-, G-, and A-bands before diamond layer growth and the same bands with the addition of the
diamond line after growth. Green dash curves correspond to D-band, blue dash curves correspond
to G-band, and gold dash curves correspond to A-band. The red curves correspond to the resulting
fitting spectra.
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After CVD encapsulation, the Raman spectrum of the graphitized phase was recorded
by focusing the microscope objective on the dark structures as shown in Figure 3a. The
typical spectrum is illustrated by the black dots in Figure 6. The pump radiation has passed
through the epitaxial layer, and the significant part of the Raman signal comes from the
diamond. The diamond line at 1332 cm−1 was so strong that it masked the D-band centered
at 1360 cm−1. The appearance of a strong red wing belonging to the G-band is also clearly
seen. Such behavior usually results from the appearance of an additional band between D
and G, located at about 1500 cm−1. This band, called the “A-band” [56], is attributed to the
out-of-plane graphitic defects [57]. It is often found in laser-graphitized diamond [58], but
the typical A-band intensity is rather low, as in the spectra prior to diamond layer growth.
The reason for the remarkable enhancement of this band after CVD growth is unclear.

In general, we did not observe any valuable changes in the Raman spectrum after
encapsulation of the graphitized layer, which could affect the conductivity of the laser-
induced wires. The G peak remained stable; neither narrowing nor broadening, which
could indicate the ordering or disordering of the graphite structure, were found. The
alternative way to follow the amplitude ratio of D and G bands also could not be realized
because of the masking of the D band.

3.3. Electrical Conductivity of Encapsulated Graphitized Structures

As emphasized above, a key requirement for the developed technology is the high
conductivity of the graphitized phase retained during the encapsulation process. Although
Raman spectroscopy did not reveal structural changes in the sp2 phase and thus in the track
conductivity, direct electrical tests showed a remarkable difference. The current–voltage
curves measured between points #1 and #2 of the graphitized wire (see Figure 1) before
and after encapsulation are shown in Figure 7. A large improvement in conductivity was
observed after epitaxial diamond growth. The resistivity dropped from 6.6 to 4.6 mΩ cm.
The possible explanation for this effect is the modification of the nanocrystalline sp2 phase
at high temperature of the H2(96%)/CH4(4%) gas mixture in the plasma reactor. It should
be noted that the resistivity of the original track calculated from the presented data was
quite close to those previously reported after graphitization of the diamond surface by
nanosecond laser pulses [47].
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3.4. Electrical Strength between Encapsulated Graphitized Structures

First, the interelectrode voltage was measured immediately after laser structuring
of the diamond surface. A gradually increasing DC voltage was applied at a distance of
300 µm between pads #1 and #3 (Figure 1), monitoring the jump of the leakage currents.
The maximum value of the DC voltage withstood by the surface capacitance of the diamond
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was found to be 1.2 kV. At the given 300 µm inter-electrode spacing, the breakdown field
was calculated to be 40 kV/cm. Note, however, that the shortest distance between the
conductive wires can be much larger. The depth of each groove, which is 125 µm, should
be taken into account. Then, the total distance between the conductive structures is about
550 µm and the corresponding breakdown field reaches ~22 kV/cm. The range of 22 kV/cm
to 40 kV/cm covers the known value of 30 kV/cm for air, which in turn is not exact and
can vary depending on electrode geometry, electrode roughness, humidity, and other
environmental conditions [59].

After deposition of the 40 µm diamond layer, the breakdown voltage increased to
3.4 kV. In this case, however, the discharge took place over the surface of the diamond. The
sparks were observed between the two opened graphitized pads #2 and #3 separated by
1.8 mm (see Figure 1). The breakdown field over this surface distance was calculated to be
approximately 19 kV/cm, which is close to the surface measurements above. To estimate
the breakdown threshold for bulk diamond, the circuit diagram describing different paths
of electrical discharge should be considered (Figure 8).
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Figure 8. The circuit diagram describing different paths of electrical discharge between the pads #2
and #3. Rs1 and Rs2 correspond to the diamond surface resistance over the distance of 1.8 mm and
550 µm, respectively. Rb corresponds to the resistance over a 300 µm gap in the bulk diamond. Rel

corresponds to the resistance over a 40 µm thick grown epitaxial diamond layer.

There are three possible pathways of electrical breakdown between the pads #2 and
#3. The first two are obvious: the first path, 1.8 mm long, is through the diamond surface
and is labeled Rs1; the second path is through a 300 µm gap in the bulk diamond and is
labeled Rb. The third path is more puzzling; this path passes sequentially through a 550 µm
long diamond surface (Rs2) and a 40 µm thick grown epitaxial diamond layer (Rel). The
lower estimates of the electrical strength can be deduced from the absence of breakdown
through the second and third paths at the applied voltage of 3.4 kV. For the second path,
the breakdown threshold can be calculated as 3.4 kV/300 µm ≈ 110 kV/cm. In the third
case, the voltage of 3.4 kV is applied to the elements Rs2 and Rel connected in series in a
circuit. Since we did not observe a short circuit, the voltage across Rs2 was below 1.2 kV,
which was previously determined as the surface threshold. Thus, the voltage across Rel
was above 3.4 − 1.2 = 2.2 kV, and the lower estimate of the breakdown threshold for the
deposited diamond layer was at least 2.2 kV/40 µm = 550 kV/cm.
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4. Conclusions

In conclusion, this work reported the first attempt to encapsulate the graphitized
structures produced by a nanosecond laser on a single crystal diamond substrate using
chemical vapor deposition. The 40 µm epitaxial diamond layer was found to completely
cover both the original and the graphitized surface. Raman spectroscopy proved the quality
of the synthesized monocrystalline layer and indicated the stress in the joint area of about
40 µm width, which was slightly wider than the gap between the groove walls (24 µm). A
comparative study of graphitized wires before and after the encapsulation process showed
not only the preservation of the conductive properties of the laser-graphitized phase, but
surprisingly even some improvement in conductivity, which was tentatively attributed
to the high-temperature annealing of the nanographite phase. The lower estimate of the
electrical breakdown field measured between two encapsulated wires gave 550 kV/cm,
which is certainly less than the reference value for diamond (2 MV/cm), but encourages the
next steps towards increasing the electrical strength in HV diamond-based devices. Future
work should focus on the quality of the epitaxial layer, its compliance with the parameters
of laser-graphitized wires, and testing the emissive properties of a THz photoconductive
antenna with CVD-encapsulated electrodes.
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