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Abstract: Photoacoustic imaging (PAI) is an emerging biomedical imaging modality, offering nu-
merous advantages, including high resolution and high contrast. In its application to brain imaging,
however, the photoacoustic (PA) signals from brain tissue weaken considerably due to the distortion
effects of the skull. This attenuation reduces the resolution and contrast significantly. To address
this issue, here we describe a Log-MSR algorithm that combines the logarithmic depth logarithmic
enhancement (Log) algorithm and the multi-scale Retinex (MSR) algorithm. In this method, the Log
algorithm performs local weighted compensation based on signal attenuation for different depths,
while the MSR algorithm improves the contrast of the image. The proposed Log-MSR algorithm
was tested and validated using several phantom and in vivo experiments. The enhanced images
constructed by the Log-MSR algorithm were qualitatively and quantitatively analyzed in terms of
brain structure and function. Our results show that the Log-MSR algorithm may provide a significant
enhancement to photoacoustic imaging of deep brain tissue.

Keywords: photoacoustic imaging; brain; logarithmic enhancement algorithm; multi-scale Retinex
algorithm; image enhancement

1. Introduction

Photoacoustic imaging (PAI) is an innovative biomedical imaging technique that lever-
ages the photoacoustic effect to transform laser energy into acoustic energy through light
absorption and subsequent thermal expansion [1–3]. PAI offers the dual benefits of high op-
tical contrast and superior ultrasound penetration resolution [1,4,5]. Additionally, it allows
for the quantitative determination of hemodynamic parameters such as hemoglobin, oxy-
gen, and water concentration from multi-wavelength photoacoustic data. These parameters
are crucial for providing functional information in disease diagnosis [6,7].

It is generally believed that, for most PA imaging systems, image quality remains
relatively good at imaging depths of around 2–3 cm. Beyond this depth, image quality may
begin to deteriorate due to increased signal attenuation, scattering, and absorption [8–10].
The photoacoustic (PA) signal quickly diminishes due to laser interaction with biolog-
ical tissues, resulting in weak signals from deeper tissues and, consequently, reduced
resolution and contrast in PAI [11–13]. To address this, various algorithms have been
developed to enhance PAI. Liu et al. [14] introduced the photoacoustic imaging vascu-
lature enhancement filter (PAIVEF) algorithm to boost micro-vessel imaging in rat eyes,
enhancing signals while effectively suppressing noise and extending the vascular imaging
depth range. Matan Benyamin et al. [15,16] employed a sparse autoencoder enhancement
algorithm combined with contrast agents to improve PAI resolution. Gao et al. [17] utilized
an empirical mode decomposition (EMD) algorithm with a conditional mutual information
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de-noising algorithm to enhance imaging of mouse ear vascular. This algorithm improved
the signal-to-noise ratio (SNR) without compromising signal fidelity or imaging speed.
Lv et al. [18] merged a superpixel method with a digital mirror device (DMD) to modu-
late the phase and amplitude of incident light, enhancing SNR and minimizing clutter
wave interference in PAI. Manwar, R. et al. [19] introduced a deep learning-based method
employing a U-net neural network algorithm to match laser energy from 20 mJ/cm2 to
100 mJ/cm2, significantly enhancing PA image SNR and clarifying details in the lateral and
third ventricles. Additionally, Manwar, R. et al. [20] developed an adaptive filter denoising
method, effectively improving PA image SNR without relying on input or prior knowledge
of signal characteristics, thereby reconstructing artifact-free photoacoustic images.

The enhancement algorithms previously discussed primarily focused on improving
the SNR or reducing noise in overall PA signals. However, they do not address sig-
nal attenuation at increased depths. To tackle this, we employ the logarithmically local
enhancement-multi-scale Retinex (Log-MSR) algorithm. The logarithmically local enhance-
ment (Log) algorithm is designed to boost PA signals in deeper tissues by applying varying
weights according to depth. Furthermore, the multi-scale Retinex (MSR) algorithm is used
to refine PA images, enhancing their clarity and contrast. The efficacy of the Log-MSR algo-
rithm was tested through several phantom and in vivo experiments, with results analyzed
both qualitatively and quantitatively.

2. Methods

PAI encounters resolution and contrast issues at greater tissue depths due to laser
attenuation, which affects signal consistency for the same object at varying depths. This
hinders accurate quantitative reconstruction of PA images and highlights the need for
depth-specific enhancement in PAI. In this study, we utilize the following formula to
compensate for PA signals at different depths:

y(m, n) = A(m, n)× x(m, n) (1)

where m represents the horizontal distance, n is the depth, x(m, n) is the original image
value, A(m, n) is the weighting coefficient, and y(m, n) is the enhanced image value [21,22].
The selection of weighting coefficients, crucial for image processing, is typically linked to
PAI characteristics [21]. Finding a suitable weighting function is challenging, as mismatches
can result in inadequate PA signal compensation [23]. Various functions, including step,
linear, quadratic, exponential, exponential fractional power, and logarithmic functions,
were tested to optimize photoacoustic image enhancement. The logarithmic function
proved most effective and was therefore selected as the weighting function:

A(m, n) = a × log(n) + b (2)

where “a” adaptively adjusts the size of the logarithmic function based on the attenuation
curve. “b” is introduced to suppress the offset in the fitted function.

An attenuation curve for the PA signal in brain tissue is depicted in Figure 1a. This
curve forms the foundation for simulating PA signal attenuation in brain tissues, as il-
lustrated in Figure 1b. The corresponding weighting function, based on the findings in
Figure 1b, is shown in Figure 1c. These weightings are then applied to the original data to
produce the enhanced image.
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Figure 1. Attenuation and compensation curves for PA signal. (a) The attenuation with depth; (b) 
The simulated curve for attenuation with distance; (c) The compensating curve for weighting with 
distance. 

To enhance the contrast of PAI, the MSR algorithm is utilized for image processing. 
Based on color constancy theory, MSR is an advanced image enhancement algorithm [24]. 
Color constancy theory suggests that colors are perceived through light-matter interac-
tions rather than being inherent properties of objects, with object colors determined by 
their reflection of light across various wavelengths [25,26]. An object�s color remains con-
sistent despite variations in light [25,27]. Unlike traditional methods, Retinex maintains a 
balance between dynamic range compression, edge enhancement, and color constancy, 
allowing for versatile image enhancement [28]. By separating an image into reflection and 
illumination components, MSR adjusts illumination for comprehensive enhancement [29]. 
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tains imaging fidelity [29,32]. 

Figure 1. Attenuation and compensation curves for PA signal. (a) The attenuation with depth;
(b) The simulated curve for attenuation with distance; (c) The compensating curve for weighting
with distance.

To enhance the contrast of PAI, the MSR algorithm is utilized for image processing.
Based on color constancy theory, MSR is an advanced image enhancement algorithm [24].
Color constancy theory suggests that colors are perceived through light-matter interactions
rather than being inherent properties of objects, with object colors determined by their
reflection of light across various wavelengths [25,26]. An object’s color remains consistent
despite variations in light [25,27]. Unlike traditional methods, Retinex maintains a balance
between dynamic range compression, edge enhancement, and color constancy, allowing for
versatile image enhancement [28]. By separating an image into reflection and illumination
components, MSR adjusts illumination for comprehensive enhancement [29]. The Retinex
theory is defined as follows [24,30]:

I(x, y) = L(x, y)× R(x, y) (3)

where I(x, y) is the value of the original image, L(x, y) is the illumination of the background,
and R(x, y) is the reflection of the object [30,31]. The MSR algorithm will help to improve
the image quality by effectively removing the illumination component [32].

The MSR algorithm can be described as [30]:

R(x, y) =
n

∑
k=1

Wk{log[I(x, y)]− log[I(x, y)*Fk(x, y)]} (4)

where n is the total number of Gaussian functions, Wk is the weight value for each image,
* is the convolution operator, and Fk(x, y) is the center/wrapping function [31]. The Wk
satisfies the following conditions [29,33]:

n

∑
k=1

Wk = 1 (5)

where n is selected as 3 and evenly distribute the weights among each image, i.e., W1 = W2
= W3 = 1/3. To achieve the center/wrapping function, we employ the Gaussian filtering
function [29,30]:

F(x, y) = Ke−(x2+y2)/σ2
(6)

where σ is the scale parameter. Increasing scale results in a richer coordination of colors
within the image [32,33]. Conversely, decreasing scale enhances the clarity of textures in
the image [32,33]. In this study, σ is set at 15, 80, and 200, respectively. Meanwhile, the
normalization constant K is determined to meet the following Equation (7) [31]:

x
F(x, y)dxdy = 1 (7)

MSR, by using multiple scales, is a robust image processing technique. Compared
to the single-scale Retinex algorithm, MSR not only preserves image textures but also
maintains imaging fidelity [29,32].
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3. Materials
3.1. Phantoms and Animals

In this study, we conducted both phantom and in vivo experiments to assess the
Log-MSR algorithm. For the phantom experiment, objects consisted of a mixture of 2 g
agar powder, 98 mL water, and 5 µL India ink. This mixture was injected into cylindrical
molds measuring 3 mm in diameter and 3 cm in height and then cooled. The background
model was created using 8 g of agar powder, 8 mL of lipid emulsion (C6–C24), and 384 mL
of water, formed into a rectangular prism of 10 cm length, 7 cm width, and 3 cm height [34].
The objects were embedded into the background phantom at varying depths of 1 cm, 3 cm,
and 5 cm from the boundary.

In the animal experiments, SPF-grade Sprague Dawley (SD) rats, averaging 7 weeks
old and weighing approximately 220 g, were sourced from Dashuo Biotechnology Corpora-
tion (Chongqing, China).

Prior to hemorrhage experiments, the rats’ heads were depilated. The rats were
anesthetized with 2% sodium pentobarbital via intraperitoneal injection at a dosage of
2 mL/kg and positioned prone on a rat board, heads aligned forward. The head was
secured in a stereotaxic instrument, adjusted to align the bregma and lambda horizontally.
After disinfection, a 2 cm incision along the skull’s midline exposed the skull by peeling
off the periosteum, with the bregma serving as a reference point. A mark was placed
2.0 mm to the right and 1.5 mm posterior to the bregma, where a hole was drilled until
the dura mater was visible. A microinjection syringe, filled with type VII collagenase and
attached to the stereotaxic instrument, was carefully inserted vertically into the hole to a
depth of 5 mm, near the caudate nucleus. Collagenase (0.5 µL) was injected at a rate of
200 nL/min over 5 min. After the injection, the needle remained in place for 10 min before
slowly withdrawing. The drilled hole was sealed with sterile bone wax to prevent infection,
followed by disinfection and suturing of the incision.

3.2. Photoacoustic Imaging System

In this study, we employed a real-time, fast PAI system for both phantom and animal
experiments. Figure 2 presents a schematic diagram of the system. The PAI system’s
excitation source is a high-frequency pulsed laser (SpitLight EVO S OPO, Innolas, Justus-
von-Liebig Ring 8, 82152 Krailling, Germany, pulse width: 5–10 ns, repetition frequency:
100 Hz, adjustable wavelength range: 680–980 nm). The laser beam, channeled through an
optical fiber with a 1 mm × 60 mm light outlet and an energy density of approximately
2 mJ/cm2, irradiates the target object. A semi-circular transducer with 256 arrays (ULSO
Electronics Technology Co., Ltd., Xingtai city, Hebei, China; detector curvature radius:
80 mm; center frequency: 3.2 MHz) is mounted on a gimbaled robotic arm positioned on a
three-dimensional translation stage. The fiber’s outlet is positioned above the transducer,
which is encased in water-filled translucent plastic sheeting (TPU) with transabdominal
ultrasound properties. PA signals are amplified and filtered by the data acquisition (DAQ)
system (sampling rate: 40 MSPS, input bandwidth: 50 KHz~20 MHz, adjustable gain:
54~80 dB, sampling points: 512~4096 p/frame), triggered by laser pulse synchronization.
Wavelengths of 760 nm, 840 nm, and 930 nm were used in vivo, with a wavelength switch-
ing time under 10 ms and incident energy density maintained below 10 mJ/cm2. The delay
and sum (DAS) algorithm reconstructed the PA images, achieving a spatial resolution of
about 100 µm and a temporal resolution of about 0.01 s. All calculations for evaluating
the Log-MSR algorithm’s performance and accuracy were performed on a personal com-
puter (PC, DELL G15 5520, Round Rock, TX, USA) equipped with an Intel I7-12700H CPU,
2.7 GHz, and 16 GB of RAM.
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Figure 2. Real-time, fast PAI system.

4. Results and Discussion
4.1. Phantom Experiments

The phantom experiments were conducted to validate the Log-MSR algorithm, as
depicted in Figure 3. Figure 3a–e displays, respectively, the cross-section photograph of the
phantom, the original PA image, the logarithmic algorithm-enhanced PA image, the MSR
algorithm-enhanced PA image, and the Log-MSR algorithm-enhanced PA image.
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Figure 3. Photograph and reconstructed PA images of three objects embedded in a background
phantom. (a) Cross-section photograph of the phantom; (b) original PA image; (c) logarithmic
algorithm-enhanced PA image; (d) MSR algorithm-enhanced PA image; (e) Log-MSR algorithm-
enhanced PA image.

In Figure 3b, the original image displayed reduced contrast at increased depth. How-
ever, in Figure 3c, the logarithmic algorithm-enhanced image exhibited a marked increase
in contrast at depth. Additionally, Figure 3d shows the MSR algorithm-enhanced image
with clearer boundaries. Figure 3e presents the image enhanced by the Log-MSR algorithm,
which demonstrates a more substantial enhancement compared to images enhanced by a
single algorithm. The Log-MSR algorithm effectively compensated for the PA signals and
significantly improved imaging contrast and sharpness.

The diameters of three objects, positioned from top to bottom in Figure 3b,e, were
measured and are presented in Figure 4. Figure 4b and 4d show enlarged views of the three
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objects from Figure 4a and 4c, respectively. Figure 4e,f depicts the signal profiles of the
images in Figure 4a,c, marked by red lines.
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Figure 4. (a) The original PA image of three objects; (b) the enlarged PA images of objects at 1 cm,
3 cm, and 5 cm in (a); (c) the enhanced PA image of objects constructed by the Log-MSR algorithm;
(d) the enlarged PA images of objects at 1 cm, 3 cm, and 5 cm in (c); (e) the line profile of the original
PA image in (a), the profile is pointed out by a red line; (f) the line profile of the original PA image
in (c), the profile is pointed out by a red line.

The diameters of each object in Figure 4b,d are shown in Table 1. At depths of 1.0 cm,
3.0 cm, and 5.0 cm, the diameter errors between the actual object and the original image
were 29.33%, 34.67%, and 24.33%, respectively. At the same depths, the errors between
the actual object and the Log-MSR algorithm-enhanced image were 11.00%, 30.00%, and
20.67%, respectively.

Table 1. The measured diameter of objects at various depths before and after enhancement.

Object’s Location 1 cm 3 cm 5 cm

Original algorithm 3.88 4.04 3.73
Error 1 29.33% 34.67% 24.33%

Log algorithm 3.88 4.04 3.67
Error 2 29.33% 34.67% 22.33%

MSR algorithm 3.46 3.95 3.56
Error 3 15.33% 31.67% 18.67%

Log-MSR algorithm 3.33 3.90 3.62
Error 2 11.00% 30.00% 20.67%

Actual diameter of object: 3 mm.

In Figure 4a,c, line profiles were derived by extracting the PA signal along the red
line, with results shown in Figure 4e,f. Table 2 displays the PA signal values for each object
in these figures. Compared to the object at 1.0 cm depth in the original image, the values
decreased by 14.29% and 15.81% at 3.0 cm and 5.0 cm depths, respectively. In contrast, for
the Log-MSR algorithm-enhanced image, the values decreased only by 3.80% and 8.01% at
the same depths. The signal values at different depths in the Log-MSR enhanced image
were nearly identical, demonstrating the algorithm’s effective compensation of PA signals
in deep tissue.
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Table 2. The signal intensity of the objects at depths of 1 cm, 3 cm, and 5 cm.

Original Algorithm Log-MSR Algorithm

Object’s location 1 cm 3 cm 5 cm 1 cm 3 cm 5 cm
Average amplitude 0.6156 0.5276 0.55183 0.6916 0.6653 0.6362
Attenuation ratio - 14.29% 15.81% - 3.80% 8.01%

Unit of signal amplitude: a.u.

4.2. Animals

The results from animal experiments are depicted in Figure 5.
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Figure 5. Diagram and PA images of the rat brain. (a) Diagram of cross-sectional rat brain; (b) the original
PA image; (c) the enhanced image constructed by the logarithmic algorithm; (d) the enhanced image
constructed by the MSR algorithm; (e) the enhanced image constructed by the Log-MSR algorithm.

In Figure 5b, the contrast of the original images diminished with increasing depth.
The image enhanced by the Log-MSR algorithm (Figure 5e) exhibited significantly stronger
enhancement in both contrast and depth compared to those enhanced by a single algorithm
(Figure 5c,d). The Log-MSR algorithm not only effectively compensated for the PA signals
but also dramatically improved imaging contrast and clarity.

The contrast-to-noise ratio (CNR) of the four images was calculated to quantify the en-
hanced imaging quality. The results are shown in Table 3. CNR indicates the reconstruction
effect of the ROI in the image. The calculation formula is as follows [35,36]:

CNR =
µROI − µBack(

σ2
ROI

AROI
ATotal

− σ2
Back

ABack
ATotal

)1/2 (8)

where µROI is the expectation of the object, µBack is the expectation for the background, σ2
ROI

is the variance of the object, σ2
Back is the variance of the background, AROI is the area of the

object, Aback is the area of the background, and ATotal is the area of the total image [35,36].

Table 3. PA image contrast of rat brain.

Original
Algorithm

Log
Algorithm

MSR
Algorithm

Log-MSR
Algorithm

CNR 0.1649 0.1337 0.4882 0.3981
Unit of contrast: a.u.

Table 3 reveals that the MSR algorithm significantly improved image contrast. How-
ever, it failed to compensate for PA signals in deep brain tissue. The contrast in deep
brain tissue was markedly lower compared to shallow brain tissue in the MSR-enhanced
image (Figure 5d). Compared to the original image, the Log algorithm reduces the contrast
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of the image by 0.81 times, while the MSR algorithm increases the contrast of the image
by 2.96 times. The Log-MSR algorithm, on the other hand, enhances the contrast of the
image by 2.41 times. Additionally, the PA signals in deep brain tissues (Figure 5e) were
enhanced following logarithmic treatment. The Log-MSR algorithm combined the benefits
of logarithmic local compensation and MSR algorithms, enhancing image contrast and
compensating for PA signal attenuation with depth.

To evaluate the Log-MSR algorithm’s performance in pathological imaging, it was
applied to cerebral hemorrhage experiments. The algorithm’s effectiveness was assessed by
examining changes in morphological structures and hemodynamics within the hemorrhage
area before and after enhancement.

In the hemorrhage experiments with two groups of rats, the results are shown in
Figure 6. The original images (a,d) displayed poor contrast and unclear boundaries in
the hemorrhagic areas. The Log-MSR algorithm significantly improved the contrast of
the enhanced images, with the hemorrhagic areas distinct from the surrounding normal
brain tissue. The areas of brain hemorrhage were quantified in the PA images before and
after enhancement and compared with the corresponding areas in actual brain sections, as
detailed in Table 4.
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Figure 6. PA original image (a) and the enhanced image constructed by the Log-MSR algorithm
(b) and photograph of the actual brain section (c) of rat #1; PA original image (d) and the enhanced
imaging constructed by the Log-MSR algorithm (e) and photograph of the actual brain section (f) of
rat #2. (The hematoma areas are shown in the blue circles).

Table 4. Area of cerebral hemorrhage.

NO.1 Rat Error 1 NO.2 Rat Error 2

Photograph of the actual
brain section 3.0128 ± 0.1962 - 7.2716 ± 0.3154 -

Original image 2.5536 ± 0.2482 15.24% 6.6079 ± 0.3946 9.13%
Enhanced image

constructed by the
Log-MSR

2.7692 ± 0.1062 8.09% 7.0923 ± 0.3456 2.47%

Units of area: mm2.

The hemorrhagic area was approximated as an ellipse, measured by the major axis
‘a’ and minor axis ‘b’. Values of ‘a’ and ‘b’ were determined using the half-width-at-full-
maximum (HWFM) of the PA signal along the length and width of the hemorrhage area,
relative to the global average. This method parallels the common approach for calculating
hematoma area in CT imaging [37]. Hence, the hemorrhage area in our study was calculated
as follows:

Area(ICH) =
π

4
ab (9)

Table 4 summarizes the errors in estimating the cerebral hemorrhage area. The dis-
crepancies between the original image and the actual brain slice were 15.24% and 9.13%,
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respectively. In contrast, the errors between the Log-MSR algorithm-enhanced image
and the actual slice were significantly lower, at 8.09% and 2.47%, respectively. These
findings indicate that the Log-MSR algorithm substantially enhanced the contrast of PAI,
demonstrating its potential to improve both the quality and diagnostic accuracy of PAI.

Each substance in biological tissue possesses a unique optical absorption coefficient.
PAI leverages this principle to measure the optical absorption of endogenous contrast
agents within brain tissue [1]. In this study, a multi-wavelength algorithm employing
wavelengths of 760 nm, 840 nm, and 930 nm was used to assess brain tissue hemodynamics,
including oxygen concentration (sO2), oxygenated hemoglobin concentration (HbO2),
deoxyhemoglobin concentration (HbR), and water concentration (H2O) [4,6]. As depicted
in Figure 7, hemodynamic images were acquired from both the normal group (shown in
Figure 7a–d) and the cerebral hemorrhage group (shown in Figure 7i–l) and subsequently
enhanced to produce images for the enhanced control group (Figure 7e–h) and the cerebral
hemorrhage group (Figure 7m–p).
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Figure 7. In vivo PA images of rat brain hemodynamics for both the control and cerebral hemorrhage
groups. (a–d): PA images for the control group; (e–h): PA images for the enhanced control group;
(i–l): PA images for the cerebral hemorrhage group; (m–p): PA images for the enhanced cerebral
hemorrhage group. (The hematoma area is shown in the black circle).

The accumulation of blood and subsequent hematoma formation in the affected area
led to increased optical absorption of chromophores. The results in Figure 7 reveal enhanced
contrast in HbO2, HbR, and H2O in the hemorrhage area. Figure 7i,m shows decreased sO2
contrast within the hematoma lesions post-intracerebral hemorrhage (ICH) surgery. In the
hematoma region, there was an increase in HbR and a decrease in HbO2, culminating in a
significant decrease in sO2 [38].

The black oval in Figure 7 shows the location of the cerebral hemorrhage. From the
results, a significant decrease in sO2 of the hemorrhagic area in the cerebral hemorrhage
group was observed, while HbO2, HbR, and H2O had a significant increase. Following
enhancement by the Log-MSR algorithm, significant changes in HbR were observed in
the enhanced cerebral hemorrhage group compared to the normal group, and there were
also slight differences in other parameters. The average value of the hemorrhagic areas
was calculated for the normal group, intracerebral hemorrhage group, enhanced normal
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group, and enhanced intracerebral hemorrhage group, respectively. The results are shown
in Figure 8.
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Figure 8. Histogram of hemodynamics in the cerebral hemorrhage area for the control group, the cere-
bral hemorrhage group, the enhanced control group, and the enhanced cerebral hemorrhage group.

Figure 8 illustrates that sO2 levels in the cerebral hemorrhage group were lower than
those in the normal group, while HbO2, HbR, and H2O levels were higher. These findings
align with previous pathological analyses. After enhancement by the Log-MSR algorithm,
the changes in sO2 and H2O in the enhanced group were more pronounced, whereas
changes in HbO2 and HbR were less marked compared to the original image.

5. Conclusions

In this study, we introduced the Log-MSR algorithm and applied it to enhance PAI
performance for deep tissue imaging. Our phantom and animal experiments successfully
demonstrated the algorithm’s feasibility and effectiveness in enhancing image quality,
specifically in terms of clarity and contrast improvement. Additionally, PAI signal atten-
uation remained below 10% with increasing depth. The algorithm’s efficacy was further
evidenced in a cerebral hemorrhage experimental study in rats, reducing the error in the
hemorrhagic area measurement in the Log-MSR-enhanced image to 2.47%. Overall, the Log-
MSR algorithm holds promise for advancing the application of PAI in deep tissue imaging.
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