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Abstract: Noise is inevitable in single-pixel imaging (SPI). Although post-processing algorithms
can significantly improve image quality, they introduce additional processing time. To address this
issue, we propose an online denoising single-pixel imaging scheme at the sampling stage, which
uses the filter to optimize the illumination modulation patterns. The image is retrieved through
the second-order correlation between the modulation patterns and the intensities detected by the
single-pixel detector. Through simulations and experiments, we analyzed the impact of sampling
rate, noise intensity, and filter template on the reconstructed images of both binary and grayscale
objects. The results demonstrate that the denoising effect is comparable to the imaging-first followed
by post-filtering procedures, but the post-processing time is reduced for the same image quality.
This method offers a new way for rapid denoising in SPI, and it should be particularly advanta-
geous in applications where time-saving is of paramount importance, such as in image-free large
target classification.

Keywords: single-pixel imaging; pattern filtering; online denoising

1. Introduction

Single-pixel imaging (SPI) utilizes a spatial light modulator to generate a series of pat-
terns to modulate the light field on an object, and the synchronized total intensities reflected
or transmitted from the object are collected by a single-pixel detector. Through computing
the second-order correlation, the two-dimensional or multi-dimensional information about
the object can be recovered [1–3]. Compared with multi-pixel sensors, single-pixel detectors
have the characteristics of low cost and superior durability. In recent years, SPI has been
applied in various fields, such as remote sensing [4,5], hyperspectral imaging [6,7], X-ray
imaging [8], terahertz imaging [9], and anti-interference imaging [10,11]. The emergence of
compressed sensing [12], deep learning [13–15], and the improvement of computing power
also accelerated the development of SPI. However, the applications mentioned above are
subject to noise arising from source brightness fluctuations, environmental noise, and the
detector’s electronic readout noise, resulting in decreased imaging quality. Thus, denoising
has always been a challenge in SPI.

Researchers have proposed various schemes to improve the noisy image quality [16].
For example, differential ghost imaging [17,18] and normalized ghost imaging [19] are used
to replace the traditional second-order correlation, and orthogonal modulation patterns
have been proposed instead of random patterns to suppress the common mode noise.
In addition, some post-processing algorithms have been proposed to improve imaging
quality, such as iterative ghost imaging [20–22], compressed sensing [23], principal com-
ponent analysis [24,25], convolutional neural networks [26,27], truncated singular value
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decomposition [28], and so on. There are also various hybrid denoising methods. In
Reference [29], a two-step method combined with Tikhonov regularization and the U-Net
network was designed to decrease the influence of noise. These post-processing algorithms
can significantly suppress noise and improve imaging quality. However, denoising the
sampled data directly still needs to be studied. The denoising of the sampling data will
save post-processing time and give an advantage on image-free target classification or
counting tasks.

This paper proposes a computationally efficient online denoising single-pixel imaging
(ODSPI) scheme. It combines filtering with illumination patterns to achieve denoising
during the sampling process. First, we demonstrated the feasibility of ODSPI theoretically.
Then, we analyzed the effect of sampling rate, noise intensity, and filter template on the
reconstructed image quality. The advantages of our approach in terms of time-saving
were also discussed, and statistical analyses were conducted to verify the significance and
reliability of ODSPI. Finally, the applicability of ODSPI was validated experimentally.

2. Theory

Single-pixel imaging can obtain an object’s two-dimensional or multi-dimensional
information from the orthogonal illumination patterns and the correlated intensity mea-
surements recorded by a single-pixel detector. The measurement Sk is written as:

Sk =
n

∑
i

n

∑
j

φk
i,jxi,j, (1)

where φk ∈ Rn×n denotes the k-th illumination pattern, and X ∈ Rn×n is the desired
object scene. φk

i,j and xi,j represent the row i and column j values of the matrices φk and x,
respectively. The object can be reconstructed from:

O =
1
M

M

∑
k

Skφ
k, (2)

where O denotes the reconstructed image, and M is the sampling number. In an experi-
ment, some factors will introduce noise to the reconstructed image, such as the intensity
fluctuation of the light source, the dark count of the detector, and the instability of the
spatial light modulator. The object with noise is represented by Xnoise = X + δ, where
δ represents the noise item. The noise type and level impact the choice of filter type and
parameters. To improve the image quality without increasing the computational complexity
of SPI, we used filtered illumination patterns to modulate the object. Assuming that F is the
filtering template, the filtered illumination pattern can be expressed as φ′ = φ⊗ F, where
the symbol ⊗ represents convolution. It should be noted that the illumination patterns can
be either random or orthogonal. Through the filtered patterns, we can directly obtain the
filtered reconstructed image:

O =
M

∑
k

〈
φk′xnoise

〉
φk, (3)

where ⟨·⟩ represents the inner product. According to the convolutional reciprocity theorem,
Equation (3) also can be written as:

O =
M

∑
k

〈
φkxnoise ⊗ F

〉
φk. (4)

By comparing Equations (3) and (4), we can see that illumination pattern filtering and
image filtering are equivalent in SPI. Thus, we were able to complete the image filtering
during the sampling process. Based on this theory, we analyzed the effects of different
filter templates, sampling rates, and noise intensities on the reconstructed image quality.
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Currently, the most commonly used filter templates are the mean filter, Gaussian low-pass
filter, and Butterworth low-pass filter [30]. The formula for the mean filter is given by:

xi,j =
1

m2

m

∑
i=1

m

∑
j=1

xi,j, (5)

where the window size of the mean filter is m × m pixels. xi,j represents the pixel value
in row i and column j of the window, and xi,j represents the average of all pixels in
the window.

The kernel function of the Gaussian low-pass filter is expressed as follows:

G(x, y) = e
−D2(x,y)

2D0
2 , (6)

where D0 is the cutoff frequency and D(x, y) is the distance from the pixel to the center
in the window, and the window size of the Gaussian low-pass filter is the same as the
mean filter.

The filter function of the Butterworth low-pass filter is

B(u, v) =
1

1 + (D(u, v)/D0)
2β

, (7)

where β is the order of the filter, D(u, v) denotes the distance from the pixel to the fre-
quency’s origin, and D0 represents the cutoff frequency of the filter.

In this paper, the peak signal-to-noise ratio (PSNR) and the root mean square error
(RMSE) are applied to evaluate the quality of the reconstructed image, and are
expressed as:

PSNR = 10 log Q2

1
N

n
∑

i=1,j=1
(O(i,j)−X(i,j))2

RMSE =

√
n
∑

i=1,j=1
(O(i,j)−X(i,j))2

N

, (8)

where N is the total pixel number of the object, O(i, j) and X(i, j) are the reconstructed and
original images, respectively, and Q represents the maximum pixel value of the original
image. When an 8-bit binary number represents the pixel value, the maximum Q is
generally 255.

3. Numerical Simulation and Experiment Results
3.1. The Impacts of Sampling Rate, Noise Intensity, and Filtering Template on the Performance
of ODSPI

To validate the performance of ODSPI, we compared the PSNR of the reconstructed
objects of a binary object and a grayscale object under different sampling rates, noise
intensities, and filtering templates. The original binary and grayscale objects are shown in
Figures 1a and 2a, respectively, with a resolution of 64 × 64 pixels. The filtering templates
are the mean, Gaussian low-pass, and Butterworth low-pass filters. Assuming the light
intensity is stable, the experimental noise generally follows a Gaussian distribution, so
Gaussian noise was used in the simulation model.

Differential ghost imaging (DGI) is a fundamental reconstruction algorithm for SPI,
and it is time-saving, so we chose it as the reconstruction algorithm in ODSPI. Additionally,
we utilized the cake-cut sorted Hadamard basis [31] as the original illumination matrix.
However, there is much freedom in choosing the original illumination patterns and re-
construction algorithm, and it will impact the performance of ODSPI. Reference [32] has
demonstrated that the denoising efficacy of 3 × 3 pixels and 5 × 5 pixels filter templates
are comparable, so we used 3 × 3 pixels as the window size for the mean and Gaussian
low-pass filter templates. The cutoff frequency of the Gaussian low-pass filter was set to
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0.8. In contrast, the Butterworth low-pass filter operates in the frequency domain, so the
filter’s window size was set to 64 × 64 pixels and the cutoff frequency to 40.
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(b), (c), and (d) represent the PSNR of the reconstructed images with noise variances of 0.1, 0.2, and
0.3, respectively.
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Figure 2. PSNR of “Peppers” reconstructed at different sampling rates. (a) is the original object,
(b), (c), and (d) represent the PSNR of the reconstructed images with noise variances of 0.1, 0.2, and
0.3, respectively.

The PSNR of binary and grayscale images under different sampling rates, noise
variances, and filtering templates are shown in Figures 1–4, where the red box indicates
that the original Hadamard basis was used for the illumination patterns. At the same time,
the black upper triangle, purple dots, and blue diamond represent the illumination patterns
obtained by convolution of the Hadamard basis with the mean, Gaussian low-pass, and
Butterworth low-pass filters, respectively.
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Figure 4. PSNR of “Peppers” was reconstructed at different noise variances. (a), (b), (c), and (d)
represent the PSNR of the reconstructed images with sampling rates of 0.2, 0.5, 0.7, and 1, respectively.

Figures 1 and 2 show the PSNR of binary and grayscale images under various sam-
pling rates, with subfigures (b), (c), and (d) corresponding to noise variance of 0.1, 0.2,
and 0.3, respectively. In Figure 1, we can see that the PSNRs obtained with ODSPI are
consistently higher than that with the traditional SPI. The Butterworth low-pass filtered
pattern demonstrates the best performance in suppressing noise, followed by the Gaussian
low-pass and mean filters. In Figure 1b, as the sampling rate increases, the PSNR of the
reconstructed objects shows an initial increase followed by stabilization. In Figure 1c,d,
except for the Butterworth low-pass filtered pattern, the PSNR of the reconstructed objects
for other filter patterns exhibits an initial increase followed by a decrease as the sampling
rate increases. These phenomena are further validated in grayscale images, except for
cases where noise variance is very low. In Figure 2b we can see that the PSNR obtained
with the Gaussian low-pass filtered pattern is much higher than that of the Butterworth
low-pass filtered pattern and Hadamard basis, while the PSNR of the mean filtered pattern
is even worse than that of the Hadamard basis. We attribute these differences to the fixed
parameter settings of the filters and the more high-frequency information in the grayscale
images. Simulation results demonstrate that our scheme can effectively suppress noise
for binary and grayscale images, except for the latter with low noise variance. Further-
more, as the noise intensity increases, the optimal sampling rate of ODSPI also varies
between 0.2–0.6.

Figures 3 and 4 show the PSNR of binary and grayscale objects under various noise
variances, with subfigures (a), (b), (c), and (d) corresponding to sampling rates of 0.2, 0.5,
0.7, and 1, respectively. Figure 3 shows that the PSNR declines with the increase of noise
variance for all illumination patterns. However, our scheme consistently achieved a higher
PSNR for the reconstructed images compared to traditional SPI. The Butterworth low-pass
filter gave the best performance as the noise variance increased, followed by the Gaussian
low-pass and the mean-filtered pattern. When our scheme was applied to grayscale objects,
it was not so advantageous under low noise intensity, but as the noise increased, noise
suppression became more and more apparent, as shown in Figure 4. Overall, our scheme
consistently outperformed traditional SPI in noise suppression for binary and grayscale
images, except for the latter with low noise variance.

To further illustrate the performance of ODSPI, we present the reconstructed images
of the “Circles” and “Peppers” with different sampling rates and illumination patterns
for a noise variance of 0.1 in Figures 5 and 6. The first to third rows represent the images
reconstructed with 0.2, 0.5, and 0.7 sampling rates, respectively. The first to fourth columns
show the images reconstructed with the original Hadamard basis, the mean filtered pattern,
Gaussian low-pass filtered pattern, and Butterworth low-pass filtered pattern, respectively.
The PSNRs are displayed below each reconstructed image. It can be observed that the
image quality is consistent with the simulation results.
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3.2. Time Advantage and Performance Analysis

When denoising the noisy image through filtering template, convolution is required.
The number of convolutions mainly depends on the resolution of the image and can be
calculated as follows:

Nc = ((S − K + 2 ∗ P)/St + 1)ˆ2 (9)
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where Nc is the number of convolutions, S the image size, K the kernel size of the filter,
P the padding size of the image, and St the stride size of the filter. Assuming a kernel
size of 3, padding size of 0, and stride size of 1, an image with 256 × 256 pixels would
require 64,516 convolution times, while an image with 512 × 512 pixels would require
260,100 convolutions. As the image’s resolution increases, the computation time required
for denoising also increases. However, the proposed scheme in this study completed the
denoising in the sampling stage, which saved the convolution time for the reconstructed
images while maintaining the same quality as the image retrieved by post-processing.

To further validate the significance and reliability of ODSPI, we selected 40 binary
images from the MNIST [33] and 40 grayscale images from STL-10 [34], then calculated
the error bar of PSNR with traditional PSI and ODSPI under different sampling rates and
noise variances. The images were resized to 64 × 64 pixels. The results are shown in
Figures 7 and 8, where the horizontal and vertical axes represent the sampling rate and
PSNR. The subfigures, from left to right, are the reconstruction results for 0.1, 0.2, and 0.3
noise variances, respectively. Five sampling rates were chosen, namely 0.2, 0.4, 0.6, 0.8, and
1. The reconstruction algorithm was DGI, and the cake-cut sorted Hadamard basis served
as the original illumination patterns.
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Photonics 2024, 11, x FOR PEER REVIEW 7 of 12 
 

 

3.2. Time Advantage and Performance Analysis 

When denoising the noisy image through filtering template, convolution is required. 

The number of convolutions mainly depends on the resolution of the image and can be 

calculated as follows: 

( )( )2* / 1 ^ 2Nc S K P St= − + +  (9) 

where Nc  is the number of convolutions, S  the image size, K  the kernel size of the fil-

ter, P  the padding size of the image, and St  the stride size of the filter. Assuming a ker-

nel size of 3, padding size of 0, and stride size of 1, an image with 256   256 pixels would 

require 64,516 convolution times, while an image with 512   512 pixels would require 

260,100 convolutions. As the image’s resolution increases, the computation time required 

for denoising also increases. However, the proposed scheme in this study completed the 

denoising in the sampling stage, which saved the convolution time for the reconstructed 

images while maintaining the same quality as the image retrieved by post-processing. 

To further validate the significance and reliability of ODSPI, we selected 40 binary 

images from the MNIST [33] and 40 grayscale images from STL-10 [34], then calculated 

the error bar of PSNR with traditional PSI and ODSPI under different sampling rates and 

noise variances. The images were resized to 64 × 64 pixels. The results are shown in Figures 

7 and 8, where the horizontal and vertical axes represent the sampling rate and PSNR. The 

subfigures, from left to right, are the reconstruction results for 0.1, 0.2, and 0.3 noise vari-

ances, respectively. Five sampling rates were chosen, namely 0.2, 0.4, 0.6, 0.8, and 1. The 

reconstruction algorithm was DGI, and the cake-cut sorted Hadamard basis served as the 

original illumination patterns. 

 

Figure 7. The PSNRs obtained with 40 binary objects from the MNIST dataset, where (a), (b), and 

(c) correspond to the PSNRs under noise variances of 0.1, 0.2, and 0.3, respectively. 

 

Figure 8. The PSNRs obtained with 40 grayscale objects from the STL-10 dataset, where (a), (b), and 

(c) correspond to the PSNRs under noise variances of 0.1, 0.2, and 0.3, respectively. 

Figure 7 shows the PSNRs obtained with binary images. We can see that the PSNRs 

of the filtered patterns are superior to those using the original pattern. The Butterworth 

low-pass filter achieved the best performance, followed by the Gaussian low-pass and 

mean filters. Figure 8 shows the PSNRs obtained with grayscale images. When the noise 

intensity was 0.1, as shown in Figure 8a, the Gaussian low-pass filter performed best; the 

mean filter performed poorly, while the Butterworth low-pass filtered pattern was nearly 

the same as that obtained with Hadamard basis. For noise variances of 0.2 and 0.3, as 

displayed in Figure 8b,c, the qualities of the reconstructed images with filtered patterns 

Figure 8. The PSNRs obtained with 40 grayscale objects from the STL-10 dataset, where (a), (b), and
(c) correspond to the PSNRs under noise variances of 0.1, 0.2, and 0.3, respectively.

Figure 7 shows the PSNRs obtained with binary images. We can see that the PSNRs
of the filtered patterns are superior to those using the original pattern. The Butterworth
low-pass filter achieved the best performance, followed by the Gaussian low-pass and
mean filters. Figure 8 shows the PSNRs obtained with grayscale images. When the noise
intensity was 0.1, as shown in Figure 8a, the Gaussian low-pass filter performed best; the
mean filter performed poorly, while the Butterworth low-pass filtered pattern was nearly
the same as that obtained with Hadamard basis. For noise variances of 0.2 and 0.3, as
displayed in Figure 8b,c, the qualities of the reconstructed images with filtered patterns
were superior to traditional SPI, and the Butterworth low-pass filter still achieved the
best performance, followed by the Gaussian low-pass and mean filters. The standard
deviation range of PSNRs for binary images was 0.56–1.9 dB, and for grayscale images
was 1.36–2.14 dB. These results suggest that the performance of ODSPI on binary images is
more stable than on grayscale images. Furthermore, our scheme exhibited outperformance
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on different binary and grayscale images, except for the latter with low noise variance. It
demonstrated the significance and applicability of ODSPI.

3.3. Experimental Results

The experimental setup for ODSPI is depicted in Figure 9. It comprises a light source,
target object, digital micro-mirror device (DMD), single-pixel detector, data acquisition
board, scattering plate, and lenses. We employed a light-emitting diode (LED) with an
adjustable voltage range of 3–12 V for illumination. In the experiment, we set the voltage
at 12 V. The target object was an 8 cm × 10 cm stencil plate etched with the digit “9”,
carved out and placed in front of the LED. Lens L1 focused the transmitted light from the
object onto the DMD (ViALUX, Karlsruhe, Germany, ViALUX-V7001, 1080 × 768 pixels),
which was run at a refresh rate of 10 kHz. Each modulation pixel consisted of 6 × 6 binned
micro-mirror pixels. Subsequently, converging lenses L1 and L2 collected the light reflected
from the DMD and directed it toward the single-pixel detector (Thorlabs, Newton, NJ,
USA, PDA100A2). The DMD was preloaded with patterns of 128 × 128 pixels generated
by convolving the filter template with a Hadamard basis. Since the DMD can only load
states of 1 and 0, but the filtered patterns were grayscale, the Floyd-Steinberg dithering
algorithm [35] was employed to perform an appropriate conversion of the grayscale pattern
to binary format before loading onto the DMD.
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Figure 9. Schematic of online denoising single-pixel imaging.

To verify the equivalence of the quality of the reconstructed object obtained through
ODSPI and post-processing, we conducted comparison experiments, one using our ODSPI
and the other post-filtering the reconstructed images. Guided by the simulation results,
the sampling rate was set at 0.3. Thus, 4915 patterns were pre-loaded for each image.
Figures 10 and 11 show the reconstructed images. Additionally, each experiment compared
the cases with and without a scattering plate before the single-pixel detector, as shown in
Figure 9. The scatterer was a 1500 mesh B270 high borosilicate glass.

In Figure 10, the first and second rows represent the reconstructed objects without
and with scattering plates, respectively. The four columns represent the reconstructed
objects using the Hadamard basis, mean-filtered pattern, Gaussian low-pass filtered pattern,
and Butterworth low-pass filtered pattern. The images obtained by post-filtering are
shown in Figure 11, where again the first and second rows represent the filtered images
without and with scattering, respectively. The first column shows the reconstructed objects
with Hadamard basis, and the second to fourth columns show the results of filtering the
reconstructed objects using the mean, Gaussian low-pass, and Butterworth low-pass filters,
respectively. Comparing Figures 10 and 11, we observe virtually no difference between
their image qualities.

To evaluate the image quality more qualitatively, we plotted the intensities of the
77th row of Figures 10 and 11 in Figures 12 and 13, respectively. The position of the
77th row is indicated by the red line in Figure 10a. The blue, orange, purple, and yellow
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colors indicate illumination patterns using the Hadamard basis, the mean, Gaussian low-
pass, and Butterworth low-pass filtered patterns, respectively. The left (a) and right (b)
diagrams represent the reconstructed images without scattering and with scattering plates,
respectively. We then calculated the RMSE of this row segment by choosing the first
34 pixels, as indicated by the red dashed box in Figure 12a. Since the position of the first
34 pixels was the background, which was non-transparent, the theoretical intensity value
of the first 34 pixels should be 0.
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Figure 10. Images reconstructed with ODSPI. The first to fourth columns represent images ob-
tained with the Hadamard basis, mean-filtered pattern, Gaussian low-pass filtered pattern, and
Butterworth low-pass filtered pattern, respectively. The red line in (a) represents the position of the
77th row. (a–d) and (e–f) depict the images obtained without and with the addition of a scattering
plate, respectively.
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Figure 11. Images obtained by post-filtering. (a,e) show the reconstructed objects with Hadamard
basis. and the second to fourth columns show the results of filtering the reconstructed objects using
the mean, Gaussian low-pass, and Butterworth low-pass filters, respectively. (a–d) and (e,f) depict
the images obtained without and with the addition of a scattering plate, respectively.
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The computed RMSE values are shown in Table 1. We can see that filtering produced
lower values than the unfiltered Hadamard patterns. When a scattering plate was inserted,
the RMSE increased significantly, as would be expected. Furthermore, we find that ODSPI
yielded closely identical RMSE values as post-filtering, demonstrating a comparable merit.
It also shows a slight difference between the RMSE values with ODSPI and post-filtering.
We attribute this to the fact that the experimental environment was not ideal. Nevertheless,
the experiment results demonstrated the applicability of ODSPI.

Table 1. Comparison of the RMSE of images reconstructed with ODSPI and post-filtering.

Filter Scheme Noise Level Hadamard Mean Gaussian Butterworth

ODSPI
without scattering 0.303 0.283 0.174 0.124

with scattering 0.46 0.425 0.285 0.136

Post-filtering without scattering 0.303 0.276 0.192 0.103
with scattering 0.46 0.387 0.2719 0.133

4. Discussion

The chief advantage of ODSPI lies in its ability to filter data during the sampling
stage, removing the time for post-processing. Additionally, when using the same recon-
struction algorithm and sampling rate, our scheme produces similar image quality as
post-filtering schemes. This feature is especially useful for large-size objects and has a
particular advantage in image-free target classification or counting tasks [36].

However, there are certain limitations of ODSPI. Firstly, the performance of ODSPI is
influenced by factors such as noise variance and type, so it is necessary to explore a method
to estimate these parameters and adjust the sampling rate and filter parameters accordingly.
Secondly, the low-pass filters employed in ODSPI are inadequate in preserving high-
frequency information, resulting in blurry reconstructed images. The hybrid filter should
be investigated to improve image quality and retain more high-frequency information.
Thirdly, the imaging time and quality are related to the sampling number, and deep learning
has gained widespread adoption in SPI for reducing the sampling rate. Thus, leveraging
deep learning to improve image quality at lower sampling rates is viable.

5. Conclusions

In summary, we have introduced an online denoising scheme for SPI based on the con-
volutional reciprocity theorem, which generates denoised modulation patterns, facilitating
image denoising during the sampling process, resulting in superior data quality and reduc-
ing the time required for post-processing. This temporal advantage will be significant for
particular applications, such as image-free target recognition. Simulation and experiment
results have demonstrated that ODSPI has better denoising performance than traditional
SPI in binary and grayscale images, except for the latter with low noise variance. To further
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improve the performance of ODSPI in practical application, future investigations should
focus on adaptively adjusting filter parameters and sampling rates according to noise type
and variance. It is also valuable to utilize hybrid filters and non-linear reconstruction
algorithms as alternatives to the current simplistic filters and reconstruction algorithms.
These methods will further improve the image quality of ODSPI at lower sampling rates.
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