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Abstract: In order to address the issue of large-aperture optical windows operating in wind tunnel
environments with dynamic responses, the damping ratio between the vibration isolation device
and the mass of the system was calculated by the passive vibration isolation principle. Two isolation
models using circular rubber pads and rectangular rubber pads were proposed, and it was proven
that the stiffness value of the circular rubber pad is superior to that of the rectangular rubber pad.
A three-dimensional model of the optical window was established using finite element analysis
software to simulate the working vibration environment of the optical window. Modal analysis
and harmonic response analysis were carried out on the optical system with the isolation device
installed, and the nodal data of the optical glass surface changes in the optical window were input
into the Zemax 19.4 optical design software in the form of Zernike coefficients to calculate imaging
quality evaluation indicators. Through finite element structural analysis of the optical window and
evaluation of optical performance indicators, it was demonstrated that under the background of
the wind tunnel working environment, the isolation performance of the circular rubber pad in the
isolation device of the optical window is superior to that of the rectangular rubber pad. This study can
provide a design basis for the isolation analysis methods and isolation measures of optical windows
in wind tunnel working environments. These research results have implications for the development
of large-aperture optical windows in high-speed wind tunnel applications.

Keywords: large-aperture optical window; isolating rubber pads; finite element simulation; optical
performance analysis

1. Introduction

In recent years, the optical inspection and airport spatial information acquisition
fields have seen rapid development in technologies such as laser interferometry, aerial
optical remote sensing, and infrared detection [1–3]. As a result, optical windows have
become essential protective devices in various optical systems. In particular, in the complex
environment of wind tunnels, optical windows play a crucial role in ensuring that the
internal environment is free from external pollutants and maintaining the airtightness of
the wind tunnel. Additionally, they reduce the interference of environmental factors on the
measurement quality of the optical system. Therefore, analyzing the strength of the optical
window is essential to ensure the quality of the optical system beam input and output
and improve the stability of each precision measurement element inside the window. In
summary, the analysis of optical window intensity is of utmost importance in modern
optical system design and development [4–6].

In the early 1950s, the United States, the former Soviet Union, and other countries be-
gan the research on pneumatic optical windows and produced pneumatic optical windows
for the use of high-energy laser emission system requirements, usually for small-aperture
optical windows with diameters below 150 mm [7,8]. In the mid-1990s, the United States
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worked with space cameras, developing a large-aperture long focal length parallel light
tube device to detect the SIRTF (NASA’S space infrared telescope facility) [9,10]. Since the
21st century, countries have increased their research on various types of optical windows
in special environments, and the effect of aerodynamic optics on optical windows was
analyzed in detail by Zhang et al. by combining optical transmission theory and numerical
simulation methods [11]. Luo et al. calculated the surface deformation of ZnS flat optical
windows under different environmental conditions and the effect of this deformation on
the imaging quality of optical systems based on the principle of hydrodynamic analysis [12].
Crahan et al. studied the spherical optical windows of airborne high-energy laser sys-
tems and mitigated the effect of the optical windows on the beam emitted in the transient
mode [13]. Lucca et al. investigated the aerodynamic optical effects and mechanical jitter of
the optical window, with the field of view varying between 90◦ and 118◦, and obtained the
spatial distribution of the aerodynamic optical aberrations of the flat optical window [14].
Zhang et al. proposed an intermediate ring band auxiliary support form based on ordinary
ring band support, which effectively reduces the wavefront error of the optical window and
improves the support efficiency of the optical window with a large diameter-to-thickness ra-
tio [15]. To understand and evaluate the use of optical windows as materials for high-speed
solid shock wave detectors, Mithun et al. conducted experimental studies on high-speed
collisions of laser emitting flyers with polycrystalline, glass, or polymer windows. The
results showed that borosilicate crown glass (BK7) is one of the best optical windows [16].
Tahir et al. discussed some important considerations for the design of special specification
optical windows for mid-wave infrared (MWIR) optical systems, such as the material used
and the minimum thickness associated with the rated pressure to optimize the design
of this optical window [17]. Liu et al. designed a large-aperture spliced optical window
based on the principle of optical–mechanical–thermal integration and analyzed its optical
properties in a force–thermal dynamic environment [18].

Based on the background of wind tunnel measurement research presented in this
article, practical engineering experience has shown that airflow turbulence and noise
generated during the operation of impulse-type wind tunnels can cause vibrations of
optical windows on the side walls of the wind tunnel, finally leading to their failure [19,20].
To address this issue, based on the principle of vibration isolation, a vibration model
of large-diameter circular flat optical windows with a specific field of view range was
established. Finite element analysis software was utilized to perform modal analysis
and harmonic response analysis on optical windows with different isolation schemes,
which enabled the calculation of resonance frequency of the optical window system and the
deformation of the window surface. Surface node data of the optical window obtained from
harmonic response analysis were fitted with Zernike polynomials, and the resulting Zernike
coefficients were input into the Zemax 19.4 optical software to calculate the wavefront
distortion and modulation transfer function (MTF) curve, thereby verifying the feasibility
of the optical windows with different isolation schemes working under this wind tunnel.
These discoveries hold significant implications for devising vibration damping structures
tailored to large-diameter optical windows.

2. Optical Window Structure Composition and Vibration Theory Analysis
2.1. The Composition of Optical Window Structure

An intermittent wind tunnel is a pipe-like device that can artificially produce and
control airflow in order to simulate the flow of gas around an aircraft or object, measure the
effects of the airflow on the object, and observe corresponding physical phenomena [21–23].
The wind tunnel, as shown in Figure 1, is composed of a test section, optical windows,
measurement equipment, and test objects. The test objects, such as aircrafts, are placed
inside the test section, while measurement equipment, such as high-speed cameras and
interferometers, are placed outside the wind tunnel. The measurement equipment observes
the experimental data inside the wind tunnel through optical windows, which reduce the
impact of the complex environment inside the wind tunnel on the measurement equipment.
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Due to the field of view requirements of the measurement equipment, the aperture of the
optical window is up to 380 mm, far larger than that of traditional airborne optoelectronic
detection windows.
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Figure 1. Schematic diagram of the wind tunnel.

With the continuous development of optoelectronic systems, the technology of optical
windows has been widely used in the field of wind tunnel measurements due to its unique
advantages. However, the vibration phenomenon of the optical window caused by the
noise and fluctuating airflow in the transient jet wind tunnel working environment can
lead to changes in the surface shape of the window, thus reducing the imaging quality
of the external optical system. To reduce the impact of vibration on the optical window,
a corresponding isolation device, as shown in Figure 2, is required. The optical window
structure mainly consists of a window base, optical glass, pressure plate, and isolation
rubber pad, with optical glue used to fill the edge gap during installation and the optical
glass serving as the part through which the light beam passes. In order to improve the
connection strength between the window base and the wind tunnel inner wall, carbon
steel (Q235) is used for the window base and fixed cover. BK7 optical glass, which has a
wide transparent spectral range, good transparency, and ease of processing, is used for
the optical glass [24,25]. Nitrile rubber is used for the isolation rubber pad due to its good
damping performance and wear resistance [26].
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Figure 2. The structure diagram of an optical window.

2.2. Theoretical Analysis of Vibration Isolation for Optical Windows

When the vibration frequency of the optical window support structure exceeds its
own allowable frequency during the operation of the wind tunnel, cracks may appear on
the surface of the optical window. To reduce or eliminate such effects, a passive isolation
method [27–29] is adopted, using nitrile rubber with high viscosity and elasticity as the
isolation device at the mounting base and pressure plate of the optical glass. Figure 3 shows
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a simplified displacement excitation mechanical model, where the mass is the glass, the
spring–damper is the rubber pad, and the base motion is the wind tunnel.
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When the system undergoes harmonic motion, the motion differential equation of the
model is as follows:

m
..
x + c

( .
x − .

y
)
+ k(x − y) = 0 (1)

where
..
x is the acceleration of the object, c is the damping coefficient,

.
x is the velocity of the

object, k is the spring constant, x is the displacement of the object, x− y is the net elongation
of the spring, and

.
x − .

y is the relative velocity between the two ends of the damper.
When the excitation displacement acts on the rigid support component, the excitation

displacement y(t) can be expressed as follows:

y(t) = Yeiωt (2)

The steady-state response x(t) of mass m under forced vibration can be expressed as
follows:

x(t) = Xei(ωt−σ) (3)

where Y is the amplitude of the excitation displacement y(t), X is the amplitude of the
steady-state response x(t), I is imaginary unit, ω is angular frequency, and σ is phase angle.

By substituting the excitation displacement (2) and steady-state response (3) into
Equation (1), the system isolation coefficient, i.e., displacement transmissibility, can be
calculated as follows:

TA =
X
Y

=

√√√√ 1 + (2ξs)2

(1 − s2)
2 + (2ξs)2 (4)

where s is the frequency ratio given by s = ω
ωn

. ωn is the natural frequency of the system

given by ωn =
√

k
m . ξ is the damping ratio given by ξ = c

cc
. cc is the critical damping given

by cc =
√

km. The transfer function curve of the vibration isolation system was obtained
by numerical analysis software and is shown in Figure 4, where the vertical axis represents
TA and the horizontal axis represents the frequency ratio s.

According to Figure 4, different frequency ratios correspond to different displacement
transfer ratios. When the frequency ratio is larger than

√
2, the displacement transfer ratio

gradually decreases, indicating that the isolation system has better isolation capability.
Therefore, reducing the stiffness of the isolation device to some extent can increase the
frequency ratio and decrease the displacement transfer ratio, thus improving the isolation
capability of the isolation system [19].
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2.3. Design of Vibration Isolation Device for Optical Windows

Under the action of external loads, various parts of the vibration isolation rubber pad
may exhibit different nonlinear physical phenomena. The stiffness of the vibration isolation
rubber pad is an important indicator for evaluating its vibration isolation performance.
Rubber with different shapes has different stiffness. This optical window vibration isolation
device uses (a) a circular rubber pad, (b) a rectangular rubber pad, and (c) no rubber pad
installed, as shown in Figure 5.
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By calculating the stiffness of two different isolation devices, the isolation perfor-
mance of the two devices can be theoretically compared. The following is the formula for
calculating the compression stiffness of the rubber isolator [30,31].

K =
Ae·m

H
·E (5)

m = 1.645n2 + 1 (suitable for cylindrical rubber pads) (6)

m = 2.5n3 − 2n2 + 1.5n + 1 (suitable for rectangular rubber pads) (7)

n =
Ae

A f
(8)
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where E is the elastic modulus of the rubber pad; H is the height of the rubber pad. m is
the shape factor of the rubber pad. n is the ratio of the constrained area to the free area
of the rubber pad. Formula (6) is applicable to cylindrical rubber pads, and Formula (7)
is applicable when n > 0.2. Ae is the constrained area of the rubber pad, which refers to
the compressed area of the rubber pad that is usually in contact with the isolated object.
A f is the free area of the rubber pad, which refers to the surface perpendicular to the
deformed surface.

For the two different rubber pad isolation schemes, the area of the cylindrical rubber
pad’s constrained surface Ae1 is much smaller than that of the rectangular rubber pad’s
constrained surface Ae2, i.e., the shape factor m1 of the cylindrical rubber pad is much
smaller than the shape factor m2 of the rectangular rubber pad. However, the elastic
modulus E and height H of the two rubber pads are the same. Therefore, it can be
concluded that the stiffness K1 of the circular rubber pad is less than the stiffness K2 of the
rectangular rubber pad, and the isolation performance of the circular rubber pad is better
than that of the rectangular rubber pad.

3. Modal and Harmonic Response Analysis of Optical Windows
3.1. Modal Analysis

Modal analysis, a method for predicting structural performance and diagnosing
faults, is widely used to study the vibration characteristics of structural components in
general. The structural characteristics of optical components include mode shapes and
natural frequencies, and different modes of different structures have different mode shapes
and natural frequencies [32]. The dynamic pressure and noise generated in a shock-tube
wind tunnel result in periodic vibrations throughout the wind tunnel and on the optical
window. This can cause excessive deformation and structural damage to the optical
window. Therefore, modal analysis must be conducted on the optical window to determine
its natural frequencies and mode shapes.

Using three-dimensional modeling software (SOLIDWORKS), different isolation rub-
ber pads were modeled for the optical window. The models were then imported into the
finite element analysis software (ABAQUS), where the optical window was constrained
by the installation base and the window pressure plate. The mesh was divided and the
corresponding experimental parameters were set, as shown in Table 1 for the material
parameters of each component.

Table 1. Material parameters of optical window.

Component
Name

Density
/(g·cm−3)

Elastic
Modulus/(GPa)

Poisson’s
Ratio/1

Optical glass 2.51 86 0.21
Installed base 7.85 200 0.25

Fixed cover plate 7.85 200 0.25
Rubber pad 1.21 2.14 × 10−3 0.48

In any mechanical vibration system, there are infinite natural frequencies. However,
in structural vibration, high-order modes have a low energy contribution, and the effect of
vibration amplitude on the system can be neglected [33]. Therefore, only the first six modes
of the optical window are analyzed. Figure 6 shows the modal shapes of optical windows
with different vibration isolation devices.
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Figure 6. Modal vibration patterns of optical windows with different isolation rubber pads: (a) circular
rubber pad, (b) rectangular rubber pad, and (c) without rubber pad.

Figure 7 shows the modal analysis of the first six modes of the optical window with
different isolation devices. By analyzing the modal characteristics of the optical window,
it can be determined that the first mode frequencies of the optical window with circular
and rectangular rubber isolators are 66.32 Hz and 89.20 Hz, respectively, and the inherent
frequencies of each mode continue to increase. In the experimental environment, the
excitation frequency range is 0.1–1.5 kHz, and the high-frequency modes are much higher
than the first six modes of the circular and rectangular rubber isolators, so the influence
of high-frequency vibration on the deformation of the optical window can be ignored
after reaching a steady state. However, the first mode frequency of the optical window
without any isolation device is 197.74 Hz, which falls within the low-frequency range of
the excitation frequency and has a higher probability of resonance occurrence.



Photonics 2024, 11, 86 8 of 14

Photonics 2024, 11, x FOR PEER REVIEW 8 of 14 
 

 

any isolation device is 197.74 Hz, which falls within the low-frequency range of the exci-
tation frequency and has a higher probability of resonance occurrence. 

1 2 3 4 5 6
0

100

200

300

400

500

Fr
eq

ue
nc

y 
/H

z

Order

 Circular rubber pad
 Rectangular rubber pad
 Without rubber pad

 
Figure 7. Model diagram of optical windows with different isolation rubber pads. 

3.2. Harmonic Response Analysis of Optical Windows 
During the operation of the pulsed jet wind tunnel, the entire wind tunnel chamber 

is subjected to a certain pressure environment, and the structure of the optical window 
will vibrate. In order to calculate the structural response of the optical window under a 
set frequency of dynamic loads after adding the isolation device, harmonic response anal-
ysis was performed on the optical window. Harmonic response analysis is a technique for 
determining the structural response of a linear structure under a known frequency of har-
monic load. By applying a series of different frequency periodic sine excitations to the 
linear system, the response value of the linear system at different frequencies can be ob-
tained, thereby predicting the sustained dynamic characteristics of the overall structure 
and ensuring that the designed isolation device and overall structure can withstand dif-
ferent frequency harmonic loads [34]. 

Through harmonic response analysis using finite element software, the surface de-
formation of the optical window with different vibration isolation devices was obtained 
with a scanning frequency set between 100 Hz and 1500 Hz, as shown in Figure 8. 

0 300 600 900 1200 1500
-0.10

-0.05

0.00

0.05

0.10

D
isp

la
ce

m
en

t/m
m

Frequnency/KHz

 Circular rubber pad
 Rectangular rubber pad
 Without rubber pad

 
Figure 8. Harmonic response analysis of optical windows with different isolation rubber pads. 

Figure 7. Model diagram of optical windows with different isolation rubber pads.

3.2. Harmonic Response Analysis of Optical Windows

During the operation of the pulsed jet wind tunnel, the entire wind tunnel chamber
is subjected to a certain pressure environment, and the structure of the optical window
will vibrate. In order to calculate the structural response of the optical window under
a set frequency of dynamic loads after adding the isolation device, harmonic response
analysis was performed on the optical window. Harmonic response analysis is a technique
for determining the structural response of a linear structure under a known frequency of
harmonic load. By applying a series of different frequency periodic sine excitations to the
linear system, the response value of the linear system at different frequencies can be ob-
tained, thereby predicting the sustained dynamic characteristics of the overall structure and
ensuring that the designed isolation device and overall structure can withstand different
frequency harmonic loads [34].

Through harmonic response analysis using finite element software, the surface defor-
mation of the optical window with different vibration isolation devices was obtained with
a scanning frequency set between 100 Hz and 1500 Hz, as shown in Figure 8.
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According to Figure 8, the optical window with a circular rubber pad isolation device
may experience resonance at an excitation frequency of 167.82 Hz, causing a significant
displacement of up to 0.024 mm in the optical glass surface. Similarly, the optical window
with a rectangular rubber pad isolation device may experience resonance at an excitation
frequency of 287.29 Hz, resulting in a maximum displacement of 0.040 mm in the optical
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glass surface. In contrast, the optical window without any rubber pad isolation device
may experience resonance at an excitation frequency of 308.81 Hz, causing a significant
displacement of up to 0.085 mm in the optical glass surface.

4. Optical Performance Analysis of Optical Windows

Environmental changes are one of the most important factors affecting the optical
performance of the optical window. Such changes can cause distortion of the window
surface, which must be fitted using Zernike polynomials to transfer the optical glass
deformation data to the optical analysis software Zemax [35,36]. The specific analysis
process is shown in Figure 9.
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The surface quality of optical components plays a decisive role in the performance of
optical systems. Under certain vibration conditions, the surface of an optical window will
experience deformation. As mentioned earlier, the vibration response analysis of optical
windows with different isolation devices provides data on the surface deformation of
the optical glass. Based on the imaging quality analysis process of optical systems, the
maximum change in the surface nodes of the optical glass is extracted after the harmonic
response analysis. Then, Zernike polynomials are used to fit the surface node changes, and
the Zernike coefficients that represent the surface change in the optical glass are obtained
and input into the Zemax optical design software. Using a laser wavelength of 632.8 nm and
a Cooke triplet optical system as the analysis object, as shown in Figure 10, optical system
performance evaluation is performed, including wavefront error and the MTF curve.
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4.1. Wavefront Error

When the surface of an optical window deforms, the wavefront will change and cause
wavefront aberration when the beam passes through the deformed optical window. By
fitting the surface deformation data of the optical window obtained from finite element
analysis with Zernike polynomials and importing the obtained Zernike coefficients into
Zemax optical design software, the wavefront aberration of the optical window with
different isolation devices can be calculated, as shown in Figure 11.
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In optical imaging quality evaluation, the peak-to-valley (PV) and root-mean-square
(RMS) values of the wavefront are commonly used to quantify the degree of wavefront dis-
tortion. Smaller PV and RMS values indicate less wavefront distortion and more uniformity,
resulting in better overall imaging quality of the optical system. Table 2 lists the wavefront
PV and RMS values of optical windows with different vibration isolation devices. As
shown in Table 2, the optical window with a circular rubber pad vibration isolation device
has significantly lower wavefront PV and RMS values compared to the optical window
with a rectangular rubber pad vibration isolation device and the one without any vibration
isolation device, indicating that the former has less impact on the imaging quality of the
optical window.

Table 2. PV and RMS values of optical window with different isolation devices. PV refers to the peak
value of wavefront change in the optical window, and RMS refers to the root-mean-square value of
wavefront change in the optical window.

Different Types of Isolation Devices PV/λ RMS/λ

Circular rubber pad 0.1380 0.0372
Rectangular rubber pad 0.1565 0.0419

Without rubber pad 0.1872 0.0500

4.2. Modulation Transfer Function

The modulation transfer function (MTF) can comprehensively evaluate the overall
optical performance of an optical system and is applied to various systems with aberra-
tions. Typically, the MTF can provide the propagation ability of an optical system for
object images at various frequencies, where the low-frequency part reflects the contour of



Photonics 2024, 11, 86 11 of 14

propagation quality, the mid-frequency part reflects the level of propagation quality, and
the high-frequency part reflects the detail of propagation quality of an object. By fitting the
surface deformation data of optical windows with different isolation devices obtained from
finite element software using Zernike polynomials and importing the obtained Zernike
coefficients into Zemax optical design software, the MTF curves of optical windows with
different isolation devices can be calculated, as shown in Figure 12. The MTF values at a
frequency of 56 lp/mm for two different optical windows with different isolation devices
are statistically analyzed and presented in Table 3.
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Table 3. MTF of different isolation devices at 56 lp/mm.

Different Types of
Isolation Devices

Modulation Transfer Function (MTF@56 lp/mm)

Field of View: 0◦ Field of View: 3.5◦ Field of View: 5◦

Circular rubber pad 0.760205 0.765809 0.768517
Rectangular rubber pad 0.755795 0.765152 0.760968

Without rubber pad 0.741247 0.763559 0.760069

From Figure 12 and Table 3, it can be observed that the modulation transfer function
(MTF) decreases as spatial frequency increases, and the MTF value is still larger than 0.6 at
a spatial frequency of 56 lp/mm, indicating that the deformation window has little effect
on the optical system’s aberration when passing through the optical window. However,
compared with the MTF curve of the optical window equipped with circular rubber pad
isolators, the MTF curves of the optical window equipped with rectangular rubber pad
isolators and without any isolators decrease more rapidly, suggesting the possible existence
of field curvature and image distortion in the optical system which could reduce the imaging
quality of the optical system. In summary, the optical window meets the requirements
of the optical system when equipped with different types of isolators, but the vibration
environment has a lower impact on the imaging quality of the optical window with circular
rubber pad isolators compared to the optical window with rectangular rubber pad isolators
and without any isolators.

5. Conclusions

Based on the passive isolation principle, this paper establishes a vibration model for
the optical window and calculates the damping ratio relationship between the isolation
device and the system mass to propose a vibration reduction solution using circular and
rectangular rubber pads as isolation devices. Finite element analysis software is used to
calculate the modes of optical windows with different isolation devices, and the surface
deformation of the two types of optical windows is obtained after harmonic response
analysis. The corresponding spatial optical system model is designed to fit the surface
deformation of the optical window using Zernike polynomials, and the Zernike coefficients
are imported into the optical system software to analyze the influence of optical windows
with different isolation devices on imaging quality. The results show that the isolation
effect of optical windows with circular rubber pads is better than those with rectangular
rubber pads or without any isolation devices, and its impact on the imaging quality of the
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optical system is less than the others. The analysis process provides a solution to the blind
engineering design problem of isolation devices for precision equipment such as optical
windows and makes the design of optical windows more reasonable and reliable.
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