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Abstract: A question of physical importance is whether finite-energy spatiotemporally localized (i.e.,
pulsed) generalizations of monochromatic accelerating Airy beams are feasible. For luminal solutions,
this question has been answered within the framework of paraxial geometry. The time-diffraction
technique that has been motivated by the Lorentz invariance of the equation governing the narrow
angular spectrum and narrowband temporal spectrum paraxial approximation has been used to
derive finite-energy spatiotemporally confined subluminal, luminal, and superluminal Airy wave
packets. The goal in this article is to provide novel exact finite-energy broadband spatio-temporally
localized Airy solutions (a) to the scalar wave equation in free space; (b) in a dielectric medium
moving at its phase velocity; and (c) in a lossless second-order temporally dispersive medium. Such
solutions can be useful in practical applications involving broadband (few-cycle) wave packets.

Keywords: Airy beams; nondiffracting pulses; localized waves; space–time wave packets

1. Introduction

The Airy beam (propagating along the z-axis)

Ψ(x, z) = e−
1

12 (2a+i z
k )(2a2−6x−4ia z

k +
z2

k2 )Ai
(

x + ia
z
k
− z2

k2

)
; k = ω/c

is a remarkable finite-energy solution to the paraxial equation

i
∂

∂z
Ψ(x, z) +

c
2ω

∂2

∂x2 Ψ(x, z).

It was first introduced analytically by Siviloglou and Christodoulides [1] and subsequently
demonstrated experimentally by Siviloglou, Broky, Dogariu, and Christodoulides [2]. Their
work was motivated by the infinite-energy nonspreading accelerating Airy solution to the
quantum mechanical Schrödinger equation introduced by Berry and Balazs [3]. The Airy
beam is slowly diffracting while bending laterally along a parabolic path even though its
centroid is constant, it can perform ballistic dynamics akin to those of projectiles moving
under the action of gravity, and it is self-healing, that is, it regenerates when part of the
“generating” aperture is obstructed; this is due to the reinforcement of the main lobe by
the side lobes. Due to these desirable properties of the Airy beam, as well as other types of
beams that have been advanced recently, applications have been found in beam focusing,
particle manipulation, biomedical imaging, and material processing.
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An important question of physical interest is whether spatiotemporally localized (i.e.,
pulsed) versions of Airy beams are feasible. Space–time paraxial solutions based on the
narrow angular spectrum obey the pulsed beam equation(

∂2

∂x2 − 2
c

∂2

∂τ∂z

)
u(x, z, t) = 0; τ = t − z/c.

For luminal solutions, this question has been answered affirmatively by Saari [4], Valdmann,
Piksarv, Valta-Lukner, and Saari [5], and Kaganovsky and Heyman [6] within the framework
of paraxial geometry.

More recently, work on nonluminal spatiotemporally confined Airy wave packets
has appeared in the literature [7–9]. However, the Airy solution is intimately related to
a parabolic equation. Only for luminal spatiotemporally localized wave solutions to the
scalar wave equation can such an association be made. For this reason, subluminal and
superluminal spatiotemporally confined Airy solutions to the wave equation do not exist.
As a special case, broadband subluminal and superluminal spatiotemporally localized
Airy wave packets based only on the narrow angular spectrum paraxial approximation
do not exist. The time-diffraction technique introduced by Porras [10,11] recently has been
motivated by Besieris and Shaarawi [12] in terms of the Lorentz invariance of the equation
governing the narrow angular spectrum and narrowband temporal paraxial approximation
u(x, z, t) = exp(iω0τ)ϕ(x, z, t), with

i
(

∂

∂z
+

1
c

∂

∂t

)
ϕ(x, z, t)− 1

2k0

∂2

∂x2 ϕ(x, z, t); k0 ≡ ω0/c,

where ω0 is the carrier frequency. This approximation has been used to derive finite-energy
spatiotemporally confined subluminal, luminal, and superluminal Airy wave packets.

The goal in this article is to provide novel exact finite-energy broadband spatiotempo-
rally localized Airy solutions (a) to the scalar wave equation in free space; (b) in a dielectric
medium moving at its phase velocity; and (c) in a lossless second-order temporally disper-
sive medium. Such solutions can be useful in practical applications involving broadband
(few-cycle) wave packets.

2. Finite-Energy (3 + 1)D Spatiotemporally Localized Airy Splash Mode Solution of the
Scalar Wave Equation in Free Space

Consider the (3 + 1)D scalar wave equation in free space, viz.,(
∂2

∂X2 +
∂2

∂Y2 +
∂2

∂Z2 − ∂2

∂T2

)
Ψ(X, Y, Z, T) = 0, (1)

written in terms of the nondimensional variables X = x/x0, Y = y/x0, Z = z/x0,
and T = ct/x0. The introduction of the characteristic variables Λ± = Z ∓ T changes the
derivatives with respect to Z and T as follows:

∂

∂Z
=

∂

∂Λ+
+

∂

∂Λ−
,

∂

∂T
= − ∂

∂Λ+
+

∂

∂Λ−
.

Therefore,

∂2

∂Z2 − ∂2

∂T2 =

(
∂

∂Λ+
+

∂

∂Λ−

)2
−
(
− ∂

∂Λ+
+

∂

∂Λ−

)2
= 4

∂2

∂Λ+∂Λ−
,

and Equation (1) changes to(
∂2

∂X2 +
∂2

∂Y2 + 4
∂2

∂Λ+∂Λ−

)
Ψ(X, Y, Λ+, Λ−) = 0. (2)
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A specific solution of this equation is the infinite-energy accelerating Airy wave packet

Ψ(X, Λ+, Λ−) = exp[iΛ−]e−i 1
24 Λ+(−6X+ 1

4 Λ2
+)Ai

(
X − 1

16
Λ2

+

)
. (3)

This wavefunction moves in a parabolic trajectory along the characteristic variable Λ+.
In 1910, Bateman [13,14] discovered a transformation, more general than a conformal

change in the metric, which could be used to transform solutions of Maxwell equations
into similar ones. In the case of the scalar wave equation, the Bateman transformation in
(3 + 1)D assumes the form

Ψ1(X, Y, Λ+, Λ−) =
1

Λ−
Ψ
[

X
Λ−

,
Y

Λ−
,− 1

Λ−
,

X2 + Y2 + Λ+Λ−
Λ−

]
. (4)

The function Ψ1(X, Y, Λ+, Λ−) also obeys the scalar wave Equation (2).
The Bateman transformation is applied twice to the solution given in Equation (3).

These two sequential operations result in the following new solution to Equation (2):

Ψ2(X, Y, Λ+, Λ−) =
1

X2+Y2+Λ+Λ−
Ai
[
−Λ2

+−16X(X2+Y2+Λ+Λ−)
16(X2+Y2+Λ+Λ−)

2

]
× exp

[
−i

−Λ3
++24XΛ+(X2+Y2+Λ+Λ−)+96Λ−(X2+Y2+Λ+Λ−)

2

96(X2+Y2+Λ+Λ−)
3

]
.

(5)

Next, this expression is complexified by means of the changes Λ+ → Λ+ − ia1, Λ− →
Λ− + ia2, where a1,2 are two positive parameters. Consequently, one obtains

ψ2(R, ϕ, Λ+,Λ−,; a1, a2) = B−1 exp
(
−i

Q
96B3

)
Ai

[
(a1 + iΛ+)

2 + BR cos ϕ

16B2

]
; (6)

with the exponent Q given as

Q = −i(a1 + iΛ+)
3 − i24R cos ϕ(a1 + iΛ+)B + i96(a2 − iΛ−)B2,

B = R2 + (a1 + iΛ+)(a2 − iΛ−)
(7)

in cylindrical coordinates (X = R cos ϕ, Y = R sin ϕ). This is a finite-energy (3 + 1)D spa-
tiotemporally localized luminal wave packet belonging to the class of splash modes studied
by Ziolkowski [15]. It will be referred to as the Airy splash mode.

The free positive parameters a1 and a2 entering the solution given in Equation (7) are
critical. As discussed originally by Ziolkowski ([15]; see also [16]), their presence ensures
finite energy. Their relative values measure the size of the forward and backward wave
components. Only when a1 >> a2, the backward components are minimized, and the
solution is almost undistorted. This is further explained in [17], where it is shown that very
close replicas of localized waves, such as the one in Equation (6), can be launched causally
from apertures constructed based on the Huygens principle.

Figure 1 shows surface plots of the intensity of Airy splash mode versus Λ+ and
X for various values of T; the latter is defined by the relationship Λ− = Λ+ + 2T. The
parameters a1 and a2 have the values 8 × 10−2 and 10, respectively. The wave packet is
relatively undistorted because a1 >> a2.
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Figure 1. Surface plots of the modulus of ψ2(R, π/4, Λ+, Λ−) versus Λ+ ∈
[
−4 × 10−1, 4 × 10−1]

and R ∈ [−6, 6] for three values of T, with the latter defined by the relationship Λ− = Λ+ + 2T. The
parameters a1 and a2 have the values 8 × 10−2 and 10, respectively, with the speed of light in vacuum
normalized to unity.

The finite-energy wavefunction U+
2 (X, Y, Λ+, Z) = Ψ2(X, Y, Λ+, 2Z; a1, a2) obeys the

paraxial forward pulsed beam equation(
∂2

∂X2 +
∂2

∂Y2 +
∂2

∂Λ+∂Z

)
U+

2 (X, Y, Λ+, Z) = 0. (8)

The transition from Equations (3) to (6) is effected by means of the modified com-
plexification Λ+ → Λ+ − ia1, Λ− → 2Z + ia2. As a result, one obtains broadband splash
mode-type spatiotemporally localized wave solutions to the paraxial equation.

3. Finite-Energy Accelerating Spatiotemporally Localized Airy Wave Packet Solution to
the Scalar Equation in Free Space

A solution to Equation (2) is sought in the form

ψ(X, Λ+, Λ−; β) = exp(iβΛ−)φ(X, Λ+; β).

Then, φ(X, Λ−; β) is governed by the parabolic equation(
i4β

∂

∂Λ+
+

∂2

∂X2

)
φ(X, Λ+; β) = 0 (9)

A solution to this equation is the “accelerating beam”

φ(X, Λ−; β) = exp
[
− 1

12 (2a + iΛ+)
(
2a2 − 6

√
2βX − i4aΛ+ + Λ2

+

)]
×Ai

(√
2βX + iaΛ+ − Λ2

+
4

)
.

(10)

With a a small positive parameter and Λ+ replaced by Z, φ(X, Z) is essentially the
finite-energy monochromatic paraxial accelerating Airy beam solution introduced by
Siviloglou and Christodoulides [1]. In contrast, ψ(X, Λ+, Λ−; β) = exp(iβΛ−)φ(X, Λ+; β)
is not a finite-energy solution to the scalar wave equation. To achieve a finite-energy spa-
tiotemporal solution, an appropriate superposition over the free parameter β of the form

ψ(X, Λ+, Λ−) =
∫

dβF(β) exp(iβΛ−)φ(X, Λ+; β) (11)
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must be undertaken. Such a superposition can be brought to the form

ψ(X, Λ+, Λ−) = Q
∫ ∞
−∞ dσ exp

(
−σ2)Ai

[
A
(

B
A − σ

)]
;

Q = 1√
a1−iΛ−

exp[− 1
6
√

2
b
(
2a2 − i4aΛ+ + Λ2

+

)
] exp

[
1
4 b2 X2

a1−iΛ−

]
,

A =
√

a1−iΛ−√
2X

, b =
√

2
(

a + i Λ+
2

)
,

B =
iaΛ+−

Λ2
+
4 +b X2√

2(a1−iΛ−)
A .

(12)

where a1 is a positive free parameter. The integral in Equation (12) is an Airy transform [18].
It can be carried out explicitly, yielding the finite-energy accelerating spatiotemporal Airy
wave packet

ψ(X, Λ+, Λ−) = Q exp
[

1
4A3

(
B +

1
24A3

)]
Ai
(

B
A

+
1

16A4

)
. (13)

Figure 2 shows surface plots of the modulus square of the Airy wave packet versus Λ+

and X for various values of T, with the latter defined by the relationship Λ− = Λ+ + 2T.
The parameters a and a1 have the values 5 × 10−2 and 100, respectively.
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The finite-energy wavefunction U+
2 (X, Λ+, Z) ≡ Ψ2(X, Λ+, 2Z; a1, a2) obeys the

paraxial forward pulsed beam equation (cf. Equation (8)) if the replacement Λ− → 2Z is
made in Equation (13). As mentioned previously, one then obtains a broadband spatiotem-
porally localized accelerating Airy solution to the paraxial equation.

4. Finite-Energy Accelerating Broadband Airy Wave Packet Solution in the Presence of
Temporal Dispersion
4.1. Basic Equation

For a physically convenient central radian frequency ω0, the real field u(
→
r , t), describ-

ing electromagnetic wave propagation in a linear, homogeneous, transparent, dispersive
medium if polarization is neglected, is expressed as follows:

u(
→
r , t) = φ(

→
r , t) exp

[
−iω0

(
t − z/vph

)]
+ cc, z ≥ 0. (14)

Here, φ(
→
r , t) is a complex-valued envelope function and vph = ω0/β(ω0) denotes the

phase speed in the medium defined in terms of the real wave number computed at the
central frequency. For pulses as short as a single optical period T0 = 2π/ω0, and within
the framework of the paraxial approximation, the envelope function obeys the following
equation [19–21]:(

1 + i
β1

β0

∂

∂τ

)
∂

∂z
φ
(→

r , τ
)
−
(

1 + i
β1

β0

∂

∂τ

)
iD
(
−i

∂

∂τ

)
φ
(→

r , τ
)
− i

2β0
∇2

t φ
(→

r , τ
)
= 0.

(15)



Photonics 2024, 11, 94 6 of 10

Here, ∇2
⊥ denotes the transverse (with respect to z) Laplacian operator and τ = t − (z/vgr)

corresponds to a moving reference frame, defined in terms of the group speed vgr =
1/β1; β1 ≡ dβ(ω)/dω|ω=ω0

. The operator D is given by the expression

D
(
−i

∂

∂τ

)
=

∞

∑
m=2

βm

m!

(
−i

∂

∂τ

)m
; βm =

dm

dωm β(ω)|ω=ω0
. (16)

In the sequel, only the first term in the series will be retained. This approximation
results in the equation(

1 + i
β1

β0

∂

∂τ

)
∂

∂z
φ
(→

r , τ
)
−
(

1 + i
β1

β0

∂

∂τ

)(
−i

β2

2
∂2

∂τ2

)
φ
(→

r , τ
)
− i

2β0
∇2

t φ
(→

r , τ
)
= 0. (17)

Here, β2 ≡ d2β(ω)/d2ω
∣∣
ω=ω0

is the second-order index of dispersion. It is positive for
normal dispersion and negative for anomalous dispersion.

4.2. Accelerating Airy Solution

A solution to Equation (17) is sought in the form φ
(→

r , τ
)
= φ̃

(→
r , Ω

)
exp(−i τ Ω).

Furthermore, with φ̃
(→

r , Ω
)

= ψ̃
(→

r , Ω
)

exp
[
iβ2Ω2z/2

]
, one obtains the parabolic

equation [
iβ0

(
1 +

β1

β0
Ω
)

∂

∂z
+

1
2
∇2

t

]
ψ̃
(→

r , Ω
)
= 0. (18)

The azimuthally asymmetric expression

ψ̃(ρ, ϕ, z; Ω) = exp(imϕ)
ρm

(a1 + i z)m+1 exp
[
−(β0 + β1Ω)

ρ2

2(a1 + i z)

]
, (19)

with a1 as a positive parameter, satisfies the paraxial Equation (18). A spatiotemporal
solution to Equation (17) can be derived by means of the superposition

φ(ρ, ϕ, z, τ) = exp(imϕ)
ρm

(a1+i z)m+1 exp
[
−β0

ρ2

2(a1+i z)

]
×
∫ ∞
−∞ dΩ exp

[
−iΩ

(
τ − iβ1

ρ2

2(a1+i z)

)]
exp

[
i β2

2 Ω2z
]

F(Ω).
(20)

A large class of solutions can be obtained by using different spectra F(Ω). Choosing
the spectrum F(Ω) = exp

(
−a2β2Ω2/2

)
exp

(
i Ω3/3

)
; a2 > 0, results in the solution

φ(ρ, ϕ, z, τ) = exp(imϕ)
ρm

(a1+i z)m+1 exp
[
−β0

ρ2

2(a1+i z)

]
× exp

[
−i β2

2 (ia2 + z)
(

2
3 (ia2 + z)2β2

2/4 − iβ1
ρ2

a1+i z + τ
)]

×Ai
[
−β2

2(ia2 + z)2/4 + iβ1
ρ2

a1+i z − τ
]
.

(21)

This is a finite-energy accelerating Airy–Gaussian wave packet. Figure 3 shows the
intensity versus τ and ρ at z = 0 for m = 0. Figure 4 shows surface plots of the modulus of
the azimuthally symmetric wave packet versus τ and z for three values of ρ.
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Here, 0v   denotes the phase speed, and 0 / 1v cβ = <   and ( ), , ,u x y z t   stand for the 

longitudinal components zE  and zH  in the absence of sources. On the other hand, the 
equation of acoustic pressure under conditions of uniform flow is given as follows: 
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Figure 3. Surface plot of the modulus of φ(ρ, τ) versus τ ∈ [−15, 15] and ρ ∈ [−10, 10] for z = 0 and
m = 0.
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Figure 4. Surface plot of the modulus of the azimuthally symmetric wave packet versus τ ∈
[−10, 15] and z ∈ [0, 80] for three values of ρ. The dimensionless parameters are as follows: a1 = 10,
a2 = 2, β0 = 5, β1 = 1, and β2 = 10−1.

5. Finite-Energy Accelerating Broadband Airy Wave Packet Solution in a Dielectric
Moving at Its Phase Velocity

An equation arising in the case of a dielectric medium moving at its phase velocity is
given by [22]: (

∂2

∂x2 +
∂2

∂y2 − 2
v0

∂2

∂t∂z
− 1 + β2

v2
0

∂2

∂t2

)
u(x, y, z, t) = 0. (22)

Here, v0 denotes the phase speed, and β = v0/c < 1 and u(x, y, z, t) stand for the longitu-
dinal components Ez and Hz in the absence of sources. On the other hand, the equation of
acoustic pressure under conditions of uniform flow is given as follows:[

∇2 − 1
u2

0

(
∂

∂t
+

→
u · ∇

)2
]

p
(→

r , t
)
= 0. (23)

Here, u0 is the speed of sound in the rest frame of the medium and
→
u is the uniform velocity

of the background flow. In the special case where
→
u = u

→
a z and u = u0, the resulting

equation for the acoustic pressure is isomorphic to Equation (24).
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Assuming independence on the transverse variable y in Equation (22), the ansatz

u(x, z, t) = ϕ(x, z) exp
[

iω
1 + β2

2v0

(
z − 2v0

1 + β2 t
)]

(24)

gives rise to the equation (
i

ω

v0

∂

∂z
+

1
2

∂2

∂x2

)
ϕ(x, z) = 0. (25)

This is an exact parabolic equation, in contradistinction to the paraxial approximation of
the Helmholtz equation associated with the temporal Fourier transform of the ordinary
scalar wave equation. In addition to the well-known beam solutions of the usual paraxial
equation, Equation (25) has the following “accelerating” one [1]:

g(x, z) = exp
[
− 1

12 (2a + iz)
(
2a2 − i4az + z2 − 6x

√
ω/v0

)]
×Ai

(
x
√

ω/v0 − z2

4 + iaz
)

.
(26)

Here, Ai(·) denotes the Airy function and the positive parameter a ensures finite energy for
the monochromatic solution. The beam follows a parabolic trajectory upon propagation.

Finite-energy broadband pulse solutions can be obtained by using the solution (26)
together with the ansatz (24) and undertaking a superposition with respect to the frequency
ω (see, e.g., Ref. [22]). A specific spatiotemporal broadband solution is given as follows:

u(x, z, t) = 1√
a1−iz exp

[
b2x2

4(a1−iz)

]
exp

[
1

4A2

(
Y + 1

24A4

)]
×Ai

[
Y + 1

16A4

]
;

Y = bx2
√

2(a1−iz)
− z2

4 + iaz;

A =

√
a1−iη
2x ; b =

√
2
(
a + i z

2
)
;

η =
(
1 + β2)(z − 2v0

1+β2 t
)

.

(27)

Figure 5 shows surface plots of the modulus of the wave packet versus
τ = t − z

(
1 + β2)/(2v0) and x for four values of z.
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6. Concluding Remarks

In this article, four distinct novel finite-energy broadband spatiotemporally confined
Airy-type solutions have been presented.

In Section 2, one starts with a solution to the scalar wave equation in the form of
an Airy pulse obeying the parabolic equation along one of the characteristic variables of
the scalar wave equation, multiplied by a plane wave involving the second characteristic
variable. Two sequential applications of the Bateman conformal transformation result in a
finite-energy broadband splash mode-type spatiotemporally localized Airy solution to the
scalar wave equation in free space. A different exact broadband solution to the scalar wave
equation in free space is derived in Section 3. On starts with an infinite energy solution
consisting of the product of a plane wave involving one of the characteristic variables of
the scalar wave equation and a variant of the Siviloglou–Christodoulides Airy solution
obeying the parabolic equation along the second characteristic variable. Several solutions
of this form have appeared in the literature (see, e.g., [23]). What distinguishes our work
is that an integration over a free parameter entering the solution and the use of the Airy
transform yields a different type of a finite-energy broadband spatiotemporally localized
Airy solution to the scalar wave equation in free space.

Different types of Airy solutions in the presence of second-order temporal dispersion
have appeared in the literature [24,25]. The simplest is the analog of the monochromatic
Airy beam involving the axial variable z and the transverse variable x. The former involves
the axial variable z and the “transverse” variable τ = t − z/vg, where vg denotes the
group velocity. Another separable solution is of the form ψ(x, y, z, τ) = ϕ(z, τ)u(x, y).
The (3 + 1)D symplectic (non-separable) novel solution of Equation (17) in cylindrical
coordinates given in Equation (21) of Section 4 is much more complicated. It is a finite-
energy paraxial broadband localized Airy solution.

In Section 5, broadband finite-energy spatiotemporally localized Airy solutions are
presented to equations arising in two different physical settings: (a) in the case of a dielectric
medium moving at its phase velocity and (b) for acoustic pressure under conditions of
uniform flow.
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