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Abstract: In the modern era, the secure transmission and storage of information are among the
utmost priorities. Optical security protocols have demonstrated significant advantages over digital
counterparts, i.e., a high speed, a complex degree of freedom, physical parameters as keys (i.e., phase,
wavelength, polarization, quantum properties of photons, multiplexing, etc.) and multi-dimension
processing capabilities. This paper provides a comprehensive overview of optical cryptosystems
developed over the years. We have also analyzed the trend in the growth of optical image encryption
methods since their inception in 1995 based on the data collected from various literature libraries such
as Google Scholar, IEEE Library and Science Direct Database. The security algorithms developed
in the literature are focused on two major aspects, i.e., symmetric and asymmetric cryptosystems.
A summary of state-of-the-art works is described based on these two aspects. Current challenges and
future perspectives of the field are also discussed.

Keywords: optical information security; information security; asymmetric encryption; Fourier optics;
holography; image authentication

1. Introduction

Due to the advancement in information technology, images and videos are widely
used in various applications such as video conferencing, medical imaging, remote sens-
ing, compressive sensing, social media, bank details and various government/corporate
documents. These images and videos may be carrying confidential information. The trans-
mission of data takes place over secure/unsecure public networks. The access of sensitive
information to unauthorized people may raise national and military security concerns.
Thus, the security of the data from unauthorized uses is very crucial. From the literature,
it is evident that various data security algorithms have been in play for a long time since
World War 11, such as the data encryption standard (DES) and advance encryption standard
(AES) [1,2]. Digital image encryption algorithms have limitations such as a slow processing
speed, complex computation and low efficiency. With time, optical encryption algorithms
are developed, which have a high computation power and high efficiency owing to their
capability of parallel processing. The optical encryption algorithms have gained a lot of
interest recently. The growth in optical image encryption algorithms occurred exponentially.
The chart in Figure 1 represents the growth of the number of publications related to optical
image encryption algorithms. These data are taken from three major scholarly sources, i.e.,
Google Scholar, IEEE Library, and Science Direct Database, with the key word “optical
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Plaintext

image encryption”, and a total 5205 articles were found in the databases. A trend line is
drawn, and we found that the optical image encryption algorithm developed exponentially.
Image encryption is a method that converts meaningful images into a noisy image which
is known as ciphertext. Decryption is a process that converts a ciphertext into an original
image with the help of decryption keys. These keys are the backbone of any encryption
algorithm. The general block diagram for an image encryption/decryption algorithm is
represented in Figure 2.
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Figure 1. Publication trends of optical image encryption algorithms based on Google Scholar data.
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Figure 2. General algorithm of the image (a) encryption and (b) decryption process.

1.1. Basic Terminology

Plaintext: In the field of cryptography, plaintext is data that have not undergone any
encryption process and can be easily understood by anyone who has access to it—for
example, a target image or sensitive text that is being transmitted over the internet
and needs to be encrypted.

Ciphertext or encrypted image: Ciphertext is the encrypted and unreadable output
that results from applying an encryption algorithm to plaintext. In the context of
cryptography, ciphertext is produced to secure information during transmission or
storage. The process of encryption involves converting plaintext (the original, human-
readable data) into ciphertext using an algorithm and encryption key.

Security key: The effectiveness of an encryption algorithm relies on the security of its
keys. Encryption and decryption operations rely on the strength and management
of these keys. The key length of an encryption algorithm is very important, with
longer keys providing enhanced security against evolving computational capabilities.
Secure key generation, storage, distribution and exchange are essential components of
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a robust encryption system. Regular key change and management practices further
contribute to maintaining the overall security of encrypted data.

Symmetric cryptosystem: A symmetric key cryptosystem is a type of algorithm for
encryption where a single secret key is shared between communicating parties to
encrypt and decrypt data. The efficiency of symmetric key cryptography lies in its
simplicity and speed, as the computational processes for encryption and decryption
are relatively fast. However, secure key distribution becomes a critical challenge; if
the secret key is leaked, the entire communication could be breached. Symmetric key
algorithms, such as Advanced Encryption Standard (AES), have been widely used for
their robust security and computational efficiency in various applications, including
secure data transmission and storage.

Asymmetric cryptosystem: An asymmetric cryptosystem, which is also known as
public-key cryptography, uses a pair of distinct but related keys: a public key and
a private key. The public key is openly shared in the public domain and used for
encryption, allowing anyone to send encrypted messages to the owner of the paired
private key. The private key, kept confidential, is used for decrypting messages re-
ceived with the corresponding public key. The strength of asymmetric cryptography
lies in its ability to facilitate secure communication without requiring a pre-shared
secret key. This makes key distribution more straightforward compared to symmetric
systems. However, asymmetric encryption tends to be more computationally inten-
sive than symmetric encryption. Common uses of asymmetric cryptography include
secure communication over networks, digital signatures for authentication and the
establishment of secure communication channels in protocols like SSL/TLS. The com-
bination of symmetric and asymmetric cryptography often provides a robust solution
for achieving both efficiency and security in various cryptographic applications.
Active attack: The purpose of an active attack is to interfere with communication and
gain unauthorized access by tampering with or intercepting data. In the context of
intercepting general communication, attackers aim to compromise the confidentiality
and integrity of the information being transmitted. By gaining access and modifying
the text, they can potentially insert malicious content, alter messages or impersonate
legitimate users, posing significant security risks. Implementing robust encryption,
secure key management and monitoring mechanisms are crucial to thwarting active
attacks and safeguarding the confidentiality and integrity of communication channels.
Passive attack: In passive cryptography attacks, the primary goal is to intercept
or eavesdrop on communication without altering the data or communication itself.
The attacker seeks to obtain unauthorized access to sensitive information by secretly
monitoring and capturing the transmitted data. Unlike active attacks, passive attacks
do not involve direct manipulation of the communication content; instead, the focus
is on unauthorized information retrieval. Protecting against passive attacks typically
involves implementing encryption to secure the confidentiality of the transmitted data,
making it more challenging for unauthorized parties to extract meaningful information
even if they manage to intercept the communication.

Known plaintext attack (KPA): A Known Plaintext Attack (KPA) is a type of cryp-
tographic attack where the attacker has knowledge of both the plaintext and its
corresponding ciphertext. The attacker’s objective is to deduce the encryption key
used in the cryptosystem. By analyzing the known pairs of plaintexts and ciphertext,
the attacker aims to uncover patterns or relationships that can lead to the discovery
of the encryption key. Once the key is determined, the attacker can then decrypt
other ciphertexts encrypted with the same key, compromising the security of the
entire system. The key distinction is that the attacker does not necessarily need to
implement the key on another ciphertext; the primary goal is to reveal the key for
decryption purposes.

Chosen plaintext attack (CPA): In a Chosen Plaintext Attack (CPA), the attacker could
choose arbitrary plaintexts and obtain their corresponding ciphertexts by using the
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target cryptosystem. The attacker’s goal is to analyze these pairs of chosen plaintext
and ciphertext to deduce or estimate the decryption key. Once the attacker successfully
estimates the key, they can use it to decrypt other ciphertexts encrypted with the same
key. The critical point is that the attacker has the freedom to choose the plaintexts
they want to encrypt, allowing for a more flexible and targeted approach to revealing
information about the cryptographic key.

Ciphertext only attack: It is an attacking algorithm in which the attacker has access to
the cryptosystem so as to encrypt the data and obtain the corresponding ciphertext.
In this method, the attacker has no information regarding the plaintext or keys of the
cryptosystem. In this attack process, the intruder tries to recover the input message as
much as possible or, preferably, to estimate the encryption key. All encrypted messages
that have been encrypted with this key can be recovered once the encryption key has
been guessed.

Chosen ciphertext attack: In this attacking algorithm, the attacks have only information
regarding the ciphertexts and try to guess the secret keys of the cryptosystem. In
the chosen ciphertext attack, the attacker might have some information regarding
the cryptosystem.

Brute-force attack: A brute-force attack is a hit-and-trial method which is used to
estimate encryption keys and find a hidden web page or login info. To estimate
correctly, hackers try every possible combination. In the case of long and complex
passwords, cracking them can take up to a couple of years. The effectiveness of a
brute-force attack also depends on the hardware used by the attacker. This is the old
attacking method but is still popular with attackers.

Specific attack: The same attacks do not work on all cryptosystems, so some specific
attacks are designed to test the security of cryptosystems. Specific attacks are designed
to test the security of an encryption algorithm based on phase truncation and phase
reservation in the Fourier domain (PTFT), equal modulus decomposition (EMD),
random modulus decomposition (RMD) and unequal modulus decomposition (UMD)-
based cryptosystems, as the decryption keys depend on the plaintext. These attacks
are very specific to a particular type of cryptosystem.

Occlusion attack: A network failure or other reasons may cause some information
about the ciphertext to be lost during transmission [3]. Data loss in a ciphertext image
is known as an occlusion attack.

Noise attack: During the transmission of ciphertext over the internet, some unwanted
data are to be mixed, which is known as noise [4]. These unwanted data create a
problem in the faithful recovery of plaintext. There are some standard noises which are
commonly used for contamination, such as Gaussian noise, salt and pepper, speckle,
Poisson noise, etc.

1.2. Statistical Measures for Validating Cryptosystems

The quality of an image can be ensured with various statistical measures such as

the peak-signal-to-noise ratio (PSNR), correlation coefficient (CC), information entropy,
mean squared error (MSE) and visual measures such as histograms and mesh plots. Brief
explanations of these parameters are as follows:

Correlation coefficient: The correlation coefficient (CC) is calculated to evaluate the
statistical relationships between pixels in two images. The correlation coefficient is
a metric that determines how closely two images are related [5,6]. The correlation
coefficient has a value in the range of —1.0 to 1.0. The value of CC = —1 indicates
that both images are not related to each other, but a value of CC = 1.0 indicates that
both images are completely related to each other. For a robust cryptosystem, the ideal
value of CC between the plaintext and recovered image is closer to 1, while the CC
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between the plaintext and ciphertext should be far from 1. The CC between Image 1
and Image 2 is given by the expression given in Equation (1).

Covariance(Image 1, Image 2)

cc= Standarddeviation(Image 1) x Standarddeviation(Image 1)

)

e  Mean squared error (MSE): MSE is a statistical indicator that measures the resistance
of a cryptosystem against various attacks. The mean square error between two images
is calculated by using the expression given in Equation (2).

1 m n
MSE = — %" " Ih(xy) - bixy) @

Here, I;(x,y) and I;(x,y) are two images of size m x n pixels. A robust cryptosystem
has a high value of MSE between the plaintext and encrypted image and a low value
of MSE between the plaintext and recovered image [7].

e  Peak-signal-to-noise ratio: The peak-signal-to-noise ratio (PSNR) is the ratio of the
maximum power of the signal to the maximum power of the corrupting noise that
impacts its fidelity. The PSNR and MSE are related to each other [8]. The PSNR is
calculated using the expression given in Equation (3).

2 2
PSNR = 10 x log,, % 3

Here, MSE is the mean squared error, which can be estimated using Equation (2). A
high value of the PSNR between the plaintext and recovered image indicates the good
quality of the decrypted image.

e Information entropy: The information entropy measures the randomness inherent
in an image, which describes the quality of encryption quality. Information entropy
for a grayscale image lies in the range of [0, 8]. If the value of information entropy
approaches 8, it indicates that the image is highly random, and no information about
the image is revealed [9,10]. Mathematically, information entropy is expressed in
Equation (4). For source m,

256 1

Entropy =Y .~ P(m;)log, Plmy) 4)
where m; represent the pixel value, and P(m;) is the probability of the pixel value m;.
e Histogram: Histograms represent the number of pixels having the intensity values in
an image. The histogram shows how many pixels are present in an image at different
intensities. The histogram shows pixels distributed between the 256 different grayscale
values in an eight-bit grayscale image. It is also possible to make a histogram of a color
image, either as an individual histogram for the red, green and blue channels or as a
three-dimensional histogram where each axis represents a channel and the brightness
at each point indicates the number of pixels. The histogram plots of the ciphertext and
plaintext should be different for a robust cryptosystem, whereas the histogram plots

of the plaintext and recovered image should be same.

2. Optical Image Encryption Techniques

There are various methods available in the literature to secure data, such as encryption,
watermarking and steganography. In this review, we have studied the security of images
using an optical encryption algorithm. The detailed classification of various encryption
algorithms is given in Figure 3.
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Figure 3. Different approaches of image encryption algorithms.

Double Random Phase Encoding-Based Cryptosystems

The seminal work in the field of optical image encryption was proposed by Refregier
and Javidi in 1995, which is well known as double random phase encoding (DRPE) [11]. It
was the first attempt to encode the information using optical methods in which a 4-f setup
was employed, as shown in Figure 4. In this, a plaintext image is converted into a white
stationary noisy image using two random phase masks: one random phase mask in the
spatial domain and a second in the Fourier domain. The encryption and decryption process
of the DRPE algorithm is described in Equations (5) and (6). Here, f(x,y) and g(x,y) are
the plaintext and ciphertext, respectively, and ¢(x, y) and (p,#) are random matrices of
the size of the input image.

q(x,y) = IFT{FT[f(x,y)exp(2mip(x,y))]exp(2mip(p, 7)) } )
f(x) = abs{IFT{FT(q(x,y))conj.(exp(2miy(p,n)))} } (6)
Encrypted
Lens Lens Image
Input pla:le o o o f OlItput

plane

Figure 4. Optical image encryption process of DRPE proposed by Refregier and Javidi in 1995.

After the inception of DRPE, there was a huge increase in demand for optical cryp-
tosystems, and various algorithms have been developed using the framework of DRPE. In
1996, Javadi et al. proposed the practical demonstration of the DRPE method for image
security and authentication [12]. Thereafter, researchers have developed various algorithms
to secure the images through different optical aspects [13-15] and to encrypt optical mem-
ory, binary images and biometrics [13,16,17]. For the numerical simulation of the DRPE
method, a MATLAB code is provided in the Supplementary Material.
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3. Symmetric Cryptosystems

As we have discussed in the previous sections, in symmetric cryptosystems, encryp-
tion and decryption keys are the same and do not depend on the plaintext [16,18-22].
An illustration of this can be seen in the flowchart given in Figure 5. The DRPE ar-
chitecture falls in the category of symmetrical algorithms. Besides that, various other
symmetric methods have also been reported in the literature, which are discussed in the
following sections.

Encryption
Algorithm

Plaintext Ciphertext

Keys

Decryption
Algorithm

Ciphertext . ecryptcd Image .

Figure 5. Diagrammatic flowchart of symmetric key cryptosystems.

3.1. Transform-Based Encryption Algorithm

After the demonstration of DRPE, the optical encryption algorithms have attracted
the attention of researchers due to various advantages they have shown over digital
counterparts. The DRPE architecture was studied extensively and has been extended in
various other transform domains, such as Fractional Fourier, Hartley, Fraction Hartley,
Mellin, Fractional Mellin, Gyrator and Fresnel [23-27]. Some optical image encryption
algorithms using the wavelet approach, such as discrete wavelet transform, Haar wavelet
transform and wavelet fusion [28-33], have also been introduced.

3.2. Chaos-Based Symmetric Encryption

In encryption algorithms, decryption keys are the backbone of the cryptosystem. So,
the key space should be large enough such that it cannot be breached in real time with
existing computation methods and software. To improve the security of symmetric en-
cryption algorithms, chaotic maps seem like good candidates due to their overall stability
and local instability and their sensitivity to initial values and parameters. These properties
of chaotic maps help to increase the key space and provide an additional layer of secu-
rity. To apply a chaotic map, an image is divided into multiple blocks of equal lengths
and then each block is shuffled according to the sequence generated by the chaotic map.
Parameters and initial values act as decryption keys in the cryptosystem. Chaotic maps are
highly sensitive to the initial values and parameters, which makes them difficult to predict
without knowledge of the correct value of the initial value and parameter. Researchers
have proposed optical image encryption algorithms using Logistic, Cosine, Rational, 2-D
Lorenz, Baker, Arnold cat, Chen chaotic, Exponential, Umbrella, Tinkerbell, Gauss, Henon
map, 3-cell CNN system, Mixed memristive chaotic circuit, Edge map and other chaotic
maps [34-49]. For example, to generate the Tinkerbell map, the following equations can
be used:

Xpi1 = X2 — Y2 +aX, +bY, ?)
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Y1 = 2Xu Yy + cXp + Yy (8)

Here, X and Y are the two chaotic Tinkerbell sequences, whereas the constants a, b, ¢
and d are the control parameters which serve as the keys. The initial values (X, Yo, 4, b, c,
d) affect the generation of two chaotic sequences [50]. The attractor of the Tinker bell map
is shown in Figure 6.

Tinkerbell map

0ar

0aF

bl

A5t J

2 .
-15 -1 05 0 04
Hn

Figure 6. Attractor of the Tinkerbell chaotic map.

3.3. Pixel Diffusion-Based Symmetric Image Encryption

To further improve the security of symmetric cryptosystems, researchers imple-
menteda pixel diffusion process in the DRPE-based algorithms. Various algorithms are used
to diffuse the pixels such as the bit XOR operator, block-level diffusion, bit-level diffusion
using Brownian motion, S-box-based diffusion, Cellular automata, chaotic maps, cyclic
modulo operators, pixel adaptive and DNA-based diffusion process [29,50-56]. However,
with time, it was found that the linear nature of DRPE architecture makes it vulnerable
to cryptographic attacks such as known plaintext and chosen plaintext attacks. This has
further prompted the researchers to find an alternative and design more sophisticated
optical cryptosystems, i.e., asymmetric cryptosystems.

4. Asymmetric Encryption Algorithm

The vulnerability of symmetric cryptosystems to various cryptographic attacks led to
the development of optical asymmetric techniques in which encryption and decryption are
different. In these algorithms, decryption keys are generated during the encryption process
and depend on the input plaintext. Phase truncation and phase reservation in Fourier
transform (PTFT) was the seminal work in this direction [57]. However, the relationship
between the ciphertext and private key leads the PTFT-based encryption algorithm to
be vulnerable to special iterative attacks [58]. To improve the security of this method,
hybrid opto-digital optical cryptosystems have been developed based on mathematical
decompositions, such as equal modulus decomposition, random modulus decomposition,
unequal modulus decomposition, polar decomposition, QZ decomposition, elliptic curves
and many other operators [59-67]. This integration of mathematical decomposition with
optical techniques is very effective in designing the sophisticated optical cryptosystems
which are robust to various attacks. Some of these are discussed in detail in the following
sub-sections. A general flowchart of an asymmetric cryptosystem is shown in Figure 7.
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Figure 7. Schematic flowchart of an asymmetric cryptosystem.

Decryption
Algorithm

Decrypted Image

4.1. Phase Truncation and Phase Reservation in Fourier Transform

The phase truncated Fourier transform (PTFT) algorithm was proposed by Qin and
Peng [57]. In PTFT, two random phase masks like DRPE are used in the spatial domain
and Fourier domain of a 4-f setup. The two decryption keys that are dependent on the
plaintext and are different from the public keys are generated using the phase truncation
approach. PTFT is further extended in other transform domains as well [60]. The complete
PTFT operation can be performed as follows:

(a) Encryption process

Step 1: The plaintext image I(x,y) is modulated with a random phase mask (RPM)
and Fourier transformed (FT). Mathematically, it can be represented as:

Ey = FT(I(x,y) x RPM) )

Step 2: The output of Step 1 is subjected to the phase truncation and phase reservation
process. The phase truncated part acts as the ciphertext of the cryptosystem, whereas the
phase reserved part acts as the private key of the cryptosystem. Mathematically, Step 2 is
discussed in Equations (10) and (11). The schematic flowchart of the encryption process of
the PTFI-based cryptosystem is depicted in Figure 8.

C = PT(E) (10)

Privatekey = PR(Eq) (11)
(b) Decryption process

The decryption process of the PTFI-based cryptosystem is discussed as:

Step 1: The private key and ciphertext are combined and propagated through the
Fourier transform. Mathematically, the decryption process is discussed in Equation
(12). Figure 9 depicts the schematic flowchart of the decryption process of the PTFT-
based cryptosystem.

Dy = FT(Privatekey + C) (12)



Photonics 2024, 11, 99

10 of 22

RPM 1

Fourier

|-
Transform o PTFT

Ciphertext

Input Image

Private Key

Figure 8. Schematic flowchart of the encryption process of a PTFT-based cryptosystem.
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Decrypted Image

rlvte ey

Figure 9. Schematic flowchart of the decryption process of a PTFT-based cryptosystem.

For a computational demonstration of the PTFT-based encryption, a sample MATLAB
code is given in the Supplementary Material.

4.2. Equal Modulus Decomposition

In 2015, Cai et al. proposed equal modulus decomposition (EMD) to solve the silhou-
ette problem [68]. When EMD is applied on an image, it decomposes the signal into two
complex masks of equal moduli, i.e., P; and P; one acts as a private key of the cryptosystem
and the other is either further processed in the cryptosystem or acts as a private key [69-71].
To discuss the basic principle of equal modulus decomposition, an input image I(x, y) of
the Cameraman is bonded with a random phase mask (RPM) and transformed through the
Fourier transform. The output obtained after the Fourier transform is decomposed using
EMD. The principle of EMD is depicted in Figure 10. The flowchart of a cryptosystem
based on EMD is demonstrated in Figure 11 and can be mathematically represented by
Equations (13)—(15).

I'(u,v) = FT{I(x,y) x RPM} (13)

A(u, v)eig(”zv)
1= 2cos(¢@(u,v) — 0(u,v))
Al(u,v)el2e(wo)=0(u0)
2™ 2cos(p(u,v) — 0(u,0))

(14)

(15)
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Ima

Pi(u,v)

Figure 10. Graphical representation of the principle of equal modulus decomposition.

Ciphertext (P,)

0(u)

Decrypted image

Input image

Private Key (P)

Private Key (Py)

(a) (b)

Figure 11. Basic flow chart of the (a) encryption and (b) decryption process of EMD.

Here, FT represents the Fourier transform, ¢(u,v) = arg(l/(u,v)), and
A(u,v) =|I'(u,v)|. Choose 8(u, v), a random function which is distributed between [0, 277],
to decompose I'(u,v) into the equal moduli P; and P, given in Equations (14) and (15). The
inverse of the equal modulus decomposition is given by Equation (16).

I'(u,0) = Py(u,v) + Py(u,v) (16)

I(x,y) = IFT(I'(u,v)) (17)

We have provided a MATLAB implementation of equal modulus decomposition in
the Supplementary Material.

4.3. Random Modulus Decomposition

In random modulus decomposition (RMD), unlike in the EMD, the input signal
is decomposed into two unequal random moduli. Suppose I(x,y) is the input image
scrambled with a random phase mask (RPM) and propagated through the Fourier lens. The
output obtained in the Fourier transformed signal is decomposed into two parts, P; and P,
by virtue of random modulus decomposition, as illustrated in Figure 12. The flowchart of
the basic cryptosystem based on RMD is depicted in Figure 13 [72].
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Py

Figure 12. The geometrical representation of random modulus decomposition.

Ciphe

RPM

Ciphertext (P5)

FT

! ) R
Input image

- ﬁw

Decrypted image

(b)

(a)

Private Key (P;) Private Key (Pl)

Figure 13. Basic flow chart of the (a) encryption and (b) decryption process of EMD.

Mathematically,
I/(u,v) = FT(I(x,y) x RPM) (18)

The input image can be decomposed into two random complex parts, P; and P,.
Mathematically, the random modulus decomposition is described in Equations (19)-(21).

[P1, Pa] = RMD, 5(I/(x,)) (19)
Pi1) = S s espliglu) —a) (20)
o) = S (o) + ) e

Here, A(u) =|I/(x,y)| and ¢(u) = arg(I/(x,y)) are the amplitude and argument of
the input image. Let &« and B be random phase masks having values in the interval [0, 277].
The inverse of random modulus decomposition is given by Equation (22).

I'(u,v) = Py(u,0) + Pp(u,v) (22)

I(x,y) = IFT(I'(u,v)) (23)

A simple demonstration of the above-discussed part for random modulation decom-
position using MATLAB is given in the Supplementary Material.

4.4. Unequal Modulus Decomposition

This is a decomposition technique that divides a one- or two-dimensional signal into
two signals having unequal phases and amplitudes. The unequal modulus decomposition
is unlike that of the EMD or RMD and decomposes the input signal into two unequal
moduli. Suppose F(x,y) is the input image that is diffused with a random phase mask
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(RPM) and propagated through the Fourier lens. The output obtained in the Fourier
transformed signal is divided into two parts, F; and F, by virtue of unequal modulus
decomposition, as discussed in Figure 14. The flowchart of a basic cryptosystem based on
UMD is depicted in Figure 15 [62,73-75]. Mathematically,

Fr(u,v) = FT(F(x,y)*RPM) (24)

Figure 14. Geometrical representation of unequal modulus decomposition (UMD).

Ciph

(F2)

RPM

oo

Input image

Ciphertext (F;)

Decrypted image

Priey (Fy)
(a) (b)
Figure 15. Basic flow chart of the (a) encryption and (b) decryption process of UMD.

The phase and amplitude of F/(u, v) are given by 6 = arg[F/(u,v)] and A =|F/(u,v)|,
repectively. a(u,v) and B(u, v) are two randomly generated functions in the interval [0, 27].
Mathematically, the decomposition of the signal is given in Equations (25) and (26).

_ Asin(p—6) ,

1= sin(B —a) (25)
_ Asin(0 —a)
= @

The notational representation of unequal modulus decomposition is discussed in
Equation (27).

[Fy (11,0), Ea 1, 0)] = UMD, g[F(u,0)] 7

where UMD, g describes the unequal modulus decomposition function with the randomly

generated functions a(u,v) and B(u, v) in interval [0, 27].
The inverse of unequal modulus decomposition is given by Equation (28).

I'(u,0) = F(u,v) + F(u,v) (28)

I(x,y) = IFT(I'(u,v)) (29)



Photonics 2024, 11, 99

14 of 22

4.5. Polar Decomposition

The polar decomposition (PD) [76-79] is a process of decomposing a system into
linearly independent factors. The PD of an image, A(x,y), of the size M x N, is given in
Equation (30).

PD(A(x,y)) = [RU V] (30)

A(x,y) = RxVorU xR (31)

where U and V are symmetric, positive definite matrices of the size M x N and are known
as stretching matrices. R is a rotational matrix of the size M X N. A symmetric, posi-
tive definite matrix (UorV') and the rotational matrix (R) can be used to reconstruct the
input matrix A(x,y). Figure 16 demonstrates the geometrical representation of polar de-
composition. This kind of decomposition gives the freedom to design multiuser optical
encryption and authentication platforms, which can have several real-time applications.
The MATLAB implementation of the polar decomposition of an image is given in the
Supplementary Material.

Rotation \ Stretching
\
R U

A VA PN
A

Stretching
\Y

A=R*U
or
Rotation A=V'R

R

1<
ST

Figure 16. A geometrical illustration of polar decomposition.

5. Other Optical Encryption Algorithms

Interference- [80,81], ghost imaging- [82,83] and holography [84-86]-based encryp-
tion algorithms represent innovative approaches to securing digital information, with
applications ranging from communication to image protection [87-93]. Interference-based
encryption harnesses the principles of wave interference, exploiting the complexity intro-
duced by superimposing multiple light waves to encode information in a manner that
id difficult to decipher without the correct key [94-103]. A schematic of optical image
encryption is given in Figure 17. Here, two phase modulated masks, M1 and M2, are
illuminated with a coherent source of light and interfered to obtain the final encrypted
image in the output plane.

Ghost imaging, on the other hand, involves capturing information through corre-
lated intensity measurements of entangled photon pairs, providing a novel means of
encryption that leverages quantum properties [104-113]. Holography-based encryption
relies on the creation and reconstruction of holograms to encode and decode
information [114-123]. These holographic encryption methods offer unique advantages,
such as resistance to certain types of attacks and the ability to secure information in various
modalities, contributing to the growing landscape of advanced cryptographic techniques
in an era where data security is paramount [124-131]. The polarization properties of light
provide another dimension for designing secure optical cryptosystems [132-134]. Recently,
the physical random patterns or physically unclonable functions, i.e., optical speckles, have
also been studied and explored to develop enhanced optical cryptosystems [135-138].
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Figure 17. Optical image encryption using interference.

6. Attacks and Cryptanalysis

The development of new security methods and the attacks on them always go hand in
hand. The study of cryptanalysis involves analyzing the operations of cryptosystems to
achieve the correct decryption of data without using actual keys. The aim of cryptanalysis
is to improve algorithms by identifying their weaknesses. To address the security issues
of a cryptosystem, it is necessary to understand Kerckhoff’s principle. It states that a
“cryptosystem should be secure even if the attacker has access to everything except the
security key”. It was formulated at the end of the nineteenth century by the Dutch cryptog-
rapher Auguste Kerckhoff. In the field of optical security, the first attack on DRPE-based
architecture was proposed by Peng et al. in 2006 [139]. Gopinathan et al. [87] also proposed
a known plaintext attack on DRPE. After that, the inherent linearity of DRPE has been
exploited by many to design various attacks for DRPE-based algorithms [140-145]. After-
wards, the asymmetric algorithms based on PTFT, EMD, RMD, UMD, polar decomposition,
interference and various other methods have been reported. But sooner or later, some
weakness of these methods have also been found, and some iterative and special iterative
attacks have been designed to break them [6,146-153]. The MATLAB code for a simple
chosen plaintext attack on the DRPE method using the Dirac delta function is given in the
Supplementary Material.

7. Future Scope

As we know, in the future, more and more data will be generated, and data breaches
by unauthorized individuals are inevitable. The current security protocols are not enough
to fulfill the demands of the modern world. Thus, more sophisticated secure transmission
protocols need to be developed. So, there is a scope for enhancement in the security of
image encryption algorithms. Therefore, in the upcoming years, researchers could continue
the research by using cutting-edge technology and countering the available challenges.
The following are a few directions and potential candidates which can be integrated with
optical methods and could provide the necessary solutions to the coming challenges in the
field of security:

e  Machine learning and Al in encryption: The integration of artificial intelligence (AI)
and machine learning (ML) algorithms into an optical encryption system represents
a promising avenue for bolstering security. By leveraging these technologies, en-
cryption algorithms can be elevated to a new level of sophistication, dynamically
adapting to the characteristics of image data and thereby increasing resilience against
decryption attempts. ML's prowess in pattern recognition is harnessed for anomaly
detection, enabling the identification of potential threats or unauthorized access. Fur-
thermore, Al contributes to optimal key management, continuously analyzing usage
patterns and recommending adjustments to fortify the encryption system. Real-time
threat adaptation and behavioral analysis enhance the system’s ability to respond
to evolving risks, while adversarial machine learning techniques can anticipate and
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counteract specific attacks targeting the security of image data. In addressing quan-
tum computing challenges, Al and ML also play a role in developing quantum-safe
encryption methods, ensuring the enduring security of image information. Careful
consideration of ethical implications and robust testing accompanies the implementa-
tion of these advanced technologies to ensure the reliability and effectiveness of the
encrypted systems.

Multi-modal fusion: Integrating optical image encryption with other modalities, such
as infrared or hyper-spectral imaging, offers a promising approach to fortifying the
overall security of the encryption process. The synergy of different imaging modalities
through multi-modal fusion introduces additional layers of complexity, significantly
heightening the challenge for unauthorized entities attempting to decipher encrypted
information. By combining optical encryption with diverse imaging techniques, the re-
sulting system becomes more resilient to decryption attempts that rely on understand-
ing a singular mode of information. This multi-modal approach not only enhances
security but also broadens the range of potential applications, catering to scenarios
where different imaging modalities may provide complementary benefits. As tech-
nology evolves, leveraging multi-modal fusion in image encryption underscores a
proactive strategy in adapting to emerging threats and ensuring the robustness of
secure information transmission.

Optical communication networks: The increasing prevalence of high-speed optical
communication networks is driving a growing demand for efficient and secure optical
image encryption methods. This demand is particularly pronounced in critical applica-
tions such as secure data transmission within optical communication systems, medical
imaging, military communications and various other domains where the confidential-
ity and integrity of transmitted visual information are paramount. Efficient optical
image encryption not only safeguards sensitive data but also ensures the seamless
flow of secure information in fast-paced communication environments. The adoption
of robust encryption techniques becomes crucial as these technologies play pivotal
roles in diverse sectors, ranging from healthcare to defense, underlining the broader
societal implications of advancing secure optical image transmission methods.
Blockchain integration: The integration of optical image encryption with blockchain
technology presents a compelling solution for secure image storage and transmission.
By leveraging blockchain’s decentralized and tamper-resistant nature, the combination
ensures the integrity and authenticity of encrypted images. Blockchain’s distributed
ledger technology creates an immutable record of transactions, making it extremely
challenging for unauthorized entities to tamper with or alter the encrypted images.
This decentralized approach enhances security by eliminating single points of fail-
ure and reducing the risk of malicious interference. Moreover, the transparent and
traceable nature of blockchain adds an extra layer of trust, providing a verifiable
history of image transactions. This innovative fusion of optical image encryption and
blockchain technology not only strengthens data security but also aligns with the
growing emphasis on decentralized and transparent solutions in various industries.
Biometric encryption: Integrating optical image encryption with biometric authentica-
tion methods offers a potent enhancement to security by introducing a user-specific
identification layer. This approach involves incorporating biometric features such
as fingerprints, iris scans, or facial recognition to control access to encrypted images.
By tying encrypted image access to unique biometric data, the system ensures that
only authorized individuals with verified biometric credentials can decrypt and view
sensitive visual information. This not only strengthens the overall security posture
by adding a personalized layer of authentication but also mitigates risks associated
with unauthorized access or data breaches [154]. The combination of optical image
encryption and biometric authentication aligns with the trend toward multifactor au-
thentication and provides a robust solution for safeguarding visual data in applications
ranging from secure communications to access-controlled image repositories.
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8. Conclusions

In conclusion, the security of information stands as a critical imperative in the con-
temporary era, prompting a continual exploration of advanced encryption methodologies.
Optical encryption algorithms emerge as particularly noteworthy in this context due to
their high-speed and multi-dimensional processing capabilities. This study presents a
comprehensive review of optical image encryption algorithms, as proposed in the literature,
analyzing the trends in their growth over time. Drawing upon data collected from reputable
sources such as Google Scholar, IEEE Library, and Science Direct, the manuscript provides
an in-depth examination of the evolution of optical cryptosystems since their inception.
The focus on symmetric and asymmetric cryptosystems in the literature underscores the
diverse approaches taken to enhance security. The summary of state-of-the-art works
highlights the progress made in this field, while acknowledging the current and future
challenges provides valuable insights for ongoing research and development in optical
image encryption algorithms. This study contributes to the broader understanding of
securing digital information and lays the groundwork for future advancements in optical
encryption technology.
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