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Abstract: In this study, we developed a wide and deep network-based nonlinear equalizer to
compensate for nonlinear impairment in coherent optical communication systems. In our proposed
equalizer, the power feature factor and inter-symbol feature sequence in the received signal are
analyzed by two combined networks, wide and deep, respectively, so that the information contained
in the signal can be fully utilized. We designed an experiment using a 120 Gbit/s 64-quadrature
amplitude modulation (64-QAM) coherent optical communication system over a 375 km standard
single-mode fiber (SSMF) to verify the performance of the proposed wide and deep network-based
nonlinear equalizer. The experimental results showed that the proposed wide and deep network-
based nonlinear equalizer achieved better performance at lower complexity compared with the
traditional neural network-based nonlinear equalizer. The proposed equalizer significantly improved
the equalization effect at a cost of a 0.3% increase in parameters, which indicates the potential of the
proposed method for application in coherent optical communication systems.

Keywords: wide and deep learning; nonlinear equalizer; coherent optical communication system

1. Introduction

With the development of technology, modern society has become increasingly depen-
dent on the Internet. Advances in digitization have led to an increasing demand for the
capacity and quality of data transfer. Ensuring the capacity of fiber optic communication
technology, a pillar of data transmission, is one of the greatest challenges [1–5]. The coher-
ent optical communication technology transmission system is widely used in long-distance
transmission because of its higher multiplexing efficiency compared with the intensity
modulation–direct detection (IM-DD) system [6,7]. However, nonlinear effects limit the
performance of high-speed coherent optical communication systems [8]. Nonlinear phase
noise, expressed as the nonlinear Schrödinger equation, is proportional to signal power [9].

High-power optical signals are inhibited by the interference of nonlinear effects [10].
The high-order modulation technique is an effective method for improving the transmis-
sion capacity of transmission systems since the fiber nonlinearity problem in the optical
network has a considerably greater impact on system transmission compared with the
general modulation method. In such ways, solving nonlinear disturbances in transmission
systems is of great significance for improving the performance of fiber optic communica-
tion systems [11]. Otherwise, signal constellation points show serious overlapping and
nonlinear deflection, especially peripheral constellation points, which are more sensitive to
nonlinear effects and prone to more serious nonlinear distortions than central points [12,13].
In Ref. [14], the authors studied constellation points that could not be correctly classified
using the machine learning-based nonlinear equalization algorithm. The authors proposed
an equalization strategy based on constellation diagram segmentation to improve the
accuracy of the machine learning-based nonlinear equalization algorithm. In Ref. [15], the
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authors proposed a recurrent neural network-based equalization technique that analyzes
interdimensional interference to improve optical transmission performance. The results
indicated the potential of a neural network-based equalizer to provide a new means of
solving interference issues in multimode transmission systems. The experimental results
showed that current symbol I-channel data and Q-channel data have the greatest influence
on the current symbol classification. In [16], the authors utilized the attention mechanism to
study and understand the contribution of each input symbol in the input feature sequence
and its corresponding data to the predicted symbols in a nonlinear equalizer based on a
bidirectional recurrent neural network (Bi-RNN). The experimental results showed that the
current symbol I-way data and Q-way data, as well as the nearest-neighbor symbol I-way
data and Q-way data, received great attention and had the greatest impact on the results
of the equalizer. The results of the above two studies demonstrated that the power of the
current symbol has a significant influence on the results of machine learning techniques
used for nonlinear equalization of signals. Therefore, when using machine learning tech-
niques (especially neural networks) for the nonlinear equalization of signals, the power of
the signals should be included as a unique feature factor that has a significant impact on
the results.

Among the current neural network-based nonlinear equalization schemes, the target
symbol is usually combined with its preceding k and following k symbols to form an
input feature sequence of the current symbol, which contains the power of the symbols
together with the nonlinear interference relationship between the symbols [17]. Using
neural networks to process the sequence of signal features is equivalent to gradually fusing
and extracting the relationships between the features, in which the depth of the latter
is well condensed. However, the breadth of the features (e.g., the power of the current
signal) may be weakened during gradual feature fusion and extraction, which then impacts
the nonlinear equalization results [18–20]. It has been shown that inter-channel crosstalk
in wavelength division multiplexing WDM systems significantly affects transmission
capacity and transmission distance. Compensating for the nonlinear impairments generated
between channels is helpful in improving system’s performance [21].

The low latency requirements of fiber optic communication systems for the transceiver
side somewhat limit the complexity of digital signal processing on the receiver side. Equal-
izers with low complexity and high performance are in line with the needs of high-speed
mode division multiplexing systems. In Ref. [22], the authors proposed a probability
distribution equalizer based on neural networks, which effectively compensates for ran-
dom impairments in the OAM system and improved the performance of the system with
lower complexity. The results demonstrated the demand for nonlinear compensation in
OAM systems and provided a research direction for the design of low-complexity, high-
performance equalizers.

This paper proposes a nonlinear equalization method based on the wide and deep
architecture, which uses both wide and deep networks to process the power feature factor
of the current symbol and the feature sequences containing the nonlinear interference
relationship between symbols in parallel. The wide network focuses on the power of
the current symbol, which is a unique feature factor that is important for determining
the results. Deep networks, meanwhile, process feature sequences that include nonlinear
interference relationships between symbols. The results of the two networks are combined
to provide the final nonlinear equalization results. By using the wide and deep architecture,
both the depth and breadth information of the signal’s features can be fully utilized. In
this study, we analyzed the effects of the proposed method on system performance by
comparing the Q-factors of various equalizers. The complexity of the proposed equalizer
was analyzed by comparing the number of parameters calculated and the number of
multipliers to verify the performance and efficiency of the equalizer.
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2. Principles

Figures 1 and 2 present the architectures of the wide and deep learning-enhanced
nonlinear equalizer for coherent optical communication systems. Figure 1 illustrates the
design of the wide and deep CNN-based nonlinear equalizer, while Figure 2 demonstrates
the structure of the wide and deep BiGRU-based nonlinear equalizer. In this section, we
describe the details of these two contributing equalizers and evaluate the computational
complexity of the proposed overall wide and deep learning-aided nonlinear equalizer.
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2.1. Wide and Deep CNN-Based Nonlinear Equalizer

As shown in Figure 1, the structure of the wide and deep CNN-based nonlinear
equalizer consists of the wide component, the deep component-CNN, a linear layer, and an
output layer.

The wide component is a generalized linear model of the form yW = wWxW + bW, as
shown in the bottom left corner of Figure 1, where xW is the input of the wide component,
xW = [Ii, Qi], xW contains two values (data of in-phase (I) and quadrature (Q) components
of the i-th M-QAM signal for the received M-QAM signal sequence), wW is the weight
matrix of the input xW, bW is the bias matrix, and yW is the output of the wide component,
which consists of xw and variable parameters in the network and memorizes the power
information of the M-QAM signal.

The deep component is a convolutional neural network (CNN), as shown in the
bottom right corner of Figure 1. Our previous work [23] described the structure of the
CNN in detail. The dimensions of xD are mainly related to the receiving sequence. We
use the sliding window length of S to intercept the receiving sequence and then calculate
the position relationship between each value in the intercepting sequence. Because of the
real part and the imaginary part, the third term was 2. Thus, the dimensions of xD were
S × S × 2. Choosing a large S allowed for including more values in the calculation, which
benefited the equalization performance. However, a large S can also introduce issues of
complexity. Considering the trade-off between performance and complexity, we set S at
11 to achieve better performance with acceptable complexity. After determining the value
of S, the dimensions of xD were 11 × 11 × 2.The 11 × 11 × 2 input feature map xD was
composed of intra-channel cross-phase modulation (IXPM) and intra-channel four-wave
mixing (IFWM) triplets in the M-QAM signal. Then, the 11 × 11 × 2 input feature map xD
contained the information on the inter-symbol interferences of the current polarization and
the other polarization of the M-QAM signal. Two convolutional layers were used to extract
information on the input feature map layer by layer. Our previous work [24] demonstrated
the performance of the convolution part of the neural network. The main point of setting the
parameters of the convolutional layers is the trade-off between performance and complexity.
The kernel size and number of layers are related to the complexity of equalization, which
will be discussed in detail in Section 2.3. The input feature map was 11 × 11 × 2, while the
output feature map of the convolution part was 1 × 1 × C, where C is a variable parameter
of the convolutional layer. Thus, we followed the previous convolutional layer structure.
In the first convolutional layer, the kernel size was 6 × 6, and the number of channels was
16; thus, the size of the output feature map was 6 × 6 × 16. In the second convolutional
layer, the kernel size was 6 × 6, and the number of channels was 128; thus, the size of the
output feature map was 1 × 1 × 128.

The outputs of the wide component yW and the deep component-CNN yD are fully
connected to the linear layer. The number of nodes in the linear layer is the same as the num-
ber of classes of the M-QAM signals. Then, the linear layer outputs the probabilities that
the current signal maps to each class. Finally, the output layer outputs the corresponding
predicted class Y of the current signal with the maximum probability.

Building on our previous work [23], the operation of the wide component and the full
connection of the deep component-CNN output to the linear layer are added.

2.2. Wide and Deep BiGRU-Based Nonlinear Equalizer

As shown in Figure 2, the structure of the wide and deep BiGRU-based nonlinear
equalizer consists of the wide component, the deep component-BiGRU, a linear layer, and
an output layer.

The wide component is a generalized linear model represented by the formula
yW = wWxW + bW, as shown in the bottom left corner of Figure 2. This model plays
a crucial role in capturing and preserving the power information of the M-QAM signal.
The input to the wide component, xW = [Ii, Qi], xW contains two distinct values: data on
the in-phase (I) and the quadrature (Q) components of the i-th M-QAM signal within the
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received M-QAM signal sequence. The weight matrix of the input xW wW, and the bias
matrix bW are parameters that are fine-tuned during the training process.

The deep component is a bidirectional gated recurrent unit (BiGRU) neural network,
as shown in the bottom right corner of Figure 2. Our previous work [23] described the
structure of the BiGRU neural network in detail. The 2k + 1 input feature sequence xD is
composed of the data on the I and Q components of the current M-QAM signal and its k
preceding and k succeeding symbols. Then, the 2k + 1 input feature sequence xD contains
the information on the inter-symbol interferences in the M-QAM signal. The BiGRU layer
consists of two GRU units that operate in opposite directions, making it bidirectional. This
allows information from both the future and the past to influence the current states. The
recurrent time step of the BiGRU model was set to 2k + 1. As a result, the output of the
BiGRU layer yD contained the flow of symbol information across the recurrent time steps.

The wide component’s output yW and the deep component-BiGRU’s output yD are
both fully connected to the linear layer. The number of nodes in the linear layer is set
to match the number of classes in the M-QAM signals. The linear layer then computes
the probabilities that the current signal belongs to each class. Finally, the output layer
determines the predicted class Y of the current signal based on the maximum probability.

Building on our previous work [23], the operation of the wide component and the full
connection of the deep component-BiGRU output to the linear layer are added.

2.3. Complexity Analysis

In this section, we describe in detail our proposed wide and deep learning-aided
nonlinear equalizer by examining its computational complexity. Our analysis centers
on two primary factors: the number of parameters in the neural networks utilized in
the equalization process, and the number of multiplications required for the nonlinear
equalizer during the equalization of each M-QAM symbol.

In the wide and deep CNN-based nonlinear equalizer, the parameters of the nonlinear
equalizer consist of three main parts: the parameters of the wide component, the kernel
size and layers of the deep component-CNN, and the length of the linear layer. The number
of parameters of the wide component was set at 6. Based on the kernel size and the number
of layers in the deep component-CNN layer, the number of parameters in the second part
is given by ∑D

l=1(Kl · Cin,l · Cout,l). Here, D and l represent the count and sequential order
of the convolutional layers, respectively. K denotes the convolution kernel size, while Cin
and Cout represent the number of input and output channels for each convolutional layer.
The number of parameters in the linear layer was calculated as 2 × M + Cout,D × M, where
M represents the length of the linear layer, and Cout,D is the output of the convolutional layer.
Thus, the number of parameters in the wide and deep CNN-based nonlinear equalizer
was 6 + ∑D

l=1(Kl · Cin,l · Cout,l) + 2 × M + Cout,D × M. When compared with our previous
work [23], only 6 + 2 × M parameters were added.

The computational demands of the wide and deep CNN-based nonlinear equalizer,
in terms of the number of multiplications required for each M-QAM symbol, encompass
three primary components: the multiplications in the wide component, those in the deep
component-CNN, and the multiplications in the linear layer. There were four multiplica-
tions in the wide component because there were only four weights among the six parame-
ters that required multiplications for their implementation. The multiplications in the deep
component-CNN were calculated as ∑D

l=1(Ol · Kl · Cin,l · Cout,l), where D and l represent
the number and numerical order of convolutional layers, O denotes the size of the feature
vector output from each convolution kernel, K represents the kernel size for convolution,
and Cin and Cout denote the input channels and output channels for each convolutional
layer. Multiplications of the linear layer were performed using 2 × M + Cout,D × M. There-
fore, the cumulative number of multiplications required for the wide and deep CNN-based
nonlinear equalizer was 4 + ∑D

l=1(Ol · Kl · Cin,l · Cout,l) + 2 × M + Cout,D × M. Compared
with our previous work [23], only 4 + 2 × M multiplications were added, which was due
to the wide component and the output neural layer in its output feature map. In terms of
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analyzing the interactions between symbols, the input feature map of the deep component
is usually a multiple of the feature map input to the wide component, which signifies that
the convolutional layer will require more multiplications to analyze the input feature map.

In the wide and deep BiGRU-based nonlinear equalizer, the number of parameters
in the nonlinear equalizer encompasses the parameters of the wide component, those of
the deep component-BiGRU, and the length of the linear layer. It is worth noting that the
wide component in the wide and deep BiGRU architecture was identical to that of the wide
and deep-CNN. We used the same wide component parameter settings, so the number of
parameters of the wide component was set at 6.

The wide and deep BiGRU-based nonlinear equalizer required a specific number of
multiplications for each M-QAM symbol to achieve equalization. These multiplications are
primarily attributed to the wide component, the deep component-BiGRU, and the linear
layer. Here, the wide component required a multiplication count of 4.

The number of multiplications of the deep component-LSTM was 2×4×
(
FH + H2 + 2H

)
,

where F denotes the size of the input feature and H denotes the state of hidden layer ht at moment
t. The number of multiplications of the linear layer was 2× M + 2HM + M. Consequently, the
number of parameters required for the wide and deep BiGRU-based nonlinear equalizer was
6+ 2× 4×

(
FH + H2 + 2H

)
+ 2× M + 2HM + M.

For the multiplications, the wide and deep BiGRU-based nonlinear equalizer requires
three main components to equalize each M-QAM symbol: the number of multiplications in
the wide component, the multiplications required in the deep component-LSTM, and the
number of multiplications in the linear layer. The number of multiplications of the wide
component was 4 since two bias parameters only needed adders. The number of multiplica-
tions of the deep component-LSTM was 2 ×

[
4 ×

(
FH + H2)+ 3H

]
× L, where L denotes

the number of convolutional layers. The number of multiplications of the linear layer was
2× M + 2HM. Thus, the number of multiplications required for the wide and deep BiGRU-
based nonlinear equalizer was 4 + 2 ×

[
4 ×

(
FH + H2)+ 3H

]
× L + 2 × M + 2HM. It was

found that there was only an additional 4 + 2 × M increase in the complexity. The increases
in complexity were the same in the wide and deep BiGRU and the wide and deep CNN.
However, the deep component required more multiplications in the BiGRU network than
in the CNN network for general purposes. These results indicate that wide components are
more efficient in the BiGRU network, meaning it has greater significance than the CNN
network for equalization.

3. Experimental Setup

Figure 3 illustrates the experimental setup for a 120 Gb/s 64-QAM coherent optical
communication system that transmits over a distance of 375 km.
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Figure 3. Experimental setup for a 120 Gb/s 64−QAM coherent optical communication system of
375 km transmission distance.

The transmitting end consists of several components, including an external cavity laser
with a nominal linewidth of 100 kHz, an in-phase/quadrature (I/Q) modulator, an arbitrary
waveform generator (AWG) with a sampling rate of 25 GSa/s, two electric amplifiers (EAs),
a polarization-division-multiplexing (PDM) module, and a variable optical attenuator
(VOA). The 64-QAM symbol data are generated using a MATLAB program and then
uploaded to an arbitrary waveform generator (AWG) to obtain an analog signal. The
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output of the two analog signals outputted from the AWG are amplified by the two EAs,
and they will then be sent into the I/Q modulator. The light source generated by the
ECL is fed to the I/Q modulator. After receiving the light source, the I/Q modulator
will produce a modulated 64-QAM optical signal that is then fed into the PDM module
for polarization multiplexing. The PDM module comprises five essential components: a
polarization-maintaining optical coupler (PM-OC), an optical delay line, a polarization
controller (PC), a polarization beam combiner (PBC), and an Erbium-doped fiber amplifier
(EDFA). Each component plays a crucial role in the polarization multiplexing process.
EDFA is used to amplify the 64-QAM optical signal. The VOA is used to adjust the power
of the 64-QAM optical signal.

The transmission link consists of five spans of standard single-mode fiber (SSMF) with
a total length of 75 km. To compensate for fiber loss at the end of each span, five separate
and independent Erbium-doped fiber amplifiers (EDFAs) are utilized.

At the receiving end, in order to achieve coherent detection, the local oscillator (LO) is
provided by an ECL with a 100 kHz linewidth. The 64-QAM optical signal is detected by
optical polarization and a phase-diversity coherent receiver. A 4-channel digital phosphor
oscilloscope (DPO) with a sampling rate of 100 GSa/s is used to digitize the 64-QAM signal.
The offline digital signal processing (DSP) algorithms encompass a range of operations,
including lowpass filtering, amplitude normalization, chromatic dispersion compensation
(CDC), clock recovery, resampling, the Gram–Schmidt orthogonalizing process (GSOP),
constant modulus algorithm (CMA) equalization, frequency offset estimation (FOE), car-
rier phase estimation (CPE) based on blind phase search, nonlinear equalization, and
64-QAM demapping.

In this experiment, the measured launched optical power range was set from −4 dBm
to 5 dBm. Each dataset of launched optical power contained approximately 220 symbols.
The entire dataset was divided into training and testing data in an 8:2 ratio. The build-
ing, training, and evaluating of the nonlinear equalization models were performed in
PyTorch 1.6.0.

4. Results and Discussion

In this experiment, for each 64-QAM signal, the I-channel data and Q-channel data
of the current 64-QAM signal were set as the first features of the 64-QAM signal data to
construct the first feature sequence corresponding to each 64-QAM signal. The second
feature data, which were used to construct the second feature map of each 64-QAM
signal, were generated by the triple-product term of the current 64-QAM signal. The
value of hyperparameter L denoted the topological charge number of the orbital angular
momentum. During the experiment, the data in mode l = 5 were representative. Thus, in
the following equation, the value of L is set at 5. The second feature unit corresponding to

each 64-QAM signal was as follows: U(i)
Re =


Re

(
F(i)

)−5

−5
· · · · · · Re

(
F(i)

)+5

−5

· · · · · · Re
(

F(i)
)0

0
· · · · · ·

Re
(

F(i)
)−5

+5
· · · · · · Re

(
F(i)

)+5

+5

 and

U(i)
Im =


Im

(
F(i)

)−5

−5
· · · · · · Im

(
F(i)

)+5

−5

· · · · · · Im
(

F(i)
)0

0
· · · · · ·

Im
(

F(i)
)−5

+5
· · · · · · Im

(
F(i)

)+5

+5

, respectively. The second feature map of

each corresponding 64-QAM signal was x(i)D =
[
U(i)

Re ; U(i)
Im

]
of size 11 × 11 × 2.

The deep component CNN model consisted of two convolutional layers. The size
of the convolution kernel of the first layer was 6 × 6 with 16 channels. Thus, the output
feature map was of size 6 × 6 × 16. The size of the kernel in the second layer was 6 × 6
with 128 channels. Thus, the output feature map was of size 1 × 1 × 128.
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Figure 4 displays the relationship of Q-factor and the launched optical power. The
CNN-based nonlinear equalizer (CNN NLE) model with the same structure is used as a
comparison in the figure.
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Figure 4. Relationship between the Q−factor and launched optical power of the 64−QAM signal
with wide and deep CNN NLE.

In the Table 1, we list the number of parameters and multiplications used in the
equalizer when processing the 64-QAM signal with the CNN NLE and wide and deep
CNN NLE.

Table 1. Comparison of the complexity of linear equalizer models.

Nonlinear Equalizer Model Parameters Multiplications

CNN NLE 83,072 123,392
Wide and deep CNN NLE 83,206 123,524

Compared with the CNN NLE, the proposed wide and deep CNN nonlinear equalizer
model achieves better results with only 134 additional parameters and 132 additional
multiplications per symbol. In the model with this parameter setting, complexity increases
by only 0.1%. When the number of parameters in the deep module increases, the complexity
increase ratio is even lower, which demonstrates the lightness of the wide net structure.

In this experiment, the number of adjacent symbols before and after l was set to 11, so
the length of the input feature sequence was 23.

Figure 5 shows the relationship of the Q-factor and the launched optical power. The
Bi-LSTM-based nonlinear equalizer (Bi-LSTM NLE) model with the same structure is used
as a comparison in the figure.

In the Table 2, we list the number of parameters and multiplications used in the
equalizer when processing the 64-QAM signal with Bi-LSTM NLE and wide and deep
LSTM NLE.

Table 2. Comparison of the complexity of linear equalizer models.

Nonlinear Equalizer Model Parameters Multiplications

Bi-LSTM NLE 43,072 794,240
Wide and deep LSTM NLE 43,206 794,372

Compared with Bi-LSTM, the proposed wide and deep LSTM nonlinear equalizer
model achieves better results with only 134 additional parameters and 132 additional
multiplications per symbol. System performance is improved by 1 dB at a cost of 0.016%
in complexity.
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5. Conclusions

In this paper, we have proposed a wide and deep network-based nonlinear equalizer.
A wide network can better capture the power feature factor of a single symbol, while
the deep network processes the feature sequences that contain nonlinear interference
relationships between symbols. To demonstrate the performance of the proposed wide
and deep network-based nonlinear equalizer, an experimental 120 Gb/s 64-QAM coherent
optical communication system with a transmission distance of 375 km was established. In
this experiment, we compared the proposed equalizer with the corresponding network-
based equalizer. The results indicate that the wide and deep network can significantly
improve system performance by approximately 1 dB at a cost of less than 0.1% in complexity.
Because the structure of the Bi-LSTM network is complex, the combination of two networks
in the proposed wide and deep network-based nonlinear equalizer increased the efficiency
of the system. The results show that wide and deep structures have better results on
high-complexity networks, although they are otherwise only equally as effective as other
neural network-based equalizers.
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