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Abstract: Rayleigh Brillouin optical time domain analysis (BOTDA) uses the backscattered Rayleigh
light generated in the fiber as the probe light, which has a lower detection light intensity compared
to the BOTDA technique. As a result, its temperature-sensing technology suffers from a low signal-
to-noise ratio (SNR) and severe sensing unreliability due to the influence of the low probe signal
and high noise level. The pulse coding and LMD denoising method are applied to enhance the
performance of the Brillouin frequency shift detection and temperature measurement. In this study,
the mechanism of Rayleigh BOTDA based on a few-mode fiber (FMF) is investigated, the principles of
the Golay code and local mean decomposition (LMD) algorithm are analyzed, and the experimental
setup of the Rayleigh BOTDA system using an FMF is constructed to analyze the performance of the
sensing system. Compared with a single pulse of 50 ns, the 32-bit Golay coding with a pulse width
of 10 ns improves the spatial resolution to 1 m. Further enhanced by the LMD algorithm, the SNR
and temperature measurement accuracy are increased by 5.5 dB and 1.05 ◦C, respectively. Finally, a
spatial resolution of 1.12 m and a temperature measurement accuracy of 2.85 ◦C are achieved using a
two-mode fiber with a length of 1 km.

Keywords: distributed fiber sensing; brillouin optical time domain analysis; few-mode fiber;
temperature measurement

1. Introduction

Brillouin optical time domain analysis (BOTDA) can be used to measure parameters
such as temperature, strain, and vibration, and it is capable of continuous monitoring
over long distances, with high spatial resolution and measurement accuracy [1–4]. It
has broad application prospects in areas such as electric power, petroleum, aviation, and
health monitoring of large structures [5,6]. BOTDA sensing technology includes two main
structures: double-ended and single-ended. The double-ended BOTDA system requires
a probe light and a pump light to be injected from both ends of the sensing fiber [7–9],
which can lead to complex system architectures and inconvenience in practical engineering
applications. Compared with double-ended BOTDA systems, the Rayleigh BOTDA system
uses the backscattered Rayleigh light generated in the fiber as the probe light, which
still has detection capabilities if the optic fiber breaks [10–12]. Moreover, the single-ended
working mode is more convenient for practical engineering applications. The characteristics
of the single-ended structure make it appear similar to the Brillouin optic time domain
reflectometer (BOTDR), yet their working principles are entirely distinct. Rayleigh-based
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BOTDA operates on the basis of stimulated Brillouin scattering (SBS), whereas BOTDR is
based on spontaneous Brillouin scattering. The signal strength of Rayleigh BOTDA exceeds
that of the BOTDR, but issues with weak signals and high noise levels still persist. With
the increase in sensing distance, the decrease in the signal-to-noise ratio (SNR) will lead
to a reduction in the measurement accuracy. Therefore, we need to look for methods to
improve the performance of Rayleigh BOTDA.

Distributed Brillouin sensing systems mostly use single-mode fiber (SMF) as the sens-
ing fibers. SFMs propagate only in the fundamental mode and have a small core diameters.
Counter-propagating the pump light and probe light can excite SBS, although spontaneous
Brillouin scattering may be excessively amplified by the SBS of the pump or probe light, thus
limiting the input power. These limitations lead to a low SNR and limited sensing distance
for the system. Few-mode fibers (FMFs) are used in distributed temperature measurements
as a new type of optical fiber that is different from ordinary single-mode fibers. Because
FMFs have large core diameters, high SBS thresholds, and transmits a limited number of
orthogonal modes [13,14], it can achieve the sensing of parameters such as temperature,
strain, and bending, and can overcoming the problem of multiparameter cross-sensitivity,
with potential for simultaneous multiparameter measurements [15–18], which has received
widespread attention from researchers [19–21]. When light waves are coupled in FMFs,
different Brillouin scattering spectra (BGSs) will be formed for the optical signals in the
different modes, which react differently to changes in the measurement parameters.

Affected by the constraints of fiber-optic nonlinear effects, such as self-phase modula-
tion, a high level of pulsed incident power can cause excessive attenuation of pulses and
waveform distortion, shorten the sensing distance, and induce measurement errors [22].
An FMF can carry higher levels of pulsed incident power, effectively solving the issue of the
limited pulsed power limitation in single-mode fibers. However, compared to single-mode
fibers, the BGSs are broadened, and the Brillouin peak gain and the Brillouin frequency
shift (BFS) are reduced because of the different incidence angles of the light in the different
modes in the FMFs, as well as the interactions among the multiple modes [23–25]. The
reduction in the Brillouin peak gain further worsens the SNR in single-ended BOTDA
sensing systems; hence, it is urgently needed to find ways to enhance the pump power and
reduce the noise.

Various techniques have been proposed to improve the performance of distributed
Brillouin fiber sensors [26–43]. Among these advanced techniques, methods such as optical
pulse coding [26–28], distributed Raman amplification [29–31], and different signal pro-
cessing methods [32–35] exhibit better performances than classical standard configurations.
Optical pulse coding technology, effectively solves this issue effectively by increasing the
average level of power and the SNR by extending the duration of the pulse sequence, while
maintaining a constant pulse width (equivalent to that of 1 bit in the code) and spatial
resolution. In recent years, artificial intelligence and machine learning (ML) algorithms,
such as deep learning [44], random forest [45], support vector machine [46], artificial neural
networks (ANNs) [47], cascaded feedforward neural networks [48], etc. are applied in
BOTDA systems for BFS extraction and show great superiority both in efficiency and
accuracy. When the SNR is higher than 20 dB, the Lorentzian curve fitting (LCF) can fit the
BGS very well, and its measurement accuracy is comparable to that of ML algorithms [45].
At the lowest SNR observed (e.g., in the presence of digital interference or during the
study or monitoring of special optical fibers), the backward-correlation method performs
comparatively well [49].

In signal processing methods for noise reduction [32–37,50], filtering, wavelet de-
noising, and cumulative averaging are commonly used. Nonlocal means, as well as
block-matching and 3D filtering, have been used to reduce noise by treating the BGS as
a two-dimensional image structure. Subsequent techniques also include the use of deep
learning models [36,44,51], such as ANNs, convolutional neural networks, and others, for
denoising processing. Although the aforementioned methods are quite effective, some
of them are not computationally efficient, others may reduce the spatial resolution of
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the measurements, and some may do not perform well in denoising when dealing with
nonlinear and nonstationary signals. Local mean decomposition (LMD) is an adaptive
and nonparametric time–frequency decomposition method for processing nonlinear and
nonstationary signals [52–54].

In this study, the enhancement in performance by the pulse coding and LMD denoising
of the few-mode Rayleigh BOTDA is experimentally demonstrated. The mechanism of
Rayleigh BOTDA based on FMF is investigated, the principles of the Golay code and
LMD algorithm are analyzed, and the experimental setup of Rayleigh BOTDA system
using FMF is constructed to analyze the performance of the sensing system. The proposed
method can effectively increase the signal power and reduce the noise in the sensing
signal, thereby improving the spatial resolution and SNR, and ultimately, improving the
measurement accuracy.

2. Principles and Method
2.1. Rayleigh BOTDA with FMF

In a double-ended BOTDA system, the pulsed pump light and the continuous light
need to be injected into the fiber from opposite ends, whereas in the Rayleigh BOTDA
system [11], they only need to be injected from the same end of the fiber. The continu-
ous light and the pulsed pump light enter into the sensing fiber in sequence. Here, the
Rayleigh backscattering light produced by continuous light acts as the probe light, whereas
the pulsed light acts as the pump light. The probe light and pump light excite the SBS
interactions in the sensing fiber when the frequency of the probe light falls into the BGS,
and the maximu of SBS interactions occur when the optical frequency difference between
the probe light and the pump light is equal to the BFS of the fiber.

FMFs with large core diameters, high SBS thresholds, and that transmit a limited
number of orthogonal modes are commonly used for distributed fiber measurements.
When an incident light wave enters a few-mode fibers at different angles, it excites various
modes that propagate in parallel in the fiber. The light wave of each mode interacts with
the acoustic phonons in the FMF, resulting in different Brillouin frequency shifts and BGSs,
respectively. Unlike the SBS effect in an SMF, the SBS effect in an FMF occurs not only
among the same optical modes (i.e., intramodal SBS) but also among different optical
modes (i.e., intermodal SBS).

Figure 1 presents operating principle of a Rayleigh BOTDA system. When the con-
tinuous light and the pulsed pump light in different modes enter into the sensing fiber,
the Rayleigh backscattering light in the different modes produced by the continuous light
serves as the probe light. The probe light and pulsed pump light in different modes excite
intramodal or intermodal SBS in the sensing fiber, and the maximum value of SBS interac-
tions occurs when the optical frequency difference between the probe light and the pump
light is equal to the BFS vB of the fiber. The Brillouin frequency shifts in an FMF of each
mode can be represented as follows [13]:

νB =
2neffVA

λp
(1)

where neff represents the effective refractive index in each mode, λp and VA are the optical
wavelength and the acoustic velocity in an FMF. The Brillouin scattering superposition
spectrum broadens and the peak gain decreases due to mode propagation in FMF and
interference from mode coupling. The BGS can be described as follows [55,56]:

g(v) = g0
(∆νB0/2)

Fmax − Fmin
×

[
tan−1

(
Fmax − v
∆νB0/2

)
− tan−1

(
Fmin − v
∆νB0/2

)]
(2)

where g0 represents the Brillouin gain coefficient in an SMF; ∆vB0 is the linewidth of the
BGS in an SMF; Fmax and Fmin are the maximum and minimum BFSs at the scattering
angles, respectively.
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Figure 1. Operating principle of Rayleigh BOTDA systems.

A simulation graph of simulated Brillouin scattering spectra for the FMF and SMF
is provided in Figure 2a. The differential mode group delay, mode coupling, and the
inherent dispersion of the FMF among the different modes cause the broadening of the
BGS due to the superposition of the different modes. Moreover, intermodal SBS leads
to a reduction in the Brillouin scattering spectral gain and the BFS. In FMF, each mode
propagates independently. Figure 2b shows the Brillouin scattering spectra simulation
for LP01 and LP11 modes in a two-mode fiber. During the simulation, the core refractive
index used is 1.4485, and the cladding’s refractive index is 1.4436. Through COMSOL finite
element simulation, the effective refractive indices obtained for LP01 and LP11 are 1.4481
and 1.4474 respectively.
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2.2. Golay Codes Principle

A Golay pulse code [28,57] consists of a pair of complementary bipolar sequences,
which are autocorrelation codes (Ak and Bk) with the same length (N). The sum of their
autocorrelation functions is equals to an integer multiple of the δ function, which can be
expressed as follows:

Ak ⊗ Ak + Bk ⊗ Bk = 2Nδk δk =

{
1, k = 0
0, k ̸= 0

(3)

where ⊗ represents the correlation operation, N is the length of the Golay complementary
sequence, and δk is the unit impulse function.

In a Rayleigh BOTDA system utilizing Golay coding, a Golay bipolar complementary
sequence must be converted into four unipolar sequences for transmission in the sensing
system. The unipolar sequences can be described as follows:

Ak = Uk1 − Uk2, Bk = Wk1 − Wk2 (4)
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where Uk1 =

{
1, Ak = 1

0, Ak = −1
, Uk2 =

{
0, Ak = 1

1, Ak= −1
, Wk1 =

{
1, Bk = 1

0, Bk = −1
, Wk2 =

{
0, Bk = 1

1, Bk= −1
.

When the noise source approximates Gaussian white noise [51], the coding gain is√
N/2. In our previous analysis of the SNR with pulse coding and single pulse, the SNR

after coding was significantly improved compared to the SNR of a single pulse, and the
spatial resolution remained unchanged compared with that of the single pulse.

2.3. LMD Method

The local mean decomposition (LMD) method is a time-frequency signal decomposi-
tion technique that progressively separates frequency-modulated signals from amplitude-
modulated envelope signals [54,58]. LMD can decompose the amplitude- and frequency-
modulated signals into product function (PF) components, with each product function
being the product of an envelope signal and a frequency-modulated signal, from which
the time-varying instantaneous phase and instantaneous frequency can be derived. All
PF components are processed iteratively to obtain the residual components, and the de-
noised signal can finally be obtained by reconstructing the residual components and the PF
components containing useful information.

Assuming x(t) as a nonstationary original sequence, the maximum and minimum
values of the sequence x(t) can be calculated. Subsequently, the mean value of the maximum
and minimum points of each half-wave oscillation of the signal is computed, and the ith
mean value, Li(t), and the ith local envelope function, ai(t), for each of the two adjacent
extreme points, mi(t) and ni(t), can be expressed as follows:

Li(t) = [mi(t) + ni(t)]/2 (5)

ai(t) =|mi(t)− ni(t)|/2 (6)

The local mean function, Li(t), is separated from the original sequence to obtain the
signal, hi(t), which is demodulated to obtain the pure frequency modulation (FM) function
si(t). The hi(t) and si(t) are expressed as follows:

hi(t) = xi(t)− Li(t) (7)

si(t) = hi(t)/ai(t) (8)

By multiplying the envelope function, ai(t), and the pure FM signal, si(t), the PF
component PFi(t) can be obtained as follows:

PFi(t) = ai(t)si(t) (9)

By separating the PFi(t) component in the original sequence, the residual signal, ui(t),
is obtained; ui(t) represents the original sequence and the process is repeated k times until
the residual signal transforms into a monotonic function. Then, the residual signal, uk(t), is
represented as follows:

uk(t) = xi(t)− PF1(t)− · · · − PFk(t) (10)

The denoised signal, z(t), is obtained by reconstructing the effective PF component,
PFi(t), and the residual component, uk(t), and it is expressed as follows:

z(t) =
k

∑
i=1

PFi(t) + uk(t) (11)

From the above analysis, it can be seen that the LMD algorithm adaptively decomposes
a complex signal into the sum of several physically components in decreasing order of
frequency. The denoised detection signal in a Rayleigh BOTDA system can be extracted by
reconstructing the PF components and the residual components.



Photonics 2024, 11, 308 6 of 14

3. Experimental Setup
3.1. Experimental Setup

The experimental setup of the Rayleigh BOTDA system is shown in Figure 3. A narrow-
linewidth laser diode (LD) with a central wavelength of 1550.01 nm and a linewidth of
100 kHz was used as the light source. A 50/50 polarization-maintaining coupler (PMC)
was used to divide into two branches as the continuous wave and the pump wave into
two branches. The upper branch was pulsed using an electro-optic modulator (EOM)
driven by a pulse generator (AFG) with an extinction ratio of 40 dB. The pulsed light was
amplified using an erbium-doped fiber amplifier (EDFA), which was filtered with a fiber
Bragg grating (FBG). The lower branch was modulated using an EOM, which operated
in the suppressed carrier regime and was driven using a microwave generator (MG). The
continuous wave was amplified with an EDFA, which was filtered with an FBG. The
continuous light and pump light were combined with a coupler (CO) and entered port
1 of the circulator (OC). All incident lights entered the FMF through port 2 of the OC,
and the Rayleigh scattering light generated along the fiber acted as the probe light. The
polarization scrambler (PS) periodically changed the polarization of the incident lights to
eliminate the effect of polarization mismatch in the system. The pump light and the probe
light underwent the SBS effect in the FMF, and the backscattered probe light carrying the
SBS information entered through an FBG. After filtering by the FBG, only the Stokes light
was retained. The Stokes light was converted into an electrical signal using a photoelectric
detector (PD) with a bandwidth of 500 MHz, and the resulting electrical signal was then
sampled using an oscilloscope (OSC) with a sampling rate of 1 GS/s.
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Figure 3. Experimental setup of the Rayleigh BOTDA system. LD: laser diode; PMC: polarization-
maintaining coupler; AFG: pulse generator; EOM: electro-optic modulator; MG: microwave generator;
MBC: modulator bias controller; EDFA: erbium-doped fiber amplifier; FBG: fiber Bragg grating; CO:
coupler; OC: circulator; PS: polarization scrambler; PD: photoelectric detector; OSC: oscilloscope.

In the experiment, a step-refractive index two-mode fiber (TMF) with a total length
of 1 km was used, which was produced by the Changfei company, with a core diameter
of 14 µm, core refractive index of 1.4485, and cladding diameter of 125 µm. The entire
fiber is consisted of 650 m, 50 m, and 300 m, with the 50 m section placed in a thermostatic
water bath for temperature control. The experiment mainly consisted of two parts: a
single-pulse pumped light with a pulse width of 50 ns and a period of 12 µs, corresponding
to a spatial resolution of 5 m; a coded-pulse pumped light with a pulse width of 10 ns, a
32-bit non-return-to-zero Golay coding, and a period of 12 µs, corresponding to a spatial
resolution of 1 m. Among them, the peak pulsed power was 600 mW for the single pulse,
200 mW for the coded pulse, and the continuous light power was 1.5 mW. By sweeping the
frequency of the MG from 10.765 GHz to 10.865 GHz with a step of 5 MHz, the BGS along
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the fiber was achieved. The electrical signal corresponding to each sweeping frequency
was averaged 5000 times to improve the SNR.

It should be noted that in this article, only a PS is placed in front of the FMF. Since
the initial polarization states of the pump light and continuous light entering the PS are
different, and the Rayleigh backscattered signal acts as the probe light also changes during
transmission, therefore, the relative state of polarization between pump light and probe
light will also change. We compared experimentally placing a PS in front of the FMF
with placing two PSs separately in the branches of pump light and continuous light, and
their Brillouin signals with 5000 times average are shown in Figure 4. It can be seen
that placing two PSs does indeed have a better effect than using a single one, but the
impact is not particularly significant. Therefore, we used only one PS throughout the entire
experimental process.
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3.2. Results and Discussion
3.2.1. Single Pulse

In a BOTDA system, the Brillouin signal strength can be enhanced by increasing the
pump’s pulse width or power. Few-mode fibers can tolerate higher levels of injection power,
and we experimentally obtained thresholds of approximately 19.13 dBm and 13.45 dBm
for 1 km long TMF and SMF by conducting an SBS threshold measurement experiment.
The distribution of the Brillouin frequency shifts in the heated section and the temperature
coefficient fitting curve of the TMF under the condition of a single pulse with a peak
power of 600 mW are shown in Figure 5. From Figure 5a, we can infer that the spatial
resolution was approximately 5 m, and the maximum Brillouin frequency shift fluctuation
in the heated section was 2.67 MHz. The Brillouin gain spectrum was measured within the
range of 30 ◦C to 70 ◦C, and the curve of the relationship between the Brillouin frequency
shift and the temperature was obtained, as shown in Figure 5b. The linear fitting of the
measurement data suggests that the temperature coefficient of the Brillouin frequency shift
was approximately 1.2 MHz/◦C.
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Figure 5. Brillouin frequency shift distribution in the heated section and the temperature coefficient
fitting curve: (a) distribution of the Brillouin frequency shift at 50 ◦C in the heated section; (b) Brillouin
frequency shift versus temperature.

During the iterative calculation process, the local amplitude is used to demodulate the
local mean function separated from the original signal, and the iteration is stopped if the
demodulation comes out as a pure frequency modulation function. Figure 6a–g represent
the original signal and PF components from the 1st order to the 7th order. Figure 6i shows
the decomposed residual component RES, which is a pure FM signal. It is clearly seen that
LMD decomposes the signal into seven distinct PFs, with PF1 having the highest frequency
and PF7 the lowest.
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To better verify the noise reduction effect of the LMD algorithm, a comparison is
made between the noise reduction results of Savitzky-Golay (SG) filtering and LMD algo-
rithm. The Brillouin power distribution of the original signal and the denoised signals at
10.805 GHz and the Brillouin frequency shifts of the denoised signals are shown in Figure 7.
From Figure 7a, it can clearly be seen that after reconstruction by the LMD algorithm, the
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fluctuations in the time-domain signal and Brillouin frequency shift were significantly
reduced. After LMD algorithm and SG filter denoising, the maximum Brillouin frequency
shift fluctuation in the heated section was 0.46 MHz and 1.44 MHz, respectively. The
aforementioned results validate the effectiveness of the LMD noise reduction algorithm.
It should be noted that the LMD algorithm processes by calculating the average value of
extreme points in neighboring half-wave oscillations and obtaining their envelope. As a
result, this can attenuate extremities which may subsequently reduce spatial resolution to
some extent. By comparing Figures 5a and 7b, it is evident that the spatial resolution before
denoising is approximately 4.2 m, whereas after LMD algorithm, the spatial resolution is
about 5 m.
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3.2.2. Coded Pulse

The Rayleigh BOTDA system uses the backscattered Rayleigh light generated in
the fiber as the probe light, so the effect of enhancing the detection signal’s strength
by increasing the pulse width or pump power under single-pulse pump conditions is
limited. To achieve higher spatial resolution, we reduced the pulse width to 10 ns and
30 ns without altering the single pulse peak power of 600 mW. As a result, after LCF fitting,
some distortions appeared in the BGS signal, preventing us from accurately capturing
the Brillouin frequency shift. Therefore, by using Golay code pulses, we increased the
signal strength at high spatial resolutions which enhanced both the signal-to-noise ratio
and measurement accuracy.

The Brillouin frequency shift along the entire fiber is shown in Figure 8a. The Brillouin
frequency shift in the heated optical fiber was approximately 10.834 GHz, with a frequency
shift fluctuation of approximately 3.75 MHz and a spatial resolution of 1 m. The Brillouin
gain spectrum obtained by LCF at 662 m of the fiber in the heated section is shown in
Figure 8b. The SNR is calculated to be 31.4 dB, so it is reasonable to use LCF to fit the
BGS [45]. According to the LCF, the root mean square error (RMSE) between the measured
and fitted values is 0.676731 MHz, and the Brillouin linewidth of the BGS is 40.5 MHz. On
the basis of the formula for Brillouin frequency shift precision, δvB = ∆vB/(4RSNC)1/4, the
precision of the Brillouin frequency shift was determined to be 4.69 MHz. Furthermore,
using the formula for the relationship between temperature measurement precision and
Brillouin frequency shift measurement precision, ∆T = δvB/CvT, where CvT = 1.2 MHz/◦C,
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which is the temperature coefficient of the BFS, the temperature measurement precision
was calculated to be 3.9 ◦C.
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From the above results, it is known that after 32-bit Golay coding, the spatial resolution
of the system improves from 5 m to 1 m. However, this will sacrifice a certain level of
SNR, reducing the accuracy of temperature measurement. To further enhance the system’s
performance, the time-domain signal was processed for noise reduction using the SG filter
and LMD algorithm. The distributions of the Brillouin power and Brillouin frequency shift
after SG filter and LMD denoising are obtained, as shown in Figure 9. The Brillouin shift
fluctuations in the heated section after noise reduction by SG filter and LMD algorithm
are calculated to be 3.26 MHz and 1.46 MHz, respectively. Similar to the single pulse, after
noise reduction with LMD algorithm, it will affect spatial resolution, at which point the
spatial resolution is 1.12 m.
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Figure 9. Distributions of the (a) Brillouin power and (b) Brillouin frequency shift after LMD and SG
filter denoising.
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The Brillouin frequency shift formula indicates that the SNRs after SG filter and
LMD are 33.2 dB and 36.9 dB, respectively. Correspondingly, the temperature measurement
accuracies after SG filter and LMD denoising are 3.53 ◦C and 2.85 ◦C, respectively. Figure 10
shows the Brillouin gain spectrum after noise reduction by SG filter and LMD. The data
after denoising using the LMD algorithm showed a better fit compared to that of SG filter.
By comparing the results before and after the noise reduction, it can be concluded that
with the LMD algorithm, the SNR improved by 5.5 dB and the temperature measurement
accuracy increased by 1.05 ◦C. With the pulse coding and LMD noise reduction algorithm,
the spatial resolution and temperature measurement accuracy achieved by the Rayleigh
BOTDA system significantly improved to 1.12 m.
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Figure 10. Brillouin gain spectrum after noise reduction by (a) SG filter and (b) LMD.

In TMF, there exist three types of linear polarized modes: LP01, LP11a, and LP11b. This
study did not separate each linear polarized mode, thus leading to an increased spectral
width of the Brillouin scattering, which, in turn, constrained the measurement accuracy. In
subsequent studies, individual modes in the FMF will be separated to achieve simultaneous
multiparameter measurements with high spatial resolution.

4. Conclusions

In conclusion, we proposed and demonstrated the implementation of pulse coding and
LMD denoising in a Rayleigh BOTDA sensing system. The proposed scheme effectively
overcomes the tradeoffs between the spatial resolution and SNR, and it exhibits high
spatial resolution and temperature measurement accuracy along a two-mode sensing fiber.
Compared to a 50 ns single pulse, the coded pulse featured a narrow pulse width and low
injection power, and the spatial resolution improved to 1 m. An experiment was conducted
with a 1 km long TMF, and it successfully measured the BGS with a spatial resolution of
1.12 m and a temperature measurement accuracy of about 3.9 ◦C. Upon comparing the noise
reduction performance of SG filter and LMD algorithm, it is evident that LMD algorithm
surpasses SG filter. With the LMD noise reduction algorithm, the SNR and temperature
measurement accuracy improved by 5.5 dB and 1.05 ◦C, respectively. The results of this
study demonstrate that pulse coding and the LMD algorithm can effectively improve
the performance of the few-mode Rayleigh BOTDA system and provide theoretical and
experimental bases for the realization of simultaneous multi-parameter measurements.
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