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Abstract: Coherence scanning interferometry (CSI) is a widely used non-contact method for mea-
suring areal surface topography. The calculation of groove depth typically employs the ‘W/3 rule’
specified in ISO 5436-1. However, the batwing effect causes overshoots near the groove edges, which
can introduce noise singularities in the selected W/3 region for depth calculation, thereby affecting
the measurement of rectangular grating depth. This paper introduces the definition of batwing
height and width and proposes a simulation model that considers various factors, such as the center
wavelength, spectrum of the illuminating light, shadow effect, and numerical aperture, to analyze
their influence on depth measurement. The simulation results demonstrate that the batwing width is
the primary factor influencing depth measurement for small grating periods. Specifically, a decrease
in numerical aperture increases the batwing width, leading to larger depth measurement errors, while
a decrease in the center wavelength reduces the batwing width, resulting in smaller depth measure-
ment errors. The influence of the illumination spectrum and shadow effect on depth measurement is
found to be minor. Experimental validation using a step standard consisting of rectangular gratings
with different periods and depths confirms the agreement between the experimental and simulated
results. The proposed method provides a quantitative evaluation of depth measurement accuracy
in CSI.

Keywords: coherence scanning interferometry; W/3 rule; batwing effect

1. Introduction

Coherence scanning interferometry (CSI) is a widely used technique for areal surface
topography measurement [1]. The International Organization for Standardization (ISO)
recommends employing the ‘W/3 rule’ for calculating the groove depth of rectangular
gratings [2]. However, the batwing effect, characterized by an overshoot at the edges of
the grooves, can have a significant impact on the accuracy of depth measurements [3,4].
Importantly, as the period of the rectangular grating decreases, the batwing extends beyond
the region of W/3 near the edge of the groove [5], leading to significant errors in depth
measurement for small grating periods. Therefore, it is necessary to establish and analyze
the relationship between batwing and depth measurement errors. The overshoot profiles
of the batwing are influenced by various factors, such as the center wavelength, spectrum
of the illuminating light, shadow effect, and numerical aperture (NA). The above can be
quantitatively analyzed to identify the dominant factor that affects depth measurement
errors. This paper specifically examines grating depths smaller than the coherence length
of the illuminating light, as the batwings cease to appear beyond certain depths [4].
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Modeling is an effective approach for investigating correlations between key factors
and measurement outcomes. Many previous works have established models to investi-
gate these relationships. Peter De Groot devised a computationally efficient theoretical
model that analyzed the relationship between the illumination geometry, the spectrum
of the illuminating light and the interference signals [6]. Additionally, He established an
elementary Fourier optics model to analyze the relationship between surface and main
features of CSI topography images [7]. Harasaki developed a diffraction model elucidating
the relationship between the coherence length of the illuminating light and the batwing
effect [4]. Xie proposed a Fourier model for analyzing the relationship between the lateral
resolution and the transfer function of vertical scanning white-light interferometers [8,9].
Tobias presented a 3D simulation model investigating the transfer characteristics of confocal
microscopes regarding 2D surface structures [10]. Su proposed a physics-based virtual CSI
based on the foil model and obtained an inverse filtering is shown to reduce measurement
errors [11,12]. Peter Lehmann suggested that the three-dimensional transfer function of
the CSI is crucial for the correct analysis and reconstruction of the surface of the object [13].
Although the aforementioned works explain the correlation between main factors and mea-
sured topography, and some have addressed the impact of the batwing effect on step height
measurements as well as the elimination of this effect in reconstructed morphology [14,15],
none specifically investigate the relationship between the batwing effect and measurement
error when utilizing the ‘W/3 rule’ for depth calculation.

The batwing is usually taken as a pseudo signal, and it is directly filtered or the
topography where the batwing occurred is directly ignored. But whether the batwing effect
will affect the depth calculation is still unknown, even if the overshot on the topography
seems like to be filtered out. It is evident that batwings within the selected W/3 region
intuitively influence depth measurement errors, but the exact relationships remain indirect.
In this paper, we present a method that aims to determine the height and width of the
batwing. Additionally, we seek to establish the correlation between the batwing effect
and the errors encountered in depth measurements. Additionally, a simulation model is
proposed and utilized to analyze these correlation relationships, ultimately identifying the
primary factors that contribute to errors in measuring the grating depth.

2. Definitions and Models

Figure 1 illustrates the ‘W/3 rule’ and provides definitions for the batwing height and
width. In this figure, W represents the measured width of the groove. Least square lines
are fitted to regions A and B, and subsequently to region C [2].
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The groove depth d is determined by the distance between the fitted lines.

Z = αhX + βh + hδ . (1)

where αh, βh, and h are fitted via the least squares method to a profile. The variable δ takes
the value +1 in regions A and B and the value −1 in region C. The depth of the groove d is
twice the estimated value of h.
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The batwing height hb is defined as the difference in height between the highest point
on the batwing profile and the fitted line.

hb =
|αhxh − zh + βh + hδ|√

1 + α2
h

. (2)

where (xh, zh) represents the coordinates of the highest point on the batwing profile. The
batwing width wb is defined as the distance between the two intersection points of the
batwing profile and the fitted line, with these points being the closest intersections on either
side of the batwing.

wb = |x1 − x2| . (3)

where x1 and x2 are the two intersection points of the batwing profile and the fitted line.
It is important to note that as the period of rectangular gratings decreases, the batwing

extends beyond the W/3 region near the groove edge, affecting the accuracy of depth
measurements in regions A, B, and C where least square lines are fitted. Additionally,
the batwing width and height vary depending on the parameters of the microstructures
being tested and the specifications of the CSI instrument. Therefore, it is necessary to
analyze the influence of the batwing effect on groove depth measurements of rectangular
gratings using CSI and the ‘W/3 rule’. Establishing a model provides an effective and
quantitative approach to understand the relationship between influencing factors and
depth measurement errors.

The simulation process is depicted in Figure 2. Initially, the nominal period and depth
of the rectangular grating are provided as inputs. Subsequently, the depth scan index,
modulation factor, illumination spectrum, and shadow factor are combined using the
interference intensity equation to generate the corresponding interferograms. The envelope
evaluation method is then employed to reconstruct the grating profile [16]. Finally, the
‘W/3 rule’ is applied to calculate the depth of the rectangular grating and the height and
width of the batwing from the measured profile.
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The object taken in the simulation is a rectangular grating H(x, y) with period Λ
and groove depth d [8]. The illumination spectrum S(λ) is assumed to follow a Gaussian
distribution [17].

We assume that the depth of the grating is significantly smaller than the width of
the coherent envelope, and that the power on the pupil plane is uniformly distributed. In
contrast to Xie’s definition [9], we define shadow factor Γ as the ratio of reflected power to
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incident power at the edge of the grating. Figure 3 illustrates the shadow effect at the edge
of the rectangular grating, which is expressed as:

Γ =

{
1 rmax < rθ(
2
∫ rmax

rθ
r(2π − 2arccos(rθ/r))dr + 2

∫ rθ
0 2πrdr

)
/(π · r2

max) rmax > rθ
, (4)

with
αmax = arcsin(AN), (5)

rmax = d · tan(αmax), (6)

r ∈ [0, rmax], α ∈ [0, αmax], (7)

rθ =

{
x − nΛΛ, x ∈ (nΛΛ + 0.5Λ, nΛΛ + 0.75Λ)
nΛΛ − x. x ∈ (nΛΛ + 0.75Λ, nΛΛ + Λ)

nΛ = 0, 1, 2 . . . (8)

where rθ represents the local coordinate of the grating bottom region, AN represents the
numerical aperture of the objective, and nΛ represents the number of periods. The refractive
index of air is approximately 1. This paper specifically focuses on grating depths that are
significantly smaller than the depth of field. As a result, the influence of scanning depth on
the shadow factor can be disregarded.
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Figure 3. The illustrations of object cone angle obstructed at the groove edge.

The modulation of the coherence signal is influenced by the temporal and spatial co-
herence, which are consequences of the illumination spectrum and the NA. The modulation
factor is expressed as

A(δz) =

{
1, |δz| ≤ δmin

exp(−||δz| − δmin|), |δz| > δmin
, (9)

δz = mzscan. (10)

where δz is the scan step, zscan represents the depth of scan, and m is the depth scan index.
A(δz) is used to characterize the modulation effect. With

δmin = min(δNA, δt), (11)

δNA = 0.703λ/σ2 AN
2, δt = 0.703λ2

0/δλ. (12)

where σ represents the spatial coherence coefficient, δNA indicates spatial coherence, and
δt indicates coherence length of the illumination spectrum, respectively [17]. According
to Abdulhalim’s theory [18], the simplified interference formula within this model from a
planar object, denoted as I(δz, λ, α), represents the integration of the raw interferogram over
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the depth scan index, incident angles, and illumination spectrum. The raw interferogram
does not take diffraction effects into account and is expressed as follows:

Iraw,OR(x, y) =

{
Γ · Iraw(x, y), x ∈ (nΛΛ + 0.5Λ, nΛΛ + Λ)

Iraw(x, y), x ∈ (nΛΛ, nΛΛ + 0.5Λ)
, (13)

with

Iraw(x, y, δz) =
λmax∫

λmin

αmax∫
0

I(δz + H(x, y), λ, α)A(δz)dαdλ, (14)

where λmax and λmin correspond to the longest and shortest wavelengths of the illumination
spectrum, respectively.

To calculate the point spread function (PSF), we can utilize the analytical calculation
method described by Goodman [19], which involves performing a Fourier transform of
the pupil function. In our approach, we use the focal plane PSF to approximate the out-of-
focus PSF. For circular pupils, the PSF(x, y), after eliminating the constant factor, can be
expressed as follows:

PSF(x, y) =
[

2J1(u(x, y))
(u(x, y))

]2
, (15)

u(x, y) = 2πAN

(
x2 + y2

)1/2
/λ0. (16)

In this equation, λ0 is the central wavelength, x and y represent coordinates on the
planar object, and J1 represents the Bessel function of the first kind and order one. As
described by Abdulhalim [17], when the grating depth is smaller than the coherence length,
the maximum lateral coherence distance between two points in the object plane is δrc, as
clarified in Equation (18). To reduce computational complexity, we focus our calculations
on the intensity within the lateral coherence distance. This allows us to concentrate on the
partial point spread function PSFp(x, y), which can be formulated as follows:

PSFp(x, y) =

{
PSF(x, y),

√
x2 + y2 ≤ δrc

0,
√

x2 + y2 > δrc
, (17)

δrc = 1.22λ0/σAN . (18)

According to Fourier optics, the diffraction effect can be expressed as follows:

Iimage(x, y) = Iraw,OR(x, y) ∗ PSFp(x, y). (19)

where * represents the convolution operator. Iimage(x, y) represents a series of stacked
interferograms that consider the diffraction effect. The envelope method is applied to
reconstruct the grating profile [16]. Finally, the ‘W/3 rule’ is utilized to calculate the depth
measurement of the rectangular grating.

It is worth noting that the boundaries of the simulation model are applicable to gratings
with relatively low depths, which should be smaller than the center wavelength.

3. Simulations and Experiments

Figure 4a,b illustrate the batwing width and height values for different periods and
depths of the grating. These figures also demonstrate the independence between batwing
height and width. Figure 4c illustrates the dominant influence of the width-to-period ratio
(WPR) on depth measurement errors, which represents the ratio between the batwing
width and the grating period. When the WPR is smaller than 1/6, the impact of the
batwing on depth measurement errors can be disregarded. Figure 4d shows the positive
correlation between the height-to-depth ratio (HDR), which indicates the ratio between
the batwing height and the grating depth, and depth measurement errors when the WPR
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values are similar and exceed 1/6. Figure 4e,f display the depth measurement errors
of rectangular gratings with different depths and periods, assessed using the envelope
evaluation method [16]. The depth measurement errors typically decrease as the grating
period increases, except for certain instances near the depth values of d = 0.25 λ0 and
d = 0.75 λ0. Grating depths smaller than or approximately equal to 0.25 λ0 (and also 0.75 λ0)
result in negative depth measurement errors, whereas depths larger than or approximately
equal to 0.25 λ0 (and also 0.75 λ0) yield positive errors [20–22].
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height values; (c) WPR values; (d) HDR values; (e) depth measurement errors (3D view) calculated
via envelope evaluation method; (f) depth measurement errors for different height values.

Figure 5a depicts the depth measurement errors with AN = 0.3 λ0 = 0.6 µm. As
the NA decreases, the batwing width increases, leading to large measurement errors
for small grating periods, especially when the depth is close to λ0. On the other hand,
Figure 5b shows the depth measurement errors with AN = 0.55 λ′

0 = 0.5 µm. Decreasing
the center wavelength leads to a reduction in the batwing width, resulting in smaller
depth measurement errors for small grating periods. Moreover, we conducted simulations
to examine the influence of altering the illumination spectrum and shadow factor on
the depth measurement error, and we observed that these variations closely resemble
the patterns depicted in Figure 4e. Therefore, we can conclude that these factors have a
minimal influence on the depth measurement error, and therefore, we have not included
the corresponding figures in this paper.
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Figure 5. Depth measurement errors (3D view) calculated via envelope evaluation method:
(a) AN = 0.3 λ0 = 0.6 µm; (b) AN = 0.55 λ′

0 = 0.5 µm.

The Bruker step standard with a calibrated height of 0.4598 µm was measured using a
Mirau objective with AN = 0.55 and LED light sources with λ0 = 0.6 µm and δλ = 0.08 µm.
Figure 6 presents a comparison between simulated and experimental results. In Figure 6a,
the black line represents the experimental profile, and the green line represents the sim-
ulated profile. In Figure 6b–e, the black lines represent the experimental signals, and the
green lines represent the simulated signals. These signals correspond to points A–D in
Figure 6a, respectively. We assumed σ to be 0.5. R1 and R2 were constant and assumed to
be 1.
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Figure 6. Comparison of simulated and experimental result with d = 0.4598 µm and λ0 = 0.6 µm.
(a) The simulated and experimental profiles. Simulated and experimental envelope signals: (b) far
from the edge on the top position for point A; (c) close to the edge on the top position for point B;
(d) close to the edge on the bottom position for point C; (e) far from the edge on the bottom position
for point D.
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Table 1 presents the values for Figure 6a. The simulated and experimental results
exhibit good agreement, as shown in Figure 6a. The simulated values for batwing height
and width are 0.3068 µm and 0.2530 µm, respectively. In comparison, the experimental
values for batwing height and width are 0.3130 µm and 0.4987 µm, respectively.

Table 1. Comparison of simulated and experimental batwing width, height, and depth errors for
step standard.

Simulated
Batwing

Width/µm

Experimental
Batwing

Width/µm

Simulated
Batwing

Height/µm

Experimental
Batwing

Height/µm

Simulated Depth
Errors/%

Experimental
Depth Errors/%

0.2530 0.3130 0.3068 0.4987 0.04 −0.10%

The difference between simulated and experimental values for batwing width is prob-
ably due to the fact that the experimental standard step is quasi-perpendicular. Whether
batwings appear or not depends not on the total groove depth but on the change of depth
involved in the diffraction region [21]. The simulated and experimental results for profile
depth are 0.460 µm and 0.45934 µm, respectively. The relative errors with respect to the
nominal value are 0.04% and −0.10%.

The comparison results between simulated and experimental envelope signals are pre-
sented in Figure 6b–e, revealing a good match between the two sets of data. In Figure 6c,d,
the envelope of the signal exhibits asymmetry, which can be attributed to the presence of
diffraction and shadow effect. A shadow effect occurs at the edge of the bottom region be-
cause the acceptance angle of the microscope objective is smaller than the maximal incident
angle and that of the reflected rays passing through the optical system on the bottom [21].
As shown in Figure 3, the structure of the step standard prevents rays with high incident
and reflected angles. And the signal at the edge of the top part is also influenced by the
diffraction effect.

The resolution standard RS-N manufactured by Simetrics GmbH (Chemnitz, Germany)
provides a set of rectangular gratings with different periods and depths. The periods range
from 0.3 to 6 µm and the depths range from 0.1472 to 0.1896 µm. The standard was
calibrated by the Metrological Large Range Scanning Probe Microscope (Met LR-AFM)
based on the Nano Measuring Machine (NMM, GmbH, Wien, Germany) in the cleanroom
centre of PTB (Physikalisch-Technische Bundesanstalt, Braunschweig, Germany) [23].

As stated in ISO 25178-603, when the lateral resolution is limited by the lateral sam-
pling interval of the image sensor system, the smallest period that can be measured should
cover five pixels [24]. However, for high magnification systems, the lateral resolution is
limited by the optical resolution. For CSI, the smallest measured period is two times of the
Rayleigh criterion [25]. Thus, for the CSI Mirau objective with AN = 0.55 and λ0 = 0.6 µm,
the smallest period that can be measured is about 1.2 µm. Moreover, the Nyquist sampling
theory is satisfied, ensuring accurate data acquisition.

The simulated and experimental profiles in Figure 7 demonstrate strong agreement.
To evaluate the similarity between these profiles, the cross-correlation function is utilized.
Table 2 presents the computed cross-correlation values for Figure 7a–d, which indicate
a decreasing trend as the period decreases. This relationship is further supported by
Table 2 and Figure 8e, where the simulated and experimental depths, calculated using
the ‘W/3 rule’ for gratings with varying periods, exhibit larger errors compared to the
calibrated depth.
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Table 2. Comparison of calibrated depth, simulated depth, experimental depth, and cross-correlation
values for different grating periods.

Granting Period/µm Calibrated Depth/µm Simulated Depth/µm Experiment Depth/µm Cross-Correlation Values

6 0.1896 0.18967 0.18972 0.93

3 0.1869 0.18796 0.18778 0.89

2 0.1823 0.18433 0.18482 0.79

1.2 0.1738 0.17918 0.18067 0.72

Figure 8a,b show the simulated and experimental batwing width and height for
different grating periods, revealing consistent agreement. Table 3 presents the computed
cross-correlation values for Figure 8a–f. Notably, Figure 8c,d,f illustrate that the WPR values
remain relatively unchanged for gratings with similar depths but different periods. As
mentioned previously, when the WPR values are similar and exceed 1/6, there is a positive
correlation between the depth measurement errors and HDR values. This relationship
arises from the fact that the batwing effect occupies a significant portion of the measured
profile for small-period gratings, resulting in considerable depth measurement errors [5].
As the grating period decreases, the influence of grating diffraction effects on experimental
measurements becomes more significant, leading to substantial depth measurement errors
for small-period gratings.

Table 3. Comparison of simulated and experimental batwing width, height, and depth errors for
different grating periods.

Granting
Period/µm

Simulated
Batwing

Width/µm

Experimental
Batwing

Width/µm

Simulated
Batwing

Height/µm

Experimental
Batwing

Height/µm

Simulated
Depth Errors/%

Experimental
Depth Errors/%

6 0.2912 0.2806 0.0258 0.0243 0.0381 0.0644

3 0.2856 0.2843 0.0252 0.0240 0.567 0.470

2 0.2822 0.2794 0.0247 0.0267 1.11 1.38

1.2 0.2617 0.2606 0.0188 0.0266 3.10 3.96
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4. Conclusions

Accurately quantifying the impact of the batwing effect on grating depth measure-
ments using CSI is crucial for evaluating measurement results. To accomplish this, we
determined the height and width of the batwing based on the characteristics that can affect
depth calculations from the topography or profile, while utilizing the ‘W/3 rule’. Moreover,
we have developed a comprehensive simulation model that integrates the shadow effect,
diffraction effect, temporal coherence, and spatial coherence.

Extensive simulations and experimental investigations have revealed significant in-
fluences of the NA and the center wavelength on depth measurements. Conversely, the
illumination spectrum and shadow effect exert minimal influence on depth measurements.
Significantly, we have established that the batwing effect results in substantial depth mea-
surement errors when the WPR values exceed 1/6. Moreover, we have observed a positive
correlation between the depth measurement errors and HDR values when the WPR values
are similar and exceed 1/6. However, based on our experience, if the grating period ex-
ceeds five times the Rayleigh criterion, the ‘W/3 rule’ can accurately determine the grating
depths. The proposed model provides a valuable means of evaluating the accuracy of CSI
in measuring the depths of rectangular gratings.

In this study, the Fourier model is utilized. When the grating period exceeds twice the
Rayleigh criterion and the height is less than the central wavelength, the disparity between
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the model simulation and experimental results is minimal. However, as the grating period
decreases, the inconsistency between the model simulation and experimental results grows.
To address the impact of batwing effects on CSI measurement depths for grating periods
less than twice the Rayleigh criterion, it is essential to incorporate the effects of grating
diffraction and scattering into the model.
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