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Abstract: We propose and demonstrate a Mach-Zehnder Interferometer (MZI)-based optical neural
network (ONN) to classify and regenerate a four-level pulse-amplitude modulation (PAM4) signal
with high inter-symbol interference (ISI) generated experimentally by a silicon microing modulator
(SiMRM). The proposed ONN has a multiple MZI configuration achieving a transmission matrix
that resembles a fully connected (FC) layer in a neural network. The PAM4 signals at data rates from
160 Gbit/s to 240 Gbit/s (i.e., 80 GBaud to 120 GBaud) were experimentally generated by a SIMRM.
As the SIMRM has a limited 3-dB modulation bandwidth of ~67 GHz, the generated PAM4 optical
signal suffers from severe ISI. The results show that soft-decision (SD) forward-error-correction (FEC)
requirement (i.e., bit error rate, BER < 2.4 X 10~2) can be achieved at 200 Gbit/s transmission, and the
proposed ONN has nearly the same performance as an artificial neural network (ANN) implemented
using traditional computer simulation.

Keywords: silicon photonics (SiPh); silicon-on-insulator (SOI); pulse amplitude modulation (PAM);
silicon microring modulator (SiMRM); optical neural network (ONN)

1. Introduction

From streaming 4 K/8 K videos to accessing cloud-based Internet services, the need
for high-speed and reliable Internet connectivity is on the rise. To satisfy these band-
width demands, high-capacity optical transmission technologies are required. Recently,
800 Gbit/s systems were proposed utilizing eight lanes of 50 Gbaud four-level pulse ampli-
tude modulation (PAM4) (i.e., 8 x 100 Gbit/s/A) or by utilizing four lanes of 100 Gbaud
PAM4 (i.e., 4 x 200 Gbit/s/A) [1,2]. It was also reported that an aggregate data rate of
1.6 Thit/s transceiver (TRx) was realized by utilizing eight lanes of 200 Gbit/s [3]. For
beyond 1 Tbit/s transmission [4], a single-lane data rate at or beyond 200 Gbit/s is required
with improved power and space efficiencies [5]. Nowadays, silicon photonics (SiPh) is
widely considered as one of the important optical integration technologies for the next
generation data center optical networks and optical interconnects [6-11]. SiPh devices con-
sume less power and produce less heat than conventional electronic circuits, offering great
advantages of energy-efficient bandwidth upgrade. In addition, SiPh is compatible with
the mature, complementary metal-oxide-semiconductor (CMOS) fabrication technologies,
which potentially allow integration of photonic and electronic devices at mass volume
cost effectively. Recently, different high-speed SiPh modulators have been reported [12].
Although SiPh-based modulators provide many merits, such as low power consump-
tion and a small footprint, there are still many challenges for data center interconnect
applications [13]. One is the limited electrical-to-optical (EO) bandwidth (i.e., 50~60 Gbaud)
and limited extinction ratio (ER) of the SiPh modulators. Hence, different digital signal pro-
cessing (DSP) techniques are employed to further enhance the data rates, such as Volterra
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equalization [14], feed-forward equalization (FFE), and decision feedback equalization
(DFE) [15], as well as machine learning approaches, including long short-term memory
neural network (LSTMNN) [16], recurrent neural network (RNN) [17], etc.

As discussed before, machine learning approaches have been successfully applied in
optical communications and networking [18,19]. Neuromorphics is an attempt to migrate
the elements in machine learning algorithms to a hardware platform [20]. This could lead to
much faster and more energy efficient data processing [21]. Thanks to the advancements in
photonics technologies, bringing together neuromorphics and photonics could offer a high-
bandwidth and low-power-consumption operation when compared with electronics [22].
An optical neural network (ONN) enables the running of machine learning algorithms
more efficiently [23]. Once an ONN is trained, its architecture could be passive, and the
computation using optical signals will be operated without the need of additional power
consumption. ONNSs can be implemented using free-space optics, which can provide the
advantages of negligible crosstalk with lower losses [24]. Recently, many researchers have
explored ONNs using an integrated approach with programmable silicon interferometers
for matrix and vector multiplications [25,26]. This enables chip-scale parameter calculations
in neural networks. The basic component is the Mach—Zehnder Interferometer (MZI),
which is utilized to manipulate both power coupling ratio and phase. The multiple MZI
configuration can achieve a transmission matrix that resembles a fully connected layer in
a neural network. Besides the MZI-based ONN, microring-based ONN [27] and phase
change material-based ONN [28] are also promising.

In this work, we propose and demonstrate an ONN to regenerate the four-level pulse
amplitude modulation (PAM4) signal with high inter-symbol interference (ISI) generated
experimentally by a silicon microring modulator (SiMRM). The proposed ONN has a
multiple MZI configuration achieving a transmission matrix that resembles a fully con-
nected layer in a neural network. Here, the PAM4 signals at data rates from 160 Gbit/s to
240 Gbit/s (i.e., 80 GBaud to 120 GBaud) were experimentally generated using a silicon
microring modulator (SiMRM) [29]. It is also worth mentioning that the PAM4 signal can
be generated by other schemes, such as injection-locked vertical-cavity surface-emitting
lasers (VCSELSs) [30,31]. As the SIMRM has a 3-dB modulation bandwidth of ~67 GHz, the
expected PAM4 data rate is ~134 Gbit/s (i.e., 2 bit/symbol x 67 Gbaud). When the data
rate is operated at >200 Gbit/s, the generated PAM4 optical signal suffers from severe ISI.
After the utilization of the proposed MZI-based ONN, the result shows that soft-decision
(SD) forward-error-correction (FEC) requirement (i.e., bit error rate, BER < 2.4 x 102) can
be achieved at 200 Gbit/s transmission, and the proposed ONN has nearly the same perfor-
mance with the artificial neural network (ANN) implemented using computer software.

2. Theory of the MZI-Based ONN

The proposed ONN has a multiple MZI configuration achieving a transmission matrix
resembles a fully connected layer in a neural network. Figure 1 shows a typical 2 x 2 MZI,
which is composed of two 3-dB couplers, a phase shifter 6 situated on the top arm inside
the MZI, and a phase shifter ¢ situated at the MZI output. The phase shifter 6 controls the
MZI output power, while the phase shifter ¢ determines the phase of the MZI outputs. This
configuration permits adaptable rotation within the unitary matrix, thus contributing to its
versatility. Equation (1) shows the transformation matrix of MZI, where 6 and ¢ represent
the internal and external phase shift values, respectively.
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3 dB splitter Phase shifter, Phase shifter,

Figure 1. A typical 2 x 2 MZI used in the ONN. It consists of two 3-dB couplers, a phase shifter 0=,
and a phase shifter ¢.

Figure 2 shows the architecture of the ONN utilized for the classification of ISI distorted
PAM4 signals. This MZI network architecture is known as Reck mesh architecture [32]. The
number of MZIs ina N x N Reck mesh is w, where N represents the number of input
ports and output ports. These MZIs are organized in (N — 1) rows, with the count of MZIs
in each row decreasing from (N — 1) to 1 from top to bottom. The first port is for receiving
the PAM4 data, while the second part is for optical pumping. This will be discussed in
detail in a later section.

Reck mesh

Figure 2. The architecture of MZI-based ONN in Reck mesh architecture.

The transformation matrix of each MZI in the mesh can be expanded to a N x N
dimensional Hilbert space. Take the 4 x 4 Reck mesh for example, the 4 x 4 dimensional
Hilbert space of each MZI is shown in Equations (2)—(4).
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The Sp1z;, in the equations is the nth MZI transformation matrix as shown in Equation (1).
The entire Hilbert space of the network system is derived from the inner product of D,,.
Therefore, the entire Hilbert space in the Reck mesh can be written as Equation (5). Hence,
the input-output relationship of the MZI network can be expressed as Equation (6), where Y
represents the output optical field matrix, X is the input optical field matrix, and H denotes
the Hilbert space matrix. This operation is like the fully connected layer shown in Figure 3.

H = Dg-Ds5-Dy-D3-Dy-Dy 5)
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Y=XH (6)

B v=X-W+b

Figure 3. The 4 x 4 fully connected layer neural network operation.

In a fully connected layer, each connection line from x; to y; can be written as
x; w;j + b; j, where w; ; and b; ; are the weight and bias value at connect line, respectively.
The relationship between x; and y; is illustrated in Equation (7). Using a matrix to express
this relationship, we can obtain Equation (8), where Y is output matrix, X is input matrix,
W is weight matrix, and b is the bias matrix. Comparing Equation (8) with Equation (6), it
can be observed that they are very similar.

Yj = Yy Xitij + b @)
Y= XW4+b ®)

Therefore, we can use same way in a neural network like a back-propagation algorithm
to optimize H matrix value in the lower loss function value as shown in Equation (9),

Ht+1 =H; — Oi-thL (9)

where « is the learning rate, V is the gradient operator, L is the loss function value, and t is
the current epoch. Due to the unitary property inherent in linear transformation matrices,
the inverse matrix [Smz1] ™! of each MZI is equal to its conjugate transpose as Equation (10)
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Hence, the decomposition of H is equivalent to the reverse arrangement of MZIs. This
leads to successive products culminating in the eventual formation of the identity matrix as
shown in Equation (11). Through the sequential multiplication of H by [D,]~! in a defined
order, the off-diagonal elements in both the upper and lower triangles of the matrix would
eventually become 0. Subsequently, Gaussian elimination can be applied to determine the
phase shift values ¢ and 6 at each phase shifter.

H-[D1] 1 [Dy] 1 [D3]1 1 [D4] 1 [Ds] 1 [Dg] ! = (11)
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When the MZI-based ONN has been trained, it can be operated as a PAM4 signal
classifier as illustrated in Figure 4. It shows that after the trained MZI-based ONN, different



Photonics 2024, 11, 349

50f13

photodiodes (PDs) will be detected corresponding to different levels in the PAM4 input
data. However, this part is only the linear operation, and nonlinear activation is needed to
handle more complicated scenario.
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Figure 4. After proper training, the MZI-based ONN is acted as a PAM4 signal classifier.

The nonlinear activation function plays a pivotal role in the functionality of a neural
network. In the ONN, one way to achieve nonlinear activation is use the structure shown
in Figure 5, which is known as the electro-optic nonlinear activation function [24]. As
illustrated in Figure 5, the electro-optic nonlinear activation function structure consists of
a directional coupler (DC), a PD, an electric amplifier, and a MZI. In the proposed work,
the electrical amplifier is implemented off chip. The DC splitter divides the light into two
paths. One pathway receives a fraction « of the input light power, which is then sent to
the PD for conversion into an electric signal. In contrast, the remaining fraction of the
input light power, which is 1 — «, is directed to the MZI after an appropriate time delay.
The PD output voltage will be amplified by the electric amplifier and combined with a
proper voltage V), to input to the MZI phase shift. The operation of electro-optic nonlinear
activation function is illustrated in Equation (12), with the two internal components defined
in Equations (13) and (14).

. goll? 2
f(z) :j\/l—oce](&q”er(pzl’)-cos(g(P';' —l—%)z (12)
V;
Pp = nV—Z (13)
aGR
8p =TT, (14)
7T

Above, z is the input light field, a is the DC split power ratio, V is the voltage of the
MZI phase shift 7r, G is the gain of the electric amplifier, and R is the responsivity. Hence,
by controlling the V},, we can conveniently modify Equation (13) to a different nonlinear
activation function. By connecting the electro-optic nonlinear activation function in series
after the MZI network mesh, a neural network with an activation function can be realized.
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Figure 5. The structure of electro-optic nonlinear activation functions. MZI: Mach-Zehnder Interfer-
ometer; DC: directional coupler; PD: photodetector.

3. Experimental Setup

Figure 6 illustrates the experimental setup to obtain the PAM4 optical signal. At the
transmitter (Tx) side, a 1550 nm wavelength distributed feedback (DFB) laser with an
output power of 6 dBm is launched into a silicon photonic (SiPh) chip with an SIMRM.
The SiMRM was fabricated by the multi-project wafer (MPW) scheme in CUMEC. The
electrical PAM4 signal is generated by an arbitrary waveform generator (AWG, Keysight
M8194A) with 45 GHz analog bandwidth. Subsequently, the signal is amplified by a
60 GHz radio-frequency (RF) amplifier. The Tx digital signal processing (DSP) includes
PAM4 symbol mapping, pre-distortion, upsampling, channel estimation, and pre-emphasis.
The pre-distortion and pre-emphasis serve to alleviate non-linear distortion and tackle
issues related to high-frequency roll-off, stemming from the limited bandwidth of the AWG.
The optical PAM4 signal is produced via a SiMRM with a bandwidth ~67 GHz and operated
at —3 V bias, measured by a lightwave component analyzer (LCA; Keysight N4373D). At
the receiver (Rx) side, the optical PAM4 signal is detected by a 70 GHz bandwidth PD
connected to a real-time oscilloscope (RTO, Keysight UXR0802A) with 80 GHz bandwidth
and 256 GSa/s sampling rate. To evaluate transmission performance related to different
received optical powers, a variable optical attenuator (VOA) is employed. The Rx DSP
invovles time synchronization for ensuring proper alignment of the received signal with
the transmitted signal, resampling to adjust the signal sampling rate to match with the
neural network, the proposed ONN processing, symbol demapping, and BER evaluation.
Inset of Figure 5 shows the photo of the SIMRM with diameter of ~10 pm. It was fabricated
on a silicon-on-insulator (SOI) platform with a staring wafer of 220 nm silicon layer and
2 um buried oxide layer (BOX). The SIMRM has a loaded Q of ~3000.

VOA EDFA

10/ be

SiMRM
PIC

Bisa tee

Symbol mapping

|

ONN processing

Pre-distortion

Upsampling

Channel estimation

Pre-emphasis

Figure 6. The experimental setup to obtain the PAM4 optical signal. AWG: arbitrary waveform
generator; DFB: distributed feedback laser diodes; PC: polarization controller; EDFA: erbium-doped
fiber amplifier; VOA: variable optical attenuator; PD: photodetector; RTO: real-time oscilloscope.
Inset: photo of the SIMRM.
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4. Result and Discussion

In this work, we use Neuroptica [33,34], which is a customized ONN simulator
programmed in Python to simulate the PAM4 signal classify by ONN processing. As
discussed above, Figure 2 shows the architecture of a Reck-based ONN to classify the
experimentally obtained PAM4 signal. We only use two ports for the classification of the
distorted PAM4 signal as indicated in Figure 2. The first port is for receiving the PAM4
data, while the second part is for optical pumping. In this work, the optical pumping is
needed to increase signal resolvability and provide additional optical power to amplify the
PAM4 data. Similar to the case of coherent detection, the pumping light can amplify the
optical signal like the local oscillator (LO) light. Here, we did not consider the additional
noise of pumping light in our simulation. However, the influence of additional noise from
pumping light on the system will be similar to that of a coherent transmission system.
To simulate the PD, a square law detection is implemented at the output ports. The
classification result depends on the maximum element in the output matrix. Therefore, the
target data should be processed by one-hot encode. To update the ONN parameters, cross-
entropy loss function is employed, and the optimizer is the Adam. In order to evaluate
the performance of proposed ONN, a fully connected ANN using traditional computer
simulation is also performed for comparison. This ANN has a four by four fully connected
layer with the ReLU activation function. As the ANN is used to compare with the proposed
ONN, it has the same number of neurons as the ONN. Hence, it will theoretically have
the same performance as the ONN. The dataset used is experimental data obtained from
our previous work in [29]. The received waveforms are adjusted by resampling so that
there is one sample per symbol. The data length of each transmission data rate experiment
is 217 bauds. We use 20% data for training and 80% for testing. In the proof-of-concept
demonstration illustrated in Figure 6, the input data are experimentally generated by a
bandwidth-limited SiMRM chip. This experimental ISI-distorted optical PAM4 signal will
be detected by a separated PD, and a RTO will store the electrical PAM4 signal as shown in
Figure 6. Hence, this stored electrical PAM4 signal can be used for the ONN simulation. In
the future ONN chip implementation, the ISI distorted optical PAM4 signal can be directly
launched into the ONN chip “RX signal” port as shown in Figure 2; hence, no additional
OE conversion by the PD is needed. In this case, four on-chip PDs on the ONN chip are
used as shown in Figure 2. The optical amplification can be realized by the pumping light
as discussed before; hence, VOA and EDFA may not be necessary. Figure 7 shows the
accuracy and loss curves for the proposed ONN. It is evident from the results that the ONN
exhibits convergence at approximately 100 epochs.

1.0 T T T r 4.0
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0.8
3.0
2 0.6 2.5
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=] F2.0 ©
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< Tralmng accuracy L 1'5
Valdation accuracy
0.2 Training loss 1.0
Valdation loss
0.5
0.0
T T T T 0.0
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Epochs
Figure 7. The accuracy and loss curves for the proposed ONN.

Figure 8 illustrates the BER performance of PAM4 signals utilizing both the proposed
ONN and ANN. The ONN can recover and classify distorted PAM4 signals within the
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range of 160 Gbit/s to 240 Gbit/s (i.e., 80 GBaud to 120 GBaud). The data rate achieving
the SD-FEC threshold (i.e., BER = 2.4 x 1072) can be up to 200 Gbit/s.

0.1

0.014

BER

0.001

160 170 180 190 200 210 220 230 240
Datarate (Gbit/s)

Figure 8. BER performances of ONN and ANN used for classifying the distorted PAM4 signal
without the activation function.

It is worth noting that the proposed ONN without an activation function is particularly
sensitive to signal power variations. When the signal power is low, the accuracy of the
model tends to decrease significantly. Figure 9 illustrates the accuracy and loss performance
of different normalized input signal amplitudes. For better understanding, here, the
normalized signal amplitude represents the first level of the PAM4 signal, and the four
levels in the PAM4 have the same separation. Taking the signal amplitude of 0.8 as an
example, the PAM4 values would be 0.8, 1.6, 2.4 and 3.2. We can observe from Figure 9 that
the accuracy and loss performance are poor when the normalized input signal amplitude is
lower than 0.6. At the normalized input signal of 0.1, the model accuracy falls below 50%.
According to our simulation results, the ONN accuracy reduces when the signal amplitude
is less than 0.4. This happens because when the signal amplitude is too low, the ASE noise
from the EDFA and the thermal and shot noises from the PD become dominant, causing
the ONN to fail in performing classification and prediction. When the signal amplitude
is larger than 0.4, the ASE and PD noises will not be the dominating factors, and we can
observe that the ONN accuracy is ~1 when signal amplitude is between 0.6 and 1.0. To
solve this issue, the electro-optic nonlinear activation function discussed in Figure 5 above
is included into the ONN model. This enhances the capability of the ONN model to handle
nonlinear problems.

1.2
1.0+
—=— Training accuracy | 1.0
. —e— Testing accuracy :
15} —a4— Valdation accuracy
< 0.8 ]
S U —v— Valdation loss 0.8 =«
§ —— Training loss S
< 0.6
0.6
0.4
0.4 T T 0.2

00 02 04 06 08 10
Signal amplitude

Figure 9. Accuracy and loss performance of different normalized input signal amplitudes without
activation function.
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Figure 10 shows the modified ONN model with electro-optic nonlinear activation
functions. In this architecture, each output port of the first Reck mesh will be connected
to an electro-optic nonlinear activation function. The output of the electro-optic nonlinear
activation function will then be connected to the input port of the second Reck mesh, and
subsequently will be connected to a PD. Furthermore, the fusion of the activation function
and the fully connected layer can be considered as a two-layer fully connected ONN,
interconnected through activation functions

Reck mesh Reck mesh

1
] |
m B \ T = B Im
1
| |
I L] Im

|:| =) Mach-Zehnder Interferometer D I::>Electr0-0ptic nonlinear activation function

Figure 10. Modified ONN model with electro-optic nonlinear activation functions. MZI: Mach-
Zehnder Interferometer; EO: electro-optic nonlinear activation function; PD: photodetector.

In the modified ONN, the parameters of the electro-optic nonlinear activation function
as optimized. The a is set to be 0.1, V; of the MZI phase shift is 5 V, the V, is set to be
—5V, Gis set to be 20, and the responsivity R is set to be 1. Therefore, ¢y, is set to be -7, and

f)P

8¢ is set to be 0.47t. Figure 11 shows the transmission coefficient (i.e., ‘272) of the electro-
optic nonlinear activation function with normalized input field Z. We can observe that
the electro-optic nonlinear activation function defined exhibits similarities to the sigmoid
function but shifted towards the positive x-axis. In the simulation work here, the « = 0.1 is
used for reducing the loss for electro-optic nonlinear activation function. The electro-optic
nonlinear activation function will have different characteristics under different ¢, and g,.
Here, we found that the nonlinear activation function as illustrated in Figure 11 has a better

performance in our model. Therefore, ¢j, is set to be —m, and g, is set to be 0.47.

0.8+

o
=N
T

Transmission
(=)
=

02+

0 0.2 0.4 0.6 0.8 1
Normalized Z

Figure 11. Modified ONN model with electro-optic nonlinear activation functions.

Figure 12 illustrates the accuracy and loss performance of different normalized input
signal amplitudes with the electro-optic nonlinear activation function. Comparing the
results to the ONN model without an electro-optic nonlinear activation function shown in
Figure 10, the accuracy and loss performance in Figure 12 have been significantly improved,
particularly at low input signal powers. We can observe that even when the normalized
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input signal amplitude is as low as 0.1, the accuracy remains at an impressive value
of 99.7%.

T T T T 1 l0
1.0 — ——
-0.8
> —=— Training accuracy
g 0.8 —o— Testing accuracy §0.6 ,
%-:-; : —4a— Valdation accuracy 8
5} —v— Valdation loss —
<Q£ —¢— Training loss -0.4
0.6
\\ -0.2
0.4 . //\\ 0.0

00 02 04 06 08 1.0
Signal amplitude

Figure 12. Accuracy and loss performance of different normalized input signal amplitudes with an
activation function.

Analyzing the BER performance of PAM4 signals involves using the modified ONN
with an electro-optic nonlinear activation function. It can be observed that the BER per-
formance of the modified ONN model with the electro-optic nonlinear activation function
is nearly the same as that without the activation function illustrated in Figure 8. The data
rate achieving the SD-FEC threshold (i.e., BER = 2.4 x 10~2) can be up to 200 Gbit/s. This
reveals that when the input signal power is high enough, no additional bit error will be
introduced for the ONN without the electro-optic nonlinear activation function. However,
the introduction of activation function increases the robustness of the proposed ONN. We
analyze the impact of the phase shift error on MZI ONN performance. To simulate the
phase error of phase shift, we introduce a random normal distribution N (0,¢?) and add it
to the final training results of the phase shift value for each phase shifter in the MZIs. Here,
o is the standard deviation of the phase error. Therefore, the 6 and ¢ in Equation (1) are
now written as § and ¢ as shown in Equations (15) and (16).

b=0+ N(o, (72) (15)

§ =g+ N(o, az) (16)

Then, we analyze the impact of the phase error on the ONN. Figure 13 shows the BER
performance under various standard deviation phase errors at a data rate of 160 Gbit/s.
Here, each BER point is obtained by averaging 1000 BER calculations to ensure the random-
ness. By analyzing phase errors from 0° to 1.5°, we can observe that the BER performance
remains within the SD-FEC threshold when the standard deviation of phase errors is up
to 1°. In Figure 13, we also compare the BER performance of the ONN model with and
without electro-optic nonlinear activation function under different standard deviation
phase errors. Under 1° phase error, the ONN model with electro-optic nonlinear activation
function achieves a slightly lower Bit Error Rate (BER) compared to the standard devia-
tion phase errors. This shows the ONN model with the electro-optic nonlinear activation
function possesses a higher tolerance for phase errors, providing a more stable and reliable
performance under 1° of phase error.
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Figure 13. BER performance under various standard deviation phase errors at a data rate of 160 Gbit/s.

5. Conclusions

We proposed and demonstrated an ONN to regenerate PAM4 signal with high ISI
generated experimentally by a SiMRM. As the SiMRM has a 3-dB modulation bandwidth of
~67 GHz, the expected PAM4 data rate is ~134 Gbit/s (i.e., 2 bit/symbol x 67 Gbaud). When
the data rate is operated at >200 Gbit/s, the generated PAM4 optical signal suffers from
severe ISI. The proposed ONN has a multiple MZI configuration achieving a transmission
matrix that resembled a fully connected layer in a neural network. The PAM4 signals at
data rates from 160 Gbit/s to 240 Gbit/s (i.e., 80 GBaud to 120 GBaud) were experimentally
generated using a SIMRM with limited modulation bandwidth of ~67 GHz. The proposed
ONN is performed via Neuroptica, which is a customized ONN simulator programmed in
Python. Results showed that SD-FEC requirement (i.e., BER < 2.4 x 10~2) can be achieved
at 200 Gbit/s transmission, and the proposed ONN has nearly the same performance with
ANN implemented using traditional computer simulation. Moreover, we also discussed
the effect of electro-optic nonlinear activation function on the ONN model. By comparing
the ONN model with and without electro-optic nonlinear activation function in different
input signal amplitudes, it can be observed that the accuracy and loss can be significantly
improved at low input signal amplitudes. Even at the normalized input signal amplitude
of 0.1, the accuracy can still achieve 99.7%. Furthermore, we analyzed the impact of the
phase shift error of MZI to the ONN model. Both ONN model with and without electro-
optic nonlinear activation function can still achieve SD-FEC threshold under a 1° phase
shift error.
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