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Abstract: Monolayer two-dimensional transition metal dichalcogenide (TMD)-based materials have
become one of the ideal platforms for the study of multibody interactions due to their rich excitonic
complexes. The coupling between optical nanocavity and material has become an important means
for manipulating the optical properties of materials, but there are few studies on the coupling of
nanocavities and the multi-body effect in materials. In this study, we investigate the optical properties
of silver nanodisk (Ag ND) arrays covering a monolayer WS2. In the experimental sample, we
observed a ~114.3-fold photoluminescence enhancement of charged biexciton in the heterostructure
region, as compared to the monolayer WS2 region, a value which is much higher than those for
exciton (~2.2-fold) and trion (~16.4-fold), a finding which is attributed to the Fano resonant coupling
between monolayer WS2 and the Ag ND. By means of time-resolved spectroscopy, we studied the
carrier dynamics in the hybrid system. Our findings reveal that resonant coupling promotes the
formation and radiation recombination processes of the charged biexciton, significantly reducing the
radiative recombination lifetime by ~15-fold, which is much higher than the measurement in exciton
(~2-fold). Our results provide an opportunity to understand the multibody physics of coupling
with nanocavities, which could facilitate the application of multi-body excitons in the fields of
light-emitting devices and lasers, etc.

Keywords: transition metal dichalcogenides; charged biexciton; Fano; plasmon; carrier dynamics

1. Introduction

In recent years, monolayer two-dimensional transition metal dichalcogenide (TMD)-
based materials have received extensive attention due to their excellent photoelectronic
properties [1,2]. Compared with bulk materials, monolayer TMD-based materials exhibit
reduced dielectric screening and enhanced Coulomb interactions, leading to the generation
of excitons, which are quasiparticles consisting of electron–hole pairs with binding energies
of hundreds of meV [3]. The tightly bound exciton offers an ideal platform for the investi-
gation of many-body physics [4,5]. In the last few years, multibody excitonic complexes,
such as trion, a three-particle state consisting of one hole and two electrons; biexciton,
a four-particle state consisting of two holes and two electrons; and charged biexciton, a
five-particle state consisting of two holes and three electrons, have been identified [6–8].
Owing to the important application prospects of charged biexciton in entangled photon
sources [9], the study and manipulation of charged biexciton emission in TMDs have im-
portant implications for the fabrication of advanced photonics and optoelectronic devices.

The coupling between plasmonic nanocavities and TMD-based materials has been
demonstrated as an effective means to enhance the emission properties of TMDs [10–13].
This enhancement can be analyzed in two ways. Firstly, the presence of metal structures in
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close proximity can increase the local density of photonic states in plasmonic nanostruc-
tures [14,15]. This can result in a shortened fluorescence lifetime and significant inhibition
of Auger recombination [16]. Secondly, while the exciton state in TMD-based materials
is discrete, the plasmons are considered to be continuous energy states due to the large
linewidth broadening. The interaction between these continuous and discrete energy states
leads to the well-known Fano effect, in which energy is transferred to enhance the pho-
toluminescence of the emitter [17–19]. While there have been numerous studies on the
coupling of plasmonic nanocavities with TMD-based materials [20,21], significant research
has also been conducted on ultrafast optics-based interactions between plasmons and ma-
terials [22–24]. However, there are still deficiencies in understanding the multibody effect
and the coupling of nanocavities associated with charged biexciton of monolayer TMDs,
especially the strong charged biexciton emissions and the ultrafast carrier dynamics in this
hybrid system. Hence, it is crucial to amplify the emission of charged biexciton through the
utilization of the plasmonic nanocavity. Furthermore, comprehending the enhancement
of plasmon coupling within these metal nanostructure-incorporated TMD-based systems
is pivotal, as it will facilitate the advancement of photoelectric devices reliant on charged
biexciton in TMDs.

In this article, we study the optical characteristics of the monolayer WS2 coupled
with plasmonic nanocavity by means of steady-state and time-resolved spectroscopy.
Specifically, we demonstrate the observation of charged biexciton by using steady-state
power-dependent photoluminescence (PL) spectroscopy. It is determined that the charged
biexciton shows a giant enhancement in emission (~114.3-fold), compared with exciton
(~2.2-fold) and trion (~16.4-fold), which is attributed to the Fano resonant coupling of
monolayer WS2 and the Ag ND. Subsequently, with the help of femtosecond pump-probe
measurements, it is proved that Fano resonance coupling promotes the formation and
radiative recombination processes of exciton, trion, and charged biexciton. The effect of the
plasmonics on the radiative recombination lifetime of charged biexciton is much stronger
than that seen with exciton. Our work not only provides a method for the formation
and utilization of charged biexciton in TMD-based materials, but also establishes a way
to understand the coupling of higher-order exciton states in TMD-based materials and
plasmonic nanocavities through the analysis of carrier dynamics.

2. Materials and Methods

Figure 1a illustrates the structure of the sample, which was fabricated as follows:
a monolayer of WS2 film was synthesized using the chemical vapor deposition (CVD)
method and transferred onto a pre-prepared quartz substrate via the wet transfer technique.
Then electron beam lithography and evaporation and stripping technology were used to
grow a 30 nm thick silver nanodisk (Ag ND) array. Finally, to prevent sample degradation,
a 200 nm thick polymethyl methacrylate (PMMA) coating was applied for encapsulation.
Figure 1b depicts the scanning electron microscope. The period of the Ag ND array is fixed
at 300 nm, while the array diameter is ~110 nm. Figure 1c shows the optical microscopy
images of the WS2–Ag ND sample. The lack of uniformity in the WS2 layer below the
plasmonic structures could be attributed to the presence of multi-layer regions during the
growth of the WS2 layer in the CVD process. However, overall, the sample growth exhibits
a high degree of uniformity.

The optical test system used in the experiment is shown in Figure 2. In this experi-
mental setup, the pump pulse pre-irradiates the sample, immediately triggering various
excited states, including plasmon, exciton, and their coupling system. The reflectance R0
of the subsequent probe pulse is influenced by these pump-induced excited states. This
white probe light is then focused onto the sample using a microscope, with a beam diam-
eter of approximately 1.5 µm (width of 1/e intensity). Additionally, the dynamics of the
excited states are characterized by adjusting the time delay between the two light pulses
using a delay line, achieving a time resolution of approximately 200 fs, as defined by the
pulse width of the combined beams. The dynamics of the excited states are monitored
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by varying the time delay (t) between the two pulses using a delay line. The transient
signal is recorded as a reflectance contrast, ∆R(t)/R0 = (R(t) − R0)/R0, where R(t) and R0
represent the probe reflectance with and without pumping. The optical signal undergoes
spectral analysis, for which a grating spectrograph (Shamrock 500i, Oxford Instruments,
London, UK) is used, and is then captured by a plane array CCD camera (iVac 316, Oxford
Instruments). The time-correlated single photon counting (TCSPC) testing was conducted
using PC-150NX TCSPC modules in conjunction with an HPM-100-07 (Oxford Instruments,
London, UK) detector.
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Figure 1. (a) Schematic diagram of the WS2–Ag ND hybrid system. (b) Scanning electron microscope
image. (c) Optical microscopy image of the WS2–Ag ND heterostructure sample. (d) The reflectance
spectra of monolayer WS2 (black) and the WS2–Ag ND heterostructure (red) at 10K temperature.

As shown in Figure 1d, the reflectance spectra of the sample in monolayer WS2 and the
WS2–Ag ND heterostructure regions were tested at a temperature of 10K. The reflectance
spectra are recorded as R = (Rsample − Rsubstrate)/Rsubstrate, where Rsample and Rsubstrate are
the reflectances of the sample and the quartz substrate. When comparing the reflection
spectra of monolayer WS2 with those of the heterostructure region graphically, we observe
that the heterostructure displays a pronounced Fano resonance dip (FD) around the exciton
energy (EX) in monolayer WS2, and two peaks, on the left and right, which are defined as
the low energy (LE) and upper energy (UE) branches. The comparable amplitude of LE and
UE indicates that the plasmon resonates with the neutral exciton in monolayer WS2, and
thus energy can be efficiently transferred from the plasmon cavity to the exciton [20,25].
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Figure 2. Schematic of the transient differential reflection (TR) measurement setup. The femtosecond
light emitted by a Pharos femtosecond laser system (PH2−20W, Light Conversion, 1030 nm, 100 kHz,
FWHM of 230 fs, and 20 W) is split into two beams. The stronger beam is directed to an optical
parametric amplifier (ORPHEUS-HP, Light Conversion) to produce a wavelength-tunable pump
beam with an FWHM of 140 fs. The weaker beam is focused on a high-quality sapphire crystal to
generate a supercontinuum white light probe pulse. The cryogenic temperature is maintained by a
liquid-helium exchange gas cryostat (attoDRY1000, Attocube systems AG) equipped with a confocal
system with a numerical aperture of 0.82.

3. Results and Discussion
3.1. Steady-State Power-Dependent Photoluminescence (PL) Spectroscopy

To study the fluorescence characteristics of the sample, power-dependent PL tests
were performed on both the pure monolayer WS2 and the WS2–Ag ND heterostructure,
excited by a 560 nm (~2.21 eV) laser at a temperature of 10K. Figure 3a shows the typical PL
spectra under the 100 µW pump power. Four peaks were found in both of the two regions,
among which the strong and broadband spectral peaks below 2 eV come from the emission
of trap state excitons. These trap states may originate from lattice defects within the WS2
itself or from doping by the overlying PPMA, serving as a substantial electron reservoir for
the generation of charged excitonic states through the photogating effect [26]. Figure 3b
shows the Voigt fitting curve of the intrinsic PL spectrum after the removal of the trap state
PL, in which three peaks above 2 eV are obtained, labeled X (~2.090 eV), T (~2.063 eV),
and XX− (~2.040 eV). The energy differences between the X and the latter two peaks are
27 meV and 50 meV. According to a previous study [7], these peaks can be attributed to
the emissions from exciton, trion, and charged biexciton. The pronounced PL emission
peak signal not only indicates the suitability of our sample for facilitating the formation
of multibody exciton states but also establishes a robust platform for investigating the
coupling of multibody excitons with cavities.
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Figure 3. Power-dependent PL spectra of monolayer WS2 at 10K excited by 560 nm laser. (a) Typical
PL spectra of monolayer WS2 and the WS2–Ag ND heterostructure with an excitation power of
100 µW. (b) Voigt fitting curve of PL spectra in (a) after removing the trap state PL. (c) PL intensity
as a function of the pump power at the X, T, and XX− peaks in monolayer WS2. (d) PL spectra
comparison after removing the trap state PL. (e,f) Contour map of power-dependent PL spectra of
monolayer WS2 and the WS2–Ag ND heterostructure after removing the trap state PL.

Figure 3c extracts the PL intensities of different excitonic complexes (IX, IT, and IXX
−)

as a function of the pump power P, fitting with the power-law model (I ∝ Pα). The fitting
exponents of the X, T are 0.84 and 1.09, respectively, showing sublinear and linear power-
dependent emission, indicating their single-particle characteristic. In contrast, the XX−

displays a distinctly superlinear behavior, with an α of 1.51, indicating its biexcitonic nature,
which possibly arises from neutral biexciton or charged biexciton. The former, however,
possesses a binding energy of 20–25 meV [7]; the comparison with neutral exciton, which
falls significantly below the observed value of 50 meV here, eliminates the likelihood of
its presence. To further study the effect of plasmonics on excitonic emission, Figure 3d
compares the PL spectra from both sample regions on a shared coordinate system after
removing the trap state PL. Compared with the pure WS2, the three emission peaks in
the heterostructure have been enhanced. Importantly, the enhancement of the XX− is
~114.3-fold, which is much higher than those of X (~2.2-fold) and T (~16.4-fold). To the best
of our knowledge, such a large PL enhancement of charged biexciton has not been observed
in previous studies. Figure 2e,f further show the contour map of the power-dependent
intrinsic PL spectra, which show that in the whole pump power range, the PL emission
peaks in the heterostructure region are much higher than those in monolayer WS2 region,
and the emission peak is always dominated by XX−. In addition, the data fitting in Figure 3c
is derived from Figure 3e,f. Throughout the entire range of pump power values, no variation
in the linear coefficient α is observed. This absence of change suggests that our sample
likely operates within a well-defined linear range, or the inability to test its nonlinearity
under high-power working regime may stem from limitations in the testing conditions. The
strong field around the plasmon cavity can penetrate the single atom layer thickness of WS2.
In principle, the enhancement of the plasmonic nanocavity can be caused by two factors: the
enhancement from the excitonic generation, or the promotion of the excitonic emission. In
the sample structure, the plasmonic nanocavity is directly attached to a single layer of WS2
without a dielectric layer in the middle. Specifically, in the photo absorption process, the
Fano resonance emerging between the plasmonic nanocavity and the monolayer WS2 may
lead to the energy transfer from Ag ND to WS2, as the absorption coefficient of the former
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is much larger than that of the latter. Additionally, during the recombination process, the
plasmonic nanocavity may also enhance the radiative recombination process. As a result,
the photoluminescence of the excitonic complexes undergoes significant enhancement.

However, the linear width of the plasmonic cavity is broad, and the range of formant
can cover the whole resonance energy level of the excitonic complexes, which indicates
that the enhanced PL emission caused by plasmon resonance is effective for exciton, trion,
and charged biexciton. These explanations are insufficient to explain the finding that
the fluorescence of charged double excitons in the heterogeneous region is significantly
enhanced compared to those of exciton and trion, and the emission of charged biexciton is
dominant. This phenomenon underscores the necessity for a more elaborate analysis of the
impact of plasmonic nanocavities on monolayer WS2. To conduct a more thorough analysis
of the PL enhancement phenomenon predominantly influenced by charged biexciton in
the heterogeneous region, the samples underwent testing and analysis using ultrafast
optics technology. This method provides detailed information on the carrier dynamics
of the samples, enabling a comprehensive analysis of the predominant PL enhancement
mechanism of charged biexciton in heterostructure region.

3.2. Time-Resolved PL and Femtosecond Pump-Probe Measurements

In order to better understand why the charged biexciton produces such a giant PL en-
hancement in the heterostructure region, time-resolved PL of WS2 and WS2–Ag ND samples
were investigated by using the time-correlated single photon counting (TCSPC) technique
under 560 nm excitation, and the probe wavelength was focused at the XX− resonance. As
shown in Figure 4, the time-resolved PL can be fitted by double exponential decay:

I(t) = A1 ∗ e
t

τ1 + A2 ∗ e
t

τ2 (1)

where I(t) represents the change of normalized PL intensity with time, A1 and A2 represent
the proportions of the two relaxation processes, and τ1 and τ2 represent the characteristic
lifetimes of the two relaxation processes. Commonly, τ1 can be attributed to the non-
radiative recombination process, and τ2 to the radiative one. It is noteworthy that at higher
pump powers, the elevation in exciton density could potentially trigger exciton–exciton
annihilation, thereby reducing the lifetime. However, for all pumping powers, both the
τ1 and the τ2 in the heterostructure are smaller than those in the monolayer WS2, which
implies that PL relaxation is not affected by pumping-power-dependent exciton–exciton
annihilation interaction [27]. This is also consistent with the previous analysis finding that
the sample has a good linear operating range. In other words, the recombination rate is enhanced
by the plasmonic nanocavity. The TCSPC analysis offers limited insights into the analysis of PL
enhancement in heterogeneous regions from a recombination lifetime perspective.

Due to the limited time resolution of TCSPC, the effect of the plasmonic coupling on
the exciton emission cannot be better analyzed. To further understand the formation and
relaxation processes of charged biexciton induced by plasmons, the transient differential
reflectance spectra were measured by femtosecond-pulsed laser pumping at 560 nm at
4K. To avoid the nonlinear effects induced by the high carrier density, a pump fluence of
10 µJ cm−2 was selected. Figure 5a,d show the pseudo-color diagram of the transient
differential reflection spectra (∆R) of controlled WS2 and the heterostructure. For WS2,
three well-separated photoinduced bleaching (PB, red area) signals are clearly found,
located at the X, T, and XX− resonances in the first 1 ps; these are attributed to their state-
filling effects [28]. In the heterostructure region, the three bleaching signals all convert
to three photoinduced absorption (PA, blue area) peaks in an early time delay of <1 ps,
which is the hallmark of the saturation nonlinear effects of the excitons, in which the Pauli
blocking of the pump injecting exciton reduces the coupling strength between the excitons
and plasmon [20,29]. In Figure 5b,e, the transient differential reflection spectra at selected
probe delays showcase three clearly separated peaks and their temporal progression. The
clearly separated peak signals detected under femtosecond pumping suggest that our
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fabricated sample is highly conducive to investigating the interplay between multibody
exciton states and nanocavity in TMDs materials. We can distinctly observe the temporal
evolution of the three excitonic states in the sample from the time-resolved spectrum. To
obtain more detailed information about the relaxation process, the differential reflection
spectrum signals of the three PB peaks in WS2 and the three PA peaks in the heterostructure
region are dynamically fitted using the multi-exponential function outlined in Formula (2):

∆R = ∆R0 − a0 ∗ e
t−t0
τrise + a1 ∗ e

t−t0
τ1 + a2 ∗ e

t−t0
τ2 + a3 ∗ e

t−t0
τ3 (2)

where ∆R represents the differential reflection spectrum signal of the formant peak; ∆R0
represents the base of the signal; t0 represents the baseline at which the pump of the signal
begins; a0 and τrise represent the fitting coefficient and life of the signal during the rise
process; a1, a2, and a3, and τ1, τ2, and τ3 represent the exponential fitting coefficient and life
of the signal during the decay process, with the relevant parameters listed in Table 1. The
fitting results of three PB peaks of monolayer WS2 and three PA peaks of the heterostructure
region are shown in Figure 5c,f.
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where ∆R represents the differential reflection spectrum signal of the formant peak; ∆R0 
represents the base of the signal; t0 represents the baseline at which the pump of the signal 
begins; a0 and τrise represent the fitting coefficient and life of the signal during the rise 
process; a1, a2, and a3, and τ1, τ2, and τ3 represent the exponential fitting coefficient and life 
of the signal during the decay process, with the relevant parameters listed in Table 1. The 
fitting results of three PB peaks of monolayer WS2 and three PA peaks of the heterostruc-
ture region are shown in Figure 5c,f. 

Figure 4. (a–d) Comparison of normalized PL decay from monolayer WS2 (blue) and the WS2–Ag
ND heterostructure (red) samples, at 2.04 eV (XX− resonance) under different levels of pump power.
The gray lines stand for the instrumental response function (IRF), with a full width at half-maximum
of ∼20 ps.

Table 1. Fitting parameters of the time-resolved differential reflection signal.

X T XX−

WS2 (ps) WS2–Ag ND
(ps) WS2 (ps) WS2–Ag ND

(ps)
WS2 (ps) WS2–Ag ND

(ps)

τrise 0.27 0.09 0.27 0.24 0.16 0.10
τ1 6.60 0.09 0.29 0.27 0.56 0.17
τ2 64.49 0.62 2.81 1.14 3.71 3.32
τ3 211.84 131.45 N/A N/A 292.94 20.10
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Figure 5. Time-resolved differential reflection spectra of monolayer WS2 and the WS2–Ag ND het-
erostructure at 4K, with a pump fluence of 10 µJ cm−2. (a,d) A 2D pseudo-color image; red (blue)
region denotes the photoinduced bleaching (absorption). (b,e) Transient differential reflection spectra
at selected probe delays. (c) Differential reflection kinetics of monolayer WS2 at three exciton reso-
nances. (f) Differential reflection kinetics of WS2–Ag ND heterostructure at three exciton resonances.

Here, τrise represents the ascending process of the kinetic curve, which can be assigned
to the formation of three kinds of excitons. After the pulse pumping, hot carriers are
generated in the valence and conduction bands. Subsequently, the resulting hot electrons
and holes undergo relaxation to the band edge through nonradiative processes like phonon
emissions. The large Coulomb interaction between the conduction band bottom electrons
and the valence band top holes leads to their coalescence into quasiparticles, marking the
creation of exciton, trion, and charged biexciton in the sample. It can be seen that τrise in
the heterostructure region decreases compared with findings in the monolayer WS2 region,
which indicates that the coupling of the plasmonic nanocavity enhances the formation
process of exciton, trion, and charged biexciton. The enhancement of this process could
stem from the energy transfer prompted by the coherent interplay between plasmon and
monolayer WS2 coupling, or from the injection of hot electrons induced by plasmons.
Among the three components of the recovery process, the fastest component (τ1) can be
assigned to the Auger process, the intermediate component (τ2) can be assigned to the
trap-assisted non-radiative recombination process, and the slowest component (τ3) can
be assigned to the radiative recombination process [30]. Unfortunately, the peak signal at
the resonant position of the trion is masked after 1 ps due to band renormalization, thus
failing to fit the radiative recombination lifetime (τ3) of the trion. For all of the three exciton
complexes, the parameters (including τ1, τ2 and τ3) in the heterostructure are shorter than
those in the controlled WS2. Such an accelerated relaxation indicates that the coupling
of plasmonic nanocavity enhances the excitonic recombination processes. Notably, the
radiative recombination lifetime (τ3) of XX− is drastically shortened by a factor of 15-fold,
which is much higher than that of X (~2-fold). Thus, it can be concluded that the promotion
effect of plasmonics on the radiative recombination of XX− is much stronger than that
on exciton, a finding which is consistent with previous PL analyses. The reduction in
the radiative recombination lifetime during the recombination process promotes higher
competition in radiation recombination, resulting in an increased proportion of radiation
recombination and a significant enhancement in PL intensity.

Phenomenologically, the PL enhancement mechanism of the plasmonic nanocavity
relative to excitonic complexes is shown in Figure 6. Firstly, from the prospect of photo
absorption, the photoexciting plasmon enhances the generation of exciton via energy
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transfer from Ag ND to WS2, followed by cooling of the hot electrons and holes through
phonon emission. Apart from the energy transfer (i.e., both the electron and hole transfer
to WS2), charged transfer (i.e., hot electron transfer to WS2) is also activated due to the
femtosecond pulse pumping, in which the electrons with a high enough kinetic energy
can overcome the interface barrier and transfer to WS2. The charged transfer may lead to
efficiently charged doping of the monolayer, resulting in the transition of neutral exciton
of the charged excitons (T and XX−). Since the emission energy is lowest for XX−, most
of the transfer energy will be converted into this five-particle state, leading to the drastic
enhancement of its population. Secondly, for the recombination process, as discussed
above, the plasmon greatly enhances the radiation recombination rates of XX−, which
may inhibit the non-radiative recombination pathways and enhance the internal quantum
efficiency of the PL emission. Combining both the photo absorption and emission factors,
the excitonic PL is significantly enhanced in the WS2–Ag ND heterostructure, particularly
for the XX−, which possesses the lowest emission energy, serving as an energy reservoir in
the hybrid system. Considering all factors, the emission of charged biexciton dominates
the heterogeneous region.
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Figure 6. Schematic diagram of the plasmonic effect on the exciton, trion, and charged biexciton
dynamics in the WS2–Ag ND heterostructure. The three colored arrows (green, red, and blue)
represent the of exciton, trion and charged biexciton, respectively, including both the formation
(τrise) and the recombination (τ2 and τ3) processes, where τ2 denotes the trap-assisted recombination
process, and τ3 represents the radiation recombination process. The greenish yellow arrow represents
the plasmons-enhancement process.

4. Conclusions

The PL enhancement of charged biexciton in monolayer WS2 coupled with plasmonic
nanocavity has been thoroughly investigated. Through steady-state power-dependent PL
measurement, we demonstrate the existence of charged biexciton. Notably, we observe a
~114.3-fold enhancement in the charged biexciton PL signal attributed to Fano resonance
coupling, significantly surpassing the enhancements seen in both the exciton (~2.2-fold)
and trion (~16.4-fold) emissions, a finding which, to our knowledge, had not been observed
in previous studies. By applying femtosecond pump-probe measurements, we can clearly
observe the change law of multibody exciton states with time, so we successfully established
a phenomenological model to clearly analyze the PL enhancement process of charged
biexciton in the sample. The effect of plasmonics on the radiative recombination lifetime
of charged biexciton (~15-fold) is much stronger than that found with exciton (~2-fold).
The establishment of the phenomenological model can not only analyze the details of
the enhancement process of charged double excitons, but also provide a valuable point
of view for us to understand the coupling between the multibody exciton state and the
plasmon cavity in TMD-based materials. This work offers valuable insights into the
coupling of the plasmonic nanocavity with high-order excitonic complexes in TMD-based
materials, providing a new multi-body exciton pathway for high-performance optical and
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photoelectric devices. It establishes a groundwork for, in the future, utilizing charged
double excitons as a high-brightness entangled-state light source.
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