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Abstract: The optical conductivity of graphene in quantizing magnetic fields is studied.
Both dynamical conductivities, longitudinal and Hall’s, are analytically evaluated. The
conductivity peaks are explained in terms of electron transitions. The optical transitions obey
the selection rule with ∆n = 1 for the Landau number n. The light transmission and Faraday
rotation in the quantizing magnetic fields are calculated.
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1. Introduction

Comprehensive literature on the graphene family is expressed usually in terms of the Dirac gapless
fermions. According to this picture, there are two bands at the K hexagon vertexes of the Brillouin
zone without any gap between them, and the electron dispersion can be considered as linear in the
wide wave-vector region. For the dispersion linearity, this region should be small compared with the
size of the graphene Brillouin zone, i.e., less than 10−8 cm−1, providing the small carrier concentration
n� 1016 cm−1. Pristine graphene at zero temperature has no carriers, and the Fermi level should divide
the conduction and valence bands. However, undoped graphene cannot be really obtained, and so far, the
purest graphene contains about n ∼ 109 cm−2 of carriers. Then, the following problem appears: how do
Coulomb electron-electron interactions renormalize the linear dispersion, and does graphene become an
insulator with a gap?

Semiconductors with a gap are needed for electronic applications. Investigations of the graphene
bilayer and multilayer are very popular, as the gap appears when the bias is applied. We see how physics
made a circle for a half century, returning to graphite studies. Here, Slonczewski, Weiss and McClure
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(SWMC) should be mentioned, because they have stated the description of a layered matter [1] with
interactions strong in the layer and weak between layers.

The most accurate investigation of the band structure of metals and semiconductors is a study of
the Landau levels through experiments, such as magneto-optics [2–10], magneto-transport [11–15] and
magnetic oscillation of the optical phonon [16,17]. In magnetic fields, the classical and quantum Hall
effects are observed, as well as the polarization rotation for transmitted (Faraday rotation) or reflected
light (Kerr rotation). However, the interpretation of the experimental results involves a significant
degree of uncertainty, because it is not clear how the resonances can be identified and to which electron
transitions they correspond.

The theoretical solution for the band problem in magnetic fields often cannot be exactly found.
A typical example is presented by graphene layers. For bilayer graphene and graphite, the effective
Hamiltonian is a 4 × 4 matrix, giving four energy bands. The trigonal warping described by the
effective Hamiltonian with a relatively small parameter γ3 provides an evident effect. Another important
parameter is the gate-tunable bandgap U in bilayer graphene. In this situation, the quantization problem
cannot be solved within a rigorous method. To overcome this difficulty, several methods have been
proposed for approximate [9,18–21], numerical [22–26] and semiclassical quantization [27,28].

The present paper is organized as follows. In Section 2, we recall the electron dispersion in graphene.
In Section 3, we describe in detail the quantization in magnetic fields. The optical conductivity, light
transmission, and Faraday rotation are discussed in Section 4.

2. Electron Dispersion in Graphene

The symmetry of the K point is C3v with the three-fold axis and reflection planes. This group
has a two-fold representation with the basis functions transforming each in other under reflections and
obtaining the factors exp (±2πi/3) in rotations. The linear momentum variations from the K point
p± = ∓ipx − py transform in a similar way. The effective Hamiltonian is invariant under the group
transformations, and we have the unique possibility to construct the invariant Hamiltonian linear in the
momentum as:

H(p) =

(
0 vp+

vp− 0

)
(1)

where v is a constant of the velocity units. The same Hamiltonian was written using the tight
binding model.

The eigenvalues of this matrix give two bands:

ε1,2 = ∓v
√
p2x + p2y = ∓vp

where the sign∓ corresponds to holes and electrons. The gapless linear spectrum arises as a consequence
of the symmetry, and the chemical potential at zero temperatures coincides with the band crossing due
to the carbon valence. The cyclotron mass has the form:

m(ε) =
1

2π

dS(ε)

dε
=

ε

v2

and the carrier concentration at zero temperature: n(µ) = µ2/πh̄2v2 is expressed in terms of the chemical
potential µ.
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Tuning the gate voltage, the linearity of the spectrum has been examined in the Shubnikov–de Haas
studies [29] with the help of the connection between the effective mass and the carrier concentration at
the Fermi level m(µ)v = ∓h̄

√
πn(µ). The “constant” parameter v was found to be no longer constant,

but at low carrier concentrations n ∼ 109 cm−2, it exceeds its usual value v = 1.05± 0.1× 108 cm/s (at
concentrations n > 1011 cm−2) by a factor of three.

This is a result of electron-electron interactions, which becomes stronger at low carrier concentrations.
The logarithmic renormalization of the velocity was found by Abrikosov and Beneslavsky in [30] for the
three-dimensional case and in [31,32] for two-dimensional graphene. Notice that no phase transition was
revealed, even at the lowest carrier concentration. We can conclude that the Coulomb interactions do not
create any gap in the spectrum.

3. Graphene in Magnetic Fields

In the presence of the magnetic field B, the momentum projections p+ and p− become the operators
with the commutation rule {p̂+, p̂−} = −2eh̄B/c. We use the relations:

vp̂+ = ωB a, vp̂− = ωB a
+

involving the creation a+ and annihilation a operators with ωB = v
√

2|e|h̄B/c. We will write only one
of two x, y space coordinates, including the corresponding degeneracy proportional to the magnetic field
in the final results.

For graphene, we search the eigenfunction of Hamiltonian (1) in the form:

ψαsn(x) =

{
C1
snϕn−1(x)

C2
snϕn(x)

(2)

where ϕn(x) are orthonormal Hermitian functions with the Landau number n ≥ 0. Canceling the
Hermitian functions from the equations, we obtain a system of linear equations for the eigenvector Csn:(

−ε ωB
√
n

ωB
√
n −ε

)
×

{
C1
sn

C2
sn

= 0

giving the eigenvalues:
εsn = ∓ωB

√
n

with s = 1, 2 and n = 0, 1, 2... For n = 0, there is only one level ε10 = 0 with C1
0 = 0, C2

0 = 1, as
follows from Equation (2). The wave function columns are written:

C1
sn

C2
sn

=
1√
2

{
1

−1
and

1

1

for s = 1 and s = 2 and n = 1, 2.... Levels and electron transitions are shown in Figure 1.
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Figure 1. Magnetic levels in graphene and electron transitions involve the level with n = 3

in the conduction band, s = 2.

4. Magneto-Optic Effects in Graphene

An important peculiarity of conductivities in the presence of magnetic fields is an appearance of the
Hall component σxy(ω). The Hall conductivity violates the rotation symmetry of graphene around the
major axis. This implies the rotation of the linear polarized electromagnetic wave, i.e., the Faraday
and Kerr effects for transmitted and reflected waves, correspondingly. Electron transitions are possible
between the levels with the neighboring Landau numbers n and various bands s, and therefore, the
resonance denominators ∆ss′n = εsn − εs′,n+1 arise in the conductivity tensor.

Calculations [18] give the conductivities for graphite in the collisionless limit when the electron
collision frequency Γ is much less than the level splitting:

σxx(ω)

iσxy(ω)

}
= iσ0

ω2
B

π2

∑
n,s,s′

∆fss′n
∆ss′n

× [(ω + iΓ + ∆ss′n)−1 ± (ω + iΓ−∆ss′n)−1]

(3)

Here, ∆fss′n = f(εs′n+1)− f(εsn) is the difference of the Fermi functions and:

σ0 = e2/4h̄

is the universal graphene conductivity.
For low carrier concentrations, e.g., for the low chemical potential, the electron transitions take place

between the certain Landau levels obeying the condition ∆n = 1. For instance, the Landau levels at
7 Tin the upper band are ε2,n = 0, 98, 138, and 169 meV for n = 0 to n = 3 and in the low band
ε1,n = 0, −98, −138, and –169 meV.

The transmission coefficient:
T = 1− 4π

c
Reσxx (4)

and the Faraday rotation angle:

ΘF =
2π

c
Reσxy (5)
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calculated for those cases when the chemical potential increases and the carriers fill sequentially the
levels from n = 0 to n = 3 are shown in Figures 2 and 3. For instance, if the level with n = 0 is
occupied, the transition into the level |2, 1〉 is possible (at 98 meV in Figures), as well as from the level
|1, 2〉 (at 236 meV, is not shown in the Figures). We use the notation |s, n〉 for the levels with the band
symbol s = 1, 2 and the Landau number n.
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Figure 2. Light transmission through graphene with low carrier concentrations when carriers
fill only one, two, three or four levels.
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Figure 3. Faraday rotation for the cases when electrons occupy only several levels; the
electron relaxation frequency Γ = 3 meV.

At high carrier concentrations, the chemical potential µ is much larger than the intraband level
splitting ∆ssn = eB/cm(ε) ≡ Ω, called the cyclotron frequency, with the effective mass m(ε) = ε/v2,
and the conductivities (3) coincide with the semiclassical Drude conductivities:

σxx(ω)

σxy(ω)

}
= σ0

4v2

πh̄

∫
dε

(
−df0
dε

)
m(ε)

ω∗2 − Ω2
×

{
iω∗

Ω
(6)

with ω∗ = ω + iΓ.
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At low temperatures T << Γ, we can integrate using the δ−function, df0/dε = −δ(ε− µ),

σxx(ω)

σxy(ω)

}
=

4σ0µ

πh̄(ω∗2 − Ω2)
×

{
iω∗

Ω
(7)

where the cyclotron frequency Ω = eBv2/cµ is taken on the Fermi surface. The high carrier
concentration case is illustrated in Figure 4.
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Figure 4. Faraday rotation in free suspended graphene with high carrier concentration
at a magnetic field 7 T; 13 levels in the upper electron band are below the Fermi level;
the cyclotron frequency at the Fermi level Ω = 13 meV; the electron relaxation frequency
Γ = 10 meV.

5. Discussion

Graphene layers affect the transmission and the Faraday rotation in a linear order in the fine
structure constant α, whereas the reflected light intensity is quadratic to α. Thus, we discuss here the
characteristics of the transmitted light. Expressed linearly in conductivity σ0 = e2/4h̄, the transmission
coefficient T and the Faraday angle for free standing graphene are shown in Figures 2 and 3. The peaks
in absorption (Figure 2) correspond to the electron transitions. The series of lines are observed in the
0.1–0.4 eV interval. They are doublets excited by the electron transitions of the type |1, n〉 → |2, n+ 1〉
and |1, n + 1〉 → |2, n〉 for n > 0. All of these lines obey the selection rule ∆n = 1. Let us note that
the transition frequencies in Figure 2 determine the maximum values of the derivative in the Faraday
rotation (Figure 3).
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