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Abstract: The birth of objective properties from the subjective quantum world has been one
of the key questions in the quantum-to-classical transition. Based on recent results in the
field, we study it in a quantum mechanical model of a boson-boson interaction—quantum
Brownian motion. Using various simplifications, we prove a formation for thermal
environments of, so called, spectrum broadcast structures, responsible for perceived
objectivity. In the quantum measurement limit we prove that this structure is always formed,
providing the characteristic timescales. Including self-Hamiltonians of the environment, we
show the exponential scaling of the effect with the size of the environment. Finally, in the full
model we numerically study the influence of squeezing in the initial state of the environment,
showing broader regions of formation than for non-squeezed thermal states.
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1. Introduction

Quantum measurement inevitably disturbs a state of a measured system, unless very special conditions
are met [1]. This is in stark contrast with the classical physics we are used to, where a state of the
system is believed to exist objectively, independently of the observation. A pioneering attempt to
resolve this situation has been initiated by Zurek and collaborators through the quantum Darwinism
program (see, e.g., [2] and the references therein), which is an advance form of the theory decoherence
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(see, e.g., [3]). In essence, it relies on two fundamental observations. First, in usual situations a
quantum system S interacts with multiple environments E1, . . . , EN and the information about the
system is learned not directly but through an observation of some portion, which we call fE, of those
environments. Hence, studying information content, deposited through decoherence in the portions
of environment is of key importance. Second, what lies at the heart of objectivity is information
redundancy: If the same information about the system (or more precisely about its state) is present
in many fractions of the environment and can be accessed by independent observers without disturbing
the system, it appears to be objective [2]. This information redundancy has been studied in several
emblematic models of decoherence, e.g., in quantum Brownian motion [4], in spin-1/2 systems [5], and
for a small dielectric sphere illuminated by photons [6], suggesting that the objectivisation of certain
properties indeed takes place in those models.

However, this approach is based on a certain scalar criterion for objectivity, probing the scaling of the
quantum mutual information between the system and the observed environment fraction with the size of
this fraction [2]. Although very suggestive, the sufficiency of this criterion remains open, as pointed out
in [7], where a deeper structural analysis has been developed, based on the most fundamental description
of a quantum system—its state (see also [8], strengthening some aspects of [7]). In brief, using an
operational definition of objectivity from [2] and, surprisingly, the Bohr non-disturbance condition [9]
it has been shown in an abstract, model- and dynamics-independent setting that the necessary and
sufficient condition for appearance of an objective state of the system is formation of a, so called,
spectrum broadcast structure [7]:

%S:fE =
∑
i

pi|ξi〉〈ξi| ⊗ %E1
i ⊗ · · · ⊗ %

EfN
i , %Eki %Eki′ 6=i = 0 (1)

where fE denotes the observed fraction of the environment E, {|ξi〉} is a pointer basis, pi = 〈ξi|%0S|ξi〉
initial pointer probabilities, and %E1

i , . . . , %
EfN
i some states of the observed environments E1, . . . , EfN

with mutually orthogonal supports. The process of formation of this structure is called state information
broadcasting and is similar to quantum state broadcasting [10]. However, only a part of the initial state
%0S is broadcasted—the probabilities pi = 〈ξi|%0S|ξi〉. The name comes from the fact that all the reduced
states of the environments have the same spectrum {pi} as the decohered state of the system and such
structures first appeared in a different context in [11]. As seen from Equation (1), if a spectrum brodcast
structure has been formed, the observers trying to determine the state of the system from the environment
will all get the same results i with the same probabilities pi, due to the non-overlapping supports of the
environmental states, and the state of the system will stay unchanged. This leads to the objectivisation
of the states |ξi〉. Formally, state information broadcasting can be described as a quantum channel:

ΛS→fE(%0S) =
∑
i

〈ξi|%S0|ξi〉%E1
i ⊗ · · · ⊗ %

EfN
i (2)

Formation of such structures has been recently theoretically confirmed for the mentioned models
of decoherence: the illuminated sphere model [12], spin-1/2 systems [13], and in quantum Brownian
motion [14] (see e.g., [3,15] for an introduction to the model). The last study, although introduced a
novel concept of a dynamical objectivisation with time evolving structure Equation (1), relied in its
final stage on the numerics, due to a complicated nature of appearing expressions. In the present work,
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we further analyze quantum Brownian motion model and, at an expense of various simplifications, we
obtain analytical estimates on the speed of formation of the spectrum broadcast structure as a function
of time and the size of the environment. Moreover, in the full model we numerically study the effect of
squeezing in the initial state of the environment.

2. Results

2.1. The General Mechanism

We illustrate our method, first developed in [7,12], on a general interaction Hamiltonian of the von
Neumann measurement type [1]:

Ĥ = Â⊗
N∑
k=1

B̂k, (3)

where Â, B̂k are some observables of the system and the k-th environment respectively, assumed for
simplicity to have discrete spectra (for a treatment of observables with continuous spectra see [14])
and we have neglected the self-Hamiltonians of the system and the environments. We assume that
the strengths of each interaction in Equation (3) are vanishingly small (one can imagine adding small
coupling constants gk there; we however do not do it for simplicity’s sake). Diagonalizing Â, leads to
the time evolution of a controlled unitary type, with the system controlling the environment:

Û(t) =
∑
a

|a〉〈a| ⊗
N⊗
k=1

e−iatB̂k (4)

The basic object of our study [7,12,14] is the post-interaction state %S:fE(t) of the system S and the
observed fraction of the environment fE (of the size fN , 0 < f < 1), obtained with the above Û(t).
The observed fraction is not the whole environment as some losses are necessary for the decoherence (as
it happens in realistic situations). We obtain:

%S:fE(t) = tr(1−f)E

[
Û(t)%0S ⊗

N⊗
k=1

%0kÛ(t)†

]

=
∑
a

〈a|%0S|a〉|a〉〈a| ⊗
fN⊗
k=1

e−iatB̂k%0ke
iatB̂k (5)

+
∑
a6=a′

Γa,a′(t)〈a|%0S|a′〉|a〉〈a′| ⊗
fN⊗
k=1

e−iatB̂k%0ke
ia′tB̂k (6)

where:
Γa,a′(t) =

∏
k∈(1−f)E

tr
[
e−iatB̂k%0ke

ia′tB̂k
]

(7)

is the usual decoherence factor between the states |a〉, |a′〉 and (1 − f)E denotes the lost (unobserved)
fraction of the environment. We then check for the spectrum broadcast structure Equation (1) formation
in two steps.

First, we take care of the vanishing of the off-diagonal part Equation (6), which is the well known
decoherence process. Vanishing of Equation (6) in the trace norm is fully controlled (assuming of
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course coherences between different as in the system’s initial state%0S) by the modulus |Γa,a′(t)|, so
it is enough to check if |Γa,a′(t)| ≈ 0 with time. Note that decoherence is a result of the losses and
therefore decoherence factor depends only on the unobserved fraction of the environment. The basis
{|a〉} becomes then the pointer basis, which as we pointed out earlier [12] is arguably put by hand
to some extent. Developing a framework where this basis appears truly dynamically would be a very
interesting task (if at all possible).

Second, we check if the post-interaction states of the environments %ka(t) = e−iatB̂k%0ke
iatB̂k have

non-overlapping suports %a(t)%a′(t) ≈ 0. This is equivalent to their perfect one-shot distinguishability
through projective measurements on their supports. However, due to the assumed weak interaction
Equation (3) one cannot expect that for states of the individual environments. In fact, for a vanishingly
weak interaction, the states %ka(t) are almost identical for different a and hence carry a vanishingly small
amount of information about the system (the index a of an eigenstate of the observable Â in this case).
Thus, we perform an environment coarse-graining and divide the observed fraction of the environment
fE in Equation (5) into M fractions (assumed equal for simplicity) of a size fN/M = mN . This
grouping into macrofractions can be also seen as representing detection thresholds of real-life detectors.
Since at some point we are interested in a thermodynamic-type of a limit N → ∞ it is important that
those fractions scale with N (hence the name "macrofractions"). Due to no direct interactions between
different parts of the environment (cf. Equation (3)), post-interaction states of each macrofraction are
simply products %maca (t) =

⊗
k∈mac %a(t). We assume that a single macrofraction is a minimal portion

of the environment providing the observers with information about the central system and therefore it is
enough to consider the distinguishability at the level of a single macrofraction. We use the generalized
overlap [16], B(%1, %2) = tr

√√
%1%2
√
%1, as the most convenient measure due to its scaling with the

tensor product:
Bmac
a,a′ (t) = B (%maca (t), %maca′ (t)) =

∏
k∈mac

B (%ka(t), %ka′(t)) (8)

Vanishing of Bmac
a,a′ (t) is equivalent to %maca (t), %maca′ (t) being perfectly distinguishable [16].

Thus, if one is able to prove that for some initial states %0k (and other possible parameters of the
model) both:

|Γa,a′(t)| ≈ 0, Bmac
a,a′ (t) ≈ 0 (9)

then this is equivalent to a formation of the spectrum broadcast structure Equation (1):

%S:fE ≈
∑
a

pa|a〉〈a| ⊗ %mac1a ⊗ · · · ⊗ %macMa , %macja %
macj
a′ 6=a ≈ 0 (10)

and the convergence is in the trace norm. By [7] this, in turn, means that the states |a〉 of the decohered
system become objective as the information about the index a has been redundantly copied and stored
in the environment and is accessible without disturbing the system through projective measurements on
the supports of %maca .
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2.2. Model of Quantum Brownian Motion

We begin with briefly describing the model [3,15] and the results of [14]. The central system S is
modeled as a harmonic oscillator of a massM and a frequency Ω, linearly coupled to a bath of oscillators:

Ĥ =
P̂ 2

2M
+
MΩ2X̂2

2
+

N∑
k=1

(
p̂2
k

2mk

+
mkω

2
kx̂

2
k

2

)
+ X̂ ⊗

N∑
k=1

Ckx̂k (11)

where we assume the units in which h̄ = 1, x̂k, p̂k describe the k-th environmental oscillator and Ck
are the coupling constants. The central assumption is that the system is very massive compared to
the environments: M � mk for every k. The formation of the broadcast state is measured by two
scalar functions: the well known decoherence factor, associated with a loss of some of the environments
and a generalized overlap [16], measuring distinguishability of macroscopic states of the observed
environments. The whole system is initialized in a product state %0S ⊗

⊗
k %0k, where about the central

systems’ initial state %0S we only assume that it has coherences in the position X . Apart from the last
subsection, the environments are assumed to be in a thermal state with the same temperature T . The
noise in the environment is a highly non-trivial factor, compared to pure initial states (as in e.g., [4]),
both conceptually, as the noise can prevent accumulation of information in the environment although
decoherence has taken place, and technically [12,14]. We are interested in collective effects, where a
single environment couples very weakly to the system. Otherwise, it could "learn" enough about the
system to decohere it—a situation trivial from a point of view of studying information flow into different
parts of the environment. In QBM this means that the environmental oscillators are off-resonance:

ωk � Ω or ωk � Ω for all k (12)

Because a single environment acquires vanishingly small amount of information in the course of the
interaction, we have proposed [12] to group the observed environments into fractions, scaling with the
total number of the environments N , so called macrofractions. This is at the level of such coarse-grained
environment where one can expect an appearance of a spectrum broadcast structure. This method is
analogous to e.g., description of liquids: each point of a liquid (a macro-fraction here) is in reality
composed of a suitable large number of microparticles (individual environments). Same technique is
also used in a mathematical approach to von Neumann measurements using, so called, macroscopic
observables (see, e.g., [17] and the references therein).

Another characteristic feature of our method [14] is that instead of introducing the usual continuum
approximation of the environments, characterized by a continuous spectral density function [3,15], we
work with a discrete bath of oscillators with random frequencies ωk (this method is adapted from the
spin systems [18]). Under such conditions, we have obtained analytical expressions for the decoherence
and distinguishability factors, denoted ΓX,X′(t) and Bmac

X,X′(t) respectively, between two different initial
positions X,X ′ (or in fact states of motion in a certain sense) of the central system [14]:
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|ΓX,X′(t)| = exp

−(X −X ′)2

2

∑
k∈(1−f)E

|αk(t)|2cth
(
βωk

2

) (13)

Bmac
X,X′(t) = exp

[
−(X −X ′)2

2

∑
k∈mac

|αk(t)|2th
(
βωk

2

)]
(14)

|αk(t)|2 =
C2
kωk

2mk(ω2
k − Ω2)2

[
(cosωkt− cos Ωt)2 +

(
sinωkt−

Ω

ωk
sin Ωt

)2 ]
(15)

where (1 − f)E is the unobserved (traced out) fraction of the environment, mac denotes one of the
observed macrofractions, and β = 1/kBT is the inverse temperature. Due to the random character
of ωk, these are complicated almost periodic functions of time. Numerical analysis in [14], assuming
independently, identically distributed (i.i.d.) ωks with a uniform distribution over a spectrum interval
far from the resonance, shows that if the macrofraction sizes are large enough for a given temperature,
the broadcast structure is formed, certified by vanishing of both of the above functions. These results
are in accord with the earlier results of [4], which suggested there is indeed some objectivisation in the
model, in the sense that we confirm the objectivisation but using a very different, more fundamental
approach [7], based directly on quantum states and for a much wider and more realistic class of
the environment initial states—thermal states. Below, using various simplifications, we further study
formation of the structure Equation (1) analytically as well as the effect of squeezing in the initial
thermal state.

2.3. Full Quantum Measurement Limit And Exact Timescales

We first consider a highly simplified model, with dominating interaction term and completely
neglecting self-Hamiltonians of both the system and the environment:

Ĥ ≈ X̂ ⊗
N∑
k=1

Ckx̂k (16)

This is called Quantum Measurement Limit due to the fact that the Hamiltonian represents an ideal
von Neumann measurement of the system observable X̂ by the environments [1]. Such a simplified
model will allow us to obtain the character and the timescales of the broadcast structure formation. The
corresponding evolution is of the controlled unitary type with X as the control parameter:

Û(t) =

∫
dX|X〉〈X| ⊗

N⊗
k=1

D̂

(
−iCkt√

2
X

)
(17)

where D̂(α) = eαa
†−α∗a is the displacement operator and we have set the oscillators masses and the

frequencies to unity. This leads to the following decoherence and distinguishability factors [14]:

|ΓX,X′(t)| = exp

−(X −X ′)2

2
t2cth

β

2

∑
k∈(1−f)E

C2
k

 (18)

Bmac
X,X′(t) = exp

[
−(X −X ′)2

2
t2th

β

2

∑
k∈mac

C2
k

]
(19)
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One immediately sees that unlike in the full model, in the quantum measurement limit there is always
a formation of the spectrum broadcast structure, and hence objectivisation of the system’s position X ,
described by the Gaussian decay in time of |ΓX,X′(t)|, Bmac

X,X′(t). Quite surprisingly, one does not even
have to assume random coupling constants Ck as e.g., in the spin systems [18]. If however, one assumes
random i.i.d. Ck with a finite average C2 < ∞, more can be said as the sum

∑
k C

2
k above can be

approximated using the law of large numbers for large macrofraction sizes:

|ΓX,X′(t)| ≈
N→∞

exp

[
−(1− f)N

(X −X ′)2

2
C2t2cth

β

2

]
= e

−(1−f)N
(

t
τD

)2

(20)

Bmac
X,X′(t) ≈

N→∞
exp

[
−mN (X −X ′)2

2
C2t2th

β

2

]
= e

−mN
(
t
τB

)2

(21)

where (1 − f)N and mN , f,m ∈ (0, 1), are the sizes of the unobserved macrofraction (1 − f)E

and (one of the) observed one mac respectively. The characteristic timescales of decoherence and
distinguishability are given by, respectively:

1

τD
= |X −X ′|

√
cth(β/2)

2
C2 (22)

1

τB
= |X −X ′|

√
th(β/2)

2
C2 (23)

with the second being in general larger than the first for a given temperature T . This is the effect
of noise—it obviously slows down the accumulation of information in environmental macrofractions
(cf. [12]).

2.4. Partial Quantum Measurement Limit And Time Averages

Inclusion of the self-Hamiltonians of the environment:

Ĥ =
N∑
k=1

(
p̂2
k

2mk

+
mkω

2
kx̂

2
k

2

)
+ X̂ ⊗

N∑
k=1

Ckx̂k (24)

still allows for an exact solution, following e.g., the method of [14]:

Û(t) =

∫
dX|X〉〈X| ⊗

N⊗
k=1

D̂ (αk(t)X) eiζk(t)X2

(25)

αk(t) = − Ck√
2mkω3

k

[
eiωkt − 1

]
, ζk(t) =

C2
k

2mkω3
k

[ωkt− sin(ωkt)] (26)

For random ωk, the decoherence and distiguishability factors become almost periodic
functions of time:

|ΓX,X′| = exp

(X −X ′)2

2

∑
k∈(1−f)E

cth
(
βωk

2

)
C2
k (cosωkt− 1)

mkω3
k

 (27)

Bmac
X,X′(t) = exp

[
(X −X ′)2

2

∑
k∈mac

th
(
βωk

2

)
C2
k (cosωkt− 1)

mkω3
k

]
(28)



Photonics 2015, 2 235

They are simpler than in the full model [14], as e.g., there is no frequency mixing between the
environmental bands and the central system, but still too complicated for an immediate analytical
studies (which will be the subject of an independent work). We believe the law of large numbers
will prove useful again here. What, however, can be evaluated are the time averages 〈|ΓX,X′|〉 =

limτ→∞
1
τ

∫ τ
0
dt|ΓX,X′(t)|,

〈
Bmac
X,X′

〉
= limτ→∞

1
τ

∫ τ
0
dtBmac

X,X′(t), noting that the amplitudes of the cosines
in Equations (27) and (28) are all non-negative. Using a theorem from [19] one obtains (see Methods):

〈|ΓX,X′|〉 = exp

−(X −X ′)2

2

∑
k∈(1−f)E

C2
kcth(βωk/2)

mkω3
k

 ∏
k∈(1−f)E

I0

[
(X −X ′)2C2

kcth(βωk/2)

2mkω3
k

]
(29)〈

Bmac
X,X′

〉
= exp

[
−(X −X ′)2

2

∑
k∈mac

C2
k th(βωk/2)

mkω3
k

] ∏
k∈mac

I0

[
(X −X ′)2C2

k th(βωk/2)

2mkω3
k

]
(30)

where I0(z) = (1/π)
∫ π

0
dθez cos θ is the modified Bessel function of the first kind. The rationale behind

studying time averages is that since the functions themselves are non-negative, vanishing of the time
averages is a good measure of the functions being practically zero. We are again interested in the scaling
of the averages with the macrofraction sizes, for simplicity assuming them here to be equal: #(1−f)E =

#mac = mN , m ∈ (0, 1). We also assume Ck to be only mass-dependent (and not random) [14],

Ck =
√

Mmkγ̃0

π
, with M the mass of the central system and γ̃0 some constant. The scaling can be

evaluated in the large separation limit:
√
Mγ̃0|X −X ′|

ω
3/2
k

� 1 for every k (31)

which allows one to use the asymptotic expansion I0(x) ≈ ex/
√

2πx. Assuming further low temperature
limit, β →∞ (from Equation (28) Bmac

X,X′ rises with T ), one obtains:

〈|ΓX,X′ |〉 ≈
mN∏
k=1

ω
3/2
k√

Mγ̃0|X −X ′|
(32)

and the same for
〈
Bmac
X,X′

〉
, as th(βωk/2) ≈ 1 ≈ cth(βωk/2) in Equations (29) and (30). We perform

further averaging over the random frequencies ωk, assuming [14] they are i.i.d. with a uniform
distribution over a spectrum interval ∆, centered at some ω̄ � ∆. This gives:

〈|ΓX,X′|〉 =

∫ ω̄+ ∆
2

ω̄−∆
2

∏
j

dωj
∆
〈|ΓX,X′ |〉 ≈ e

−mN
(

log

√
Mγ̃0|X−X

′|
ω̄3/2

)
(33)

and the same for the distinguishability factor, due to the assumed low temperature limit:

〈
Bmac
X,X′

〉
=

∫ ω̄+ ∆
2

ω̄−∆
2

∏
j

dωj
∆

〈∣∣Bmac
X,X′

∣∣〉 ≈ e
−mN

(
log

√
Mγ̃0|X−X

′|
ω̄3/2

)
(34)

This is the desired scaling. One sees that whenever Equation (31) holds, for low temperatures, both
averages exponentially decay in the thermodynamic limit N →∞, indicating formation of the spectrum
broadcast state.
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2.5. Squeezed Thermal States in The Full Model

We now switch to the full model Equation (11) and analyze the effect of squeezing in the initial
thermal state of the environment, assuming:

%0k = Ŝ(r)%kT Ŝ(r)† (35)

where Ŝ(r) = e
r
2

(â2−â†2) is the squeezing operator and %kT are the thermal oscillator states. Simple
calculation shows that it is enough to substitute in Equations (13) and (14) |αk(t)|2 for:

|α̃k(t)|2 = ch(2r)
[
|αk(t)|2 − th(2r)Reα2

k(t)
]

(36)

Reak(t)2 =
C2
k

4mkωk

{
1

(ωk + Ω)2
{cos [2(ωk + Ω)t]− 2 cos [(ωk + Ω)t]}

+
1

(ωk − Ω)2
{cos [2(ωk − Ω)t]− 2 cos [(ωk − Ω)t]}

+
1

ω2
k − Ω2

{cos 2(ωkt)− cos [(ωk − Ω) t]− cos [(ωk + Ω) t]}+
3ω2

k + Ω2

(ω2
k − Ω2)2

}
(37)

From Equation (36) one sees that for large squeezing, |α̃k(t)|2 grows exponentially as e2r, enabling
a formation of the broadcast structure as the most problematic term in Equation (14) decay as
th(βωk/2) ≈ βωk/2 for high temperatures. This reflects the fact that large squeezing decreases the
noise, increasing the information capacity of the environment. The plots in Figure 1 confirm this. From
Figure 1a it can be seen that for a moderate macrofractions of 10 oscillators only with a help of a large
squeezing log r > 0 the negative effect of the temperature can be overcome, and both functions are
damped indicating formation of the spectrum broadcast structure.

For 30 oscillators, Figure 1b, the effect of random phases in Equations (13) and (14) is much stronger,
the functions are much more damped for the chosen parameters range, and hence the plateau of a
broadcast structure formation is much larger. Quite surprisingly, there is a bump around log r = 0

where the formation is suppressed, most probably due to a constructive interference in Equations (36)
and (37).

The parameters for the numerics are as follows [14]: For the central system we assumeM = 10−5 kg,
Ω = 3× 108 s−1; the frequencies ωk are i.i.d. and uniformly distributed in the interval 3 . . . 6× 109 s−1

to satisfy the off-resonance condition Equation (12); we set |X − X ′| = 10−9 m. We assume here that

the coupling constants Ck depend only on the masses, Ck ≡ 2
√

Mmkγ̃0

π
, where γ̃0 = 0.33× 1018 s−2 is a

constant. Thus, we do not assume the dependence on the ωk, as it is the case, e.g., for the Ohmic spectral
density [4].

The averaging time was set at fairy large 1s. Finally, as in the previous section, we assume a
symmetric situation where the size of the traced macro-fraction (1 − f)E in Equation (13) is the same
as the size of the observed one mac in Equation (14).
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Figure 1. Time averaged decoherence 〈|ΓX,X′|〉 (green; lower surfaces) and
distinguishability 〈Bmac

X,X′〉 (magenta; upper surfaces) factors as functions of the temperature
T and squeezing r (both on the logarithmic scale) of the environment. The set of random
frequencies ωk was generated once per plot. The traced over and observed macrofractions,
(1 − f)E and mac, are assumed to be of the same size. Both plots simultaneously
approaching zero indicates formation of the spectrum broadcast structure for a given (r, T ).
(a) 10 oscillators; (b) 30 oscillators.



Photonics 2015, 2 238

3. Discussion

Our results can be grouped into three groups. First, neglecting the self-Hamiltonians of the system and
the environments completely we have shown that there is always a formation of the spectrum broadcast
structure for thermal environments, irrespective of how high the temperature is, if one waits long enough
and/or takes large enough macrofractions. The derived Gaussian character of this formation together
with characteristic timescales has not been obtained before. An application of the law of large numbers
allowed us to obtain the exponential scaling of the decay with the environment size. Although very basic
here, we believe this method will make analytical studies of the full model possible.

Second, in a more complicated model including self-Hamiltonians of the environments we have
shown using a form of ergodicity for almost periodic functions [19], an exponential decay of infinite-time
averages of both decoherence and distinguishability factors in the low temperature limit and for large
separations of the systems’ initial positions X,X ′. Again, this is a novel result, compared to the
earlier studies [4,14]. The large separation assumption opens here an interesting possibility of a space
coarse-grained spectrum broadcast structure, where such a structure appears for large distances but not
for small distances. This would lead to a sort of a macroscopic objectivity, emerging only at large scales.
This concept will be a subject of further research.

Finally, we have numerically studied the effect of squeezing in the thermal environment in the
full model. To our knowledge, such studies have not been performed before in the context of
objectivisation (in [4] the system was initialized in a squeezed state, but the environment was initially
in the ground state). Squeezing obviously increases the informational capacity of the environment,
while the temperature destroys it. This leads to an interplay between squeezing and heating of the
environment and our results show that in general large enough squeezing will dominate the noise due
to the temperature. We had to rely on the numerics as the appearing almost periodic functions are quite
complicated. However, as mentioned above, we hope the law of large numbers together with possible
additional simplifications, e.g., the low temperature limit, will open a way for obtaining analytical
estimates on the timescale of the objectivisation.

4. Methods

4.1. Time Averages of Almost Periodic Functions with Positive Coefficients

We will show the passage from Equations (27) and (28) to Equations (29) and (30). We evaluate the
time average:

lim
τ→∞

1

τ

∫ τ

0

dt exp

(X −X ′)2

2

∑
k∈(1−f)E

C2
k cosωkt

mkω3
k

cth
(
βωk

2

) (38)
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The crucial step is to use one of the results from [19], which states a form of ergodicity for such
functions. Namely, due to the positive amplitudes of the trigonometric functions, the time average can
be substituted with the ensemble average (average over the angles in this case). This gives:

lim
τ→∞

1

τ

∫ τ

0

dt
∏

k∈(1−f)E

exp

[
(X −X ′)2

2

C2
k cosωkt

mkω3
k

cth
(
βωk

2

)]
(39)

=
∏

k∈(1−f)E

1

2π

∫ 2π

0

dθk exp

[
(X −X ′)2

2

C2
k

mkω3
k

cth
(
βωk

2

)
cos θk

]
(40)

=
∏

k∈(1−f)E

I0

[
(X −X ′)2

2

C2
k

mkω3
k

cth
(
βωk

2

)]
(41)

where the last step is the standard Bessel integral, giving the modified Bessel function of the first kind:
I0(z) = (1/π)

∫ π
0
dθez cos θ.
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