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Abstract: In this work, we develop a numerical method for solving the three dimensional
hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics
driven by an external electromagnetic wave excitation. Our numerical approach is based
on the Finite-Difference Time-Domain (FDTD) method for solving the Maxwell’s equations
and an explicit central finite difference method for solving the hydrodynamic electron fluid
equations containing both electron density and current equations. Numerical results show
good agreement with the experiment of studying the second-harmonic generation (SHG)
from metallic split-ring resonator (SRR).
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1. Introduction

Maxwell’s equations are a set of partial differential equations governing the electromagnetic (EM)
waves [1]. Solution to the Maxwell’s equations is very important for studying many physical phenomena.
Among many methods for solving Maxwell’s equations, the Finite-Difference Time-Domain (FDTD)
method is one of the most popular numerical approaches [2]. Here, we numerically investigate the
solution of Maxwell’s equations in nonlinear media and its application to nonlinear optics.

Recently, experiments have shown that strong nonlinear response such as the second-harmonic
wave can be generated from Split-Ring Resonator (SRR) [3–6]. The SRR consists of array of
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U-shaped metallic gold nanoparticles. Under the excitation of an external electromagnetic wave,
strong nonlinear optical wave is generated. A classical theory based on the cold plasma Maxwell’s
equations are developed in [6–8] to study the nonlinear optical response for this structure. In [6,7],
perturbation expansion of nonlinearities is used in order to solve the cold plasma-Maxwell’s equations.
In [8], a nonlinear Drude model is developed and solved by a time-splitting finite difference method.
In [9,10], full fluid equations (Euler’s equations) are coupled to the Maxwell’s equations and is solved
by perturbation expansion of nonlinearities. In [11], the discontinuous Galerkin time domain method
and the hydrodynamic Maxwell-plasma model are applied to simulate the linear and nonlinear optical
response from SRR arrays.

In this paper, we numerically study the solution of the hydrodynamic electron fluid Maxwell equations
by solving the electron density and momentum equations using an explicit finite difference hyperbolic
PDE solver together with the FDTD method for the Maxwell’s equations. This work is the extension of
the previous work in [7,8] to electron fluid equations containing both electron density equation and the
electron current equations with the electron pressure term included. We apply our model to simulate the
nonlinear optical responses such as second-harmonic generation (SHG) from metallic nanoparticles and
the numerical results yield good agreement with the experimental results published in [3–5].

2. Numerical Model of Hydrodynamic Electron Fluid Maxwell Equations

The hydrodynamic electron fluid Maxwell equations consists of the Maxwell’s equations

µ0
∂H

∂t
= −∇× E

ε0
∂E

∂t
= ∇×H − J

∇ ·B = 0

ε0∇ · E = ρ

(1)

and the hydrodynamic electron fluid equations

∂ne
∂t

+∇ · (neue) = 0 (2)

∂ue
∂t

+ (ue · ∇)ue + γue =
qe
me

(E + ue ×B)− ∇p
mene

(3)

where ε0 and µ0 represent vacuum permittivity and vacuum permeability, respectively. ne, ue, me and qe
are the electron density, velocity, electron mass and electron charge, respectively. The damping factor γ
is added to describe the current decay due to Coulomb scattering. Equation (2) is the continuity equation
and Equation (3) is the equation of motion (momentum conservation). p is the quantum pressure given
by Thomas-Fermi theory,

p = ζ(ne)
5
3

where ζ = (3π2)2/3h̄2/5me.

From Equations (2) and (3) we get

∂(uene)

∂t
+∇ · (ue ⊗ (neue)) +

∇p
me

+ γuene =
qe
me

(neE + neue ×B). (4)
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Let n = qene, and current density J = qeneue = nue, which can be written as nonlinear hyperbolic
system in conservation form

∂n

∂t
+∇ · J = 0 (5)

∂J

∂t
+∇ · (J

n
⊗ J +

ζ(qe)
−2/3n5/3

me

I) + γJ =
qe
me

(nE + J ×B) (6)

where ⊗ is the tensor product.
For convenience, we rewrite the above system into the following conservation form

∂m

∂t
+
∂F (m)

∂x
+
∂G(m)

∂y
+
∂K(m)

∂z
= S (7)

where

m =


n

Jx

Jy

Jz

 , F (m) =


Jx

J2
x

n
+ ζ(qe)−2/3

me
n5/3

JyJx
n

JzJx
n

 , G(m) =


Jy
JxJy
n

J2
y

n
+ ζ(qe)−2/3

me
n5/3

JzJy
n



K(m) =


Jz
JxJz
n

JyJz
n

J2
z

n
+ ζ(qe)−2/3

me
n5/3

 , S =


0

qe
me

(nEx + JyBz − JzBy)− γJx
qe
me

(nEy + JzBx − JxBz)− γJy
qe
me

(nEz + JxBy − JyBx)− γJz

 .

In this paper, we apply the standard space and time staggered grid based FDTD method to solve the
Maxwell’s Equation (1) and a non-staggered grid based central difference method to solve the hyperbolic
Equation (7).

The FDTD Method is based on the space-time staggered Cartesian grid. The three components of
the electric fields and the three components of the magnetic fields are defined at different positions in
space and time. The electric fields are defined at the time step of τ ; the magnetic fields are defined at the
time step of τ + 1/2. In a computational cell (i, j, k), three components of electric fields, Ex, Ey, and
Ez, are defined at the locations of (i + 1/2, j, k), (i, j + 1/2, k), and (i, j, k + 1/2), respectively; three
components of magnetic fields, Hx, Hy, and Hz, are defined at the locations of (i, j + 1/2, k + 1/2),
(i + 1/2, j, k + 1/2), and (i + 1/2, j + 1/2, k), respectively. Since the current density J is defined at
the same location as E in space and at the same location as H in time, our numerical method requires
all components of J to be interpolated at cell corners. Hence, we define new variables jx, jy, jz at cell
corners such that

jx(i, j, k) = (Jx(i+ 1
2
, j, k) + Jx(i− 1

2
, j, k))/2 (8)

jy(i, j, k) = (Jy(i+ 1
2
, j, k) + Jy(i, j − 1

2
, k))/2 (9)

jz(i, j, k) = (Jz(i, j, k + 1
2
) + Jz(i, j, k − 1

2
))/2. (10)
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We use the central difference method for solving the Equation (7), and its discretization form is given as

mτ+ 1
2 (i, j, k) = mτ− 1

2 (i, j, k) + ∆tSτ (i, j, k)

− ∆t(F τ− 1
2 (i+ 1, j, k)− F τ− 1

2 (i− 1, j, k))

2∆x

− ∆t(Gτ− 1
2 (i, j + 1, k)−Gτ− 1

2 (i, j − 1, k))

2∆y

− ∆t(Kτ− 1
2 (i, j, k + 1)−Kτ− 1

2 (i, j, k − 1))

2∆z
.

(11)

In the update Equation (11),

mτ+ 1
2 (i, j, k) =


nτ+

1
2 (i, j, k)

j
τ+ 1

2
x (i, j, k)

j
τ+ 1

2
y (i, j, k)

j
τ+ 1

2
z (i, j, k)

 .

When getting the value of jx, jy and jz, we average them to get the value of Jx, Jy, and Jz as follows:

Jx(i+
1

2
, j, k) = (jx(i, j, k) + jx(i+ 1, j, k))/2 (12)

Jy(i, j +
1

2
, k) = (jy(i, j, k) + jy(i, j + 1, k))/2 (13)

Jz(i, j, k +
1

2
) = (jz(i, j, k) + jz(i, j, k + 1))/2. (14)

Therefore, we have

jx(i, j, k) = (jx(i+ 1, j, k) + 2jx(i, j, k) + jx(i− 1, j, k))/4 (15)

jy(i, j, k) = (jy(i, j + 1, k) + 2jy(i, j, k) + jy(i, j − 1, k))/4 (16)

jz(i, j, k) = (jz(i, j, k + 1) + 2jz(i, j, k) + jz(i, j, k − 1))/4 (17)

which has filtering effect. Our numerical simulations show that the above central difference method
provides stable solution.

3. Numerical Simulation of SHG from SRR

In this section, we simulate the optical second-harmonic generation (SHG) from metallic
nanoparticles numerically using the numerical solver presented in the previous section. The simulation
results are compared with optical experimental results shown in the paper [3–5]. The simulation setup is
shown in Figure 1a. The red arrow represents the direction of incident pulse; the blue arrow represents
the direction of second harmonic waves. A three-dimensional gold nanoparticle is placed in the middle
of the computational domain with periodic boundary conditions in both x and y directions. Perfectly
Matched Layers boundary condition is applied in z direction. The gold nanoparticle is U-shaped with
plasma frequency ωp = 1.367 × 1016s−1 and phenomenological damping factor 6.476 × 1013s−1,
and thickness of 25 nm. The x − y cross section of the U-shaped gold nanostructure is shown in
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Figure 1b. ITO (ε = 3.8 and 5 nm thick) and glass (ε = 2.25 below ITO to the bottom) substrates are
placed beneath the particle. The rest of the computational domain is vacuum.

The incident Gaussian pulse with carrier wavelength λ = 1500 nm is excited in x direction and
propagates along z-axis. Its profile is given by

Einc
x = E0 sin

(
2πc

λ
t

)
exp

(
−(t− 6t0)

2

t20

)
(18)

where t0 = 20 fs. The strength of the incident pulse is E0 = 2 × 107 V/m. The energy conversion
efficiency of the SHG is defined by

η =
√
εsub

∣∣∣∣Ey(2ω)

Ex(ω)

∣∣∣∣2 (19)

where Ex represents the incident pulse, Ey is the second-harmonic signal, εsub is the dielectric
permittivity of the substrate.

(a) (b)

Figure 1. (a) The computational domain for optical pulse propagation through three
dimensional gold nanostructures; (b) x−y cross-section of the U -shaped gold nanostructure
with the unit of nm.

In our numerical simulations, we choose uniform grids given by ∆x = ∆y = ∆z = 2.5 nm and
∆t = 4.167× 10−18s according to the Courant-Friedrichs-Lewy condition number of 0.5.

Figure 2a shows the time history of linear (Ex) and nonlinear second harmonic (Ey) waves for
U-shaped metallic particles illuminated by x-polarized incident light. In Figure 3, the wavelengths
of Ex and Ey components are plotted after the Fourier transform. The conversion efficiency in our
numerical simulation is calculated as 1.3959× 10−11 which is in good agreement with the experimental
result (less than 2× 10−11 as published in [4,5]). Good agreements are achieved between our numerical
result and the experimental result.
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Figure 2. Time history of (a) the linear response, and (b) the nonlinear response, for
U-shaped metallic particles illuminated by a x-polarized incident light.
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Figure 3. Semi-log plot of the Fourier transform of the time history of the far-field projection
of theEx andEy components of the electric field as functions of the wavelength for U-shaped
nanoparticles illuminated by a x-polarized incident light.

In the second simulation, we test our model for a rectangular shaped nanoparticle, and the
corresponding results are shown in Figure 4. The structure is similar to the rectangular shaped structure
given in [4]. Since rectangular shaped structure is symmetric in both x and y directions, there is no SHG,
but there exists third harmonic generation (THG). Experimental results on third harmonic generation
were published in [4]. As shown in Figure 4, our results confirm that no SHG is generated from
rectangular nanoparticles and there is THG for both U-shaped (shown in Figure 2) and rectangular
shaped structures. The SHG from U-shape is much stronger than the rectangular shape, which is also in
agreement with the experimental results published in [4].
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Figure 4. (a) Time history of the linear response for rectangular shaped nanoparticle
illuminated by a x-polarized incident light; (b) Semi-log plot of the Fourier transform of
the time history of the far-field projection of the Ex and Ey components of the electric field
as functions of the wavelength.
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Figure 5. (a) y − z cross-sections of the U-shaped gold nanostructure with the unit of nm;
(b) the convergence test of the our numerical method for solving SHG strength.

Furthermore, we test the convergence of our method using a smaller two dimensional structure shown
in Figure 5a. The U-shaped nanostructure is in y− z plane and infinitely long in the x-direction. We use
a uniform grid whose size varies from 2.5 nm down to 1.25 nm. A fine grid result with ∆x = 0.625 nm

is chosen as the reference solution. From the convergence test result shown in Figure 5b, we conclude
that our numerical method is convergent.
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4. Conclusions

We have investigated the numerical solution of three-dimensional hydrodynamic electron fluid
Maxwell equations. Our numerical method is based on the Finite-Difference Time-Domain (FDTD)
method for solving the Maxwell’s equations and central difference method for the hydrodynamic electron
fluid equations. We apply our method to study the second-harmonic generation (SHG) from metallic
nanoparticles (the split ring-resonator). The conversion efficiency obtained by our numerical method is
in good agreement with the previously published experimental result.
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